xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/units.h>
9 
10 #include <drm/drm_aperture.h>
11 #include <drm/drm_atomic_helper.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_ioctl.h>
14 #include <drm/drm_managed.h>
15 #include <drm/drm_print.h>
16 #include <drm/xe_drm.h>
17 
18 #include "display/xe_display.h"
19 #include "regs/xe_gt_regs.h"
20 #include "regs/xe_regs.h"
21 #include "xe_bo.h"
22 #include "xe_debugfs.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_drv.h"
26 #include "xe_exec.h"
27 #include "xe_exec_queue.h"
28 #include "xe_ggtt.h"
29 #include "xe_gsc_proxy.h"
30 #include "xe_gt.h"
31 #include "xe_gt_mcr.h"
32 #include "xe_hwmon.h"
33 #include "xe_irq.h"
34 #include "xe_memirq.h"
35 #include "xe_mmio.h"
36 #include "xe_module.h"
37 #include "xe_pat.h"
38 #include "xe_pcode.h"
39 #include "xe_pm.h"
40 #include "xe_query.h"
41 #include "xe_sriov.h"
42 #include "xe_tile.h"
43 #include "xe_ttm_stolen_mgr.h"
44 #include "xe_ttm_sys_mgr.h"
45 #include "xe_vm.h"
46 #include "xe_wait_user_fence.h"
47 
48 #ifdef CONFIG_LOCKDEP
49 struct lockdep_map xe_device_mem_access_lockdep_map = {
50 	.name = "xe_device_mem_access_lockdep_map"
51 };
52 #endif
53 
54 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
55 {
56 	struct xe_device *xe = to_xe_device(dev);
57 	struct xe_drm_client *client;
58 	struct xe_file *xef;
59 	int ret = -ENOMEM;
60 
61 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
62 	if (!xef)
63 		return ret;
64 
65 	client = xe_drm_client_alloc();
66 	if (!client) {
67 		kfree(xef);
68 		return ret;
69 	}
70 
71 	xef->drm = file;
72 	xef->client = client;
73 	xef->xe = xe;
74 
75 	mutex_init(&xef->vm.lock);
76 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
77 
78 	mutex_init(&xef->exec_queue.lock);
79 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
80 
81 	spin_lock(&xe->clients.lock);
82 	xe->clients.count++;
83 	spin_unlock(&xe->clients.lock);
84 
85 	file->driver_priv = xef;
86 	return 0;
87 }
88 
89 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
90 {
91 	struct xe_device *xe = to_xe_device(dev);
92 	struct xe_file *xef = file->driver_priv;
93 	struct xe_vm *vm;
94 	struct xe_exec_queue *q;
95 	unsigned long idx;
96 
97 	mutex_lock(&xef->exec_queue.lock);
98 	xa_for_each(&xef->exec_queue.xa, idx, q) {
99 		xe_exec_queue_kill(q);
100 		xe_exec_queue_put(q);
101 	}
102 	mutex_unlock(&xef->exec_queue.lock);
103 	xa_destroy(&xef->exec_queue.xa);
104 	mutex_destroy(&xef->exec_queue.lock);
105 	mutex_lock(&xef->vm.lock);
106 	xa_for_each(&xef->vm.xa, idx, vm)
107 		xe_vm_close_and_put(vm);
108 	mutex_unlock(&xef->vm.lock);
109 	xa_destroy(&xef->vm.xa);
110 	mutex_destroy(&xef->vm.lock);
111 
112 	spin_lock(&xe->clients.lock);
113 	xe->clients.count--;
114 	spin_unlock(&xe->clients.lock);
115 
116 	xe_drm_client_put(xef->client);
117 	kfree(xef);
118 }
119 
120 static const struct drm_ioctl_desc xe_ioctls[] = {
121 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
122 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
123 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
124 			  DRM_RENDER_ALLOW),
125 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
126 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
127 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
128 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
129 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
130 			  DRM_RENDER_ALLOW),
131 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
132 			  DRM_RENDER_ALLOW),
133 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
134 			  DRM_RENDER_ALLOW),
135 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
136 			  DRM_RENDER_ALLOW),
137 };
138 
139 static const struct file_operations xe_driver_fops = {
140 	.owner = THIS_MODULE,
141 	.open = drm_open,
142 	.release = drm_release_noglobal,
143 	.unlocked_ioctl = drm_ioctl,
144 	.mmap = drm_gem_mmap,
145 	.poll = drm_poll,
146 	.read = drm_read,
147 	.compat_ioctl = drm_compat_ioctl,
148 	.llseek = noop_llseek,
149 #ifdef CONFIG_PROC_FS
150 	.show_fdinfo = drm_show_fdinfo,
151 #endif
152 };
153 
154 static void xe_driver_release(struct drm_device *dev)
155 {
156 	struct xe_device *xe = to_xe_device(dev);
157 
158 	pci_set_drvdata(to_pci_dev(xe->drm.dev), NULL);
159 }
160 
161 static struct drm_driver driver = {
162 	/* Don't use MTRRs here; the Xserver or userspace app should
163 	 * deal with them for Intel hardware.
164 	 */
165 	.driver_features =
166 	    DRIVER_GEM |
167 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
168 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
169 	.open = xe_file_open,
170 	.postclose = xe_file_close,
171 
172 	.gem_prime_import = xe_gem_prime_import,
173 
174 	.dumb_create = xe_bo_dumb_create,
175 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
176 #ifdef CONFIG_PROC_FS
177 	.show_fdinfo = xe_drm_client_fdinfo,
178 #endif
179 	.release = &xe_driver_release,
180 
181 	.ioctls = xe_ioctls,
182 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
183 	.fops = &xe_driver_fops,
184 	.name = DRIVER_NAME,
185 	.desc = DRIVER_DESC,
186 	.date = DRIVER_DATE,
187 	.major = DRIVER_MAJOR,
188 	.minor = DRIVER_MINOR,
189 	.patchlevel = DRIVER_PATCHLEVEL,
190 };
191 
192 static void xe_device_destroy(struct drm_device *dev, void *dummy)
193 {
194 	struct xe_device *xe = to_xe_device(dev);
195 
196 	if (xe->ordered_wq)
197 		destroy_workqueue(xe->ordered_wq);
198 
199 	if (xe->unordered_wq)
200 		destroy_workqueue(xe->unordered_wq);
201 
202 	ttm_device_fini(&xe->ttm);
203 }
204 
205 struct xe_device *xe_device_create(struct pci_dev *pdev,
206 				   const struct pci_device_id *ent)
207 {
208 	struct xe_device *xe;
209 	int err;
210 
211 	xe_display_driver_set_hooks(&driver);
212 
213 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
214 	if (err)
215 		return ERR_PTR(err);
216 
217 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
218 	if (IS_ERR(xe))
219 		return xe;
220 
221 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
222 			      xe->drm.anon_inode->i_mapping,
223 			      xe->drm.vma_offset_manager, false, false);
224 	if (WARN_ON(err))
225 		goto err;
226 
227 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
228 	if (err)
229 		goto err;
230 
231 	xe->info.devid = pdev->device;
232 	xe->info.revid = pdev->revision;
233 	xe->info.force_execlist = xe_modparam.force_execlist;
234 
235 	spin_lock_init(&xe->irq.lock);
236 	spin_lock_init(&xe->clients.lock);
237 
238 	init_waitqueue_head(&xe->ufence_wq);
239 
240 	drmm_mutex_init(&xe->drm, &xe->usm.lock);
241 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
242 
243 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
244 		/* Trigger a large asid and an early asid wrap. */
245 		u32 asid;
246 
247 		BUILD_BUG_ON(XE_MAX_ASID < 2);
248 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
249 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
250 				      &xe->usm.next_asid, GFP_KERNEL);
251 		drm_WARN_ON(&xe->drm, err);
252 		if (err >= 0)
253 			xa_erase(&xe->usm.asid_to_vm, asid);
254 	}
255 
256 	spin_lock_init(&xe->pinned.lock);
257 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
258 	INIT_LIST_HEAD(&xe->pinned.external_vram);
259 	INIT_LIST_HEAD(&xe->pinned.evicted);
260 
261 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
262 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
263 	if (!xe->ordered_wq || !xe->unordered_wq) {
264 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
265 		err = -ENOMEM;
266 		goto err;
267 	}
268 
269 	err = xe_display_create(xe);
270 	if (WARN_ON(err))
271 		goto err;
272 
273 	return xe;
274 
275 err:
276 	return ERR_PTR(err);
277 }
278 
279 /*
280  * The driver-initiated FLR is the highest level of reset that we can trigger
281  * from within the driver. It is different from the PCI FLR in that it doesn't
282  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
283  * it doesn't require a re-enumeration of the PCI BARs. However, the
284  * driver-initiated FLR does still cause a reset of both GT and display and a
285  * memory wipe of local and stolen memory, so recovery would require a full HW
286  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
287  * perform the FLR as the very last action before releasing access to the HW
288  * during the driver release flow, we don't attempt recovery at all, because
289  * if/when a new instance of i915 is bound to the device it will do a full
290  * re-init anyway.
291  */
292 static void xe_driver_flr(struct xe_device *xe)
293 {
294 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
295 	struct xe_gt *gt = xe_root_mmio_gt(xe);
296 	int ret;
297 
298 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
299 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
300 		return;
301 	}
302 
303 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
304 
305 	/*
306 	 * Make sure any pending FLR requests have cleared by waiting for the
307 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
308 	 * to make sure it's not still set from a prior attempt (it's a write to
309 	 * clear bit).
310 	 * Note that we should never be in a situation where a previous attempt
311 	 * is still pending (unless the HW is totally dead), but better to be
312 	 * safe in case something unexpected happens
313 	 */
314 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
315 	if (ret) {
316 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
317 		return;
318 	}
319 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
320 
321 	/* Trigger the actual Driver-FLR */
322 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
323 
324 	/* Wait for hardware teardown to complete */
325 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
326 	if (ret) {
327 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
328 		return;
329 	}
330 
331 	/* Wait for hardware/firmware re-init to complete */
332 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
333 			     flr_timeout, NULL, false);
334 	if (ret) {
335 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
336 		return;
337 	}
338 
339 	/* Clear sticky completion status */
340 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
341 }
342 
343 static void xe_driver_flr_fini(struct drm_device *drm, void *arg)
344 {
345 	struct xe_device *xe = arg;
346 
347 	if (xe->needs_flr_on_fini)
348 		xe_driver_flr(xe);
349 }
350 
351 static void xe_device_sanitize(struct drm_device *drm, void *arg)
352 {
353 	struct xe_device *xe = arg;
354 	struct xe_gt *gt;
355 	u8 id;
356 
357 	for_each_gt(gt, xe, id)
358 		xe_gt_sanitize(gt);
359 }
360 
361 static int xe_set_dma_info(struct xe_device *xe)
362 {
363 	unsigned int mask_size = xe->info.dma_mask_size;
364 	int err;
365 
366 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
367 
368 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
369 	if (err)
370 		goto mask_err;
371 
372 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
373 	if (err)
374 		goto mask_err;
375 
376 	return 0;
377 
378 mask_err:
379 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
380 	return err;
381 }
382 
383 /*
384  * Initialize MMIO resources that don't require any knowledge about tile count.
385  */
386 int xe_device_probe_early(struct xe_device *xe)
387 {
388 	int err;
389 
390 	err = xe_mmio_init(xe);
391 	if (err)
392 		return err;
393 
394 	err = xe_mmio_root_tile_init(xe);
395 	if (err)
396 		return err;
397 
398 	return 0;
399 }
400 
401 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
402 {
403 	u32 reg;
404 	int err;
405 
406 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
407 		return 0;
408 
409 	struct xe_gt *gt = xe_root_mmio_gt(xe);
410 
411 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
412 	if (err)
413 		return err;
414 
415 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
416 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
417 
418 	if (!xe->info.has_flat_ccs)
419 		drm_dbg(&xe->drm,
420 			"Flat CCS has been disabled in bios, May lead to performance impact");
421 
422 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
423 }
424 
425 int xe_device_probe(struct xe_device *xe)
426 {
427 	struct xe_tile *tile;
428 	struct xe_gt *gt;
429 	int err;
430 	u8 last_gt;
431 	u8 id;
432 
433 	xe_pat_init_early(xe);
434 
435 	err = xe_sriov_init(xe);
436 	if (err)
437 		return err;
438 
439 	xe->info.mem_region_mask = 1;
440 	err = xe_display_init_nommio(xe);
441 	if (err)
442 		return err;
443 
444 	err = xe_set_dma_info(xe);
445 	if (err)
446 		return err;
447 
448 	xe_mmio_probe_tiles(xe);
449 
450 	xe_ttm_sys_mgr_init(xe);
451 
452 	for_each_gt(gt, xe, id)
453 		xe_force_wake_init_gt(gt, gt_to_fw(gt));
454 
455 	for_each_tile(tile, xe, id) {
456 		err = xe_ggtt_init_early(tile->mem.ggtt);
457 		if (err)
458 			return err;
459 		if (IS_SRIOV_VF(xe)) {
460 			err = xe_memirq_init(&tile->sriov.vf.memirq);
461 			if (err)
462 				return err;
463 		}
464 	}
465 
466 	for_each_gt(gt, xe, id) {
467 		err = xe_gt_init_hwconfig(gt);
468 		if (err)
469 			return err;
470 	}
471 
472 	err = drmm_add_action_or_reset(&xe->drm, xe_driver_flr_fini, xe);
473 	if (err)
474 		return err;
475 
476 	for_each_gt(gt, xe, id) {
477 		err = xe_pcode_probe(gt);
478 		if (err)
479 			return err;
480 	}
481 
482 	err = xe_display_init_noirq(xe);
483 	if (err)
484 		return err;
485 
486 	err = xe_irq_install(xe);
487 	if (err)
488 		goto err;
489 
490 	for_each_gt(gt, xe, id) {
491 		err = xe_gt_init_early(gt);
492 		if (err)
493 			goto err_irq_shutdown;
494 	}
495 
496 	err = xe_device_set_has_flat_ccs(xe);
497 	if (err)
498 		goto err_irq_shutdown;
499 
500 	err = xe_mmio_probe_vram(xe);
501 	if (err)
502 		goto err_irq_shutdown;
503 
504 	for_each_tile(tile, xe, id) {
505 		err = xe_tile_init_noalloc(tile);
506 		if (err)
507 			goto err_irq_shutdown;
508 	}
509 
510 	/* Allocate and map stolen after potential VRAM resize */
511 	xe_ttm_stolen_mgr_init(xe);
512 
513 	/*
514 	 * Now that GT is initialized (TTM in particular),
515 	 * we can try to init display, and inherit the initial fb.
516 	 * This is the reason the first allocation needs to be done
517 	 * inside display.
518 	 */
519 	err = xe_display_init_noaccel(xe);
520 	if (err)
521 		goto err_irq_shutdown;
522 
523 	for_each_gt(gt, xe, id) {
524 		last_gt = id;
525 
526 		err = xe_gt_init(gt);
527 		if (err)
528 			goto err_fini_gt;
529 	}
530 
531 	xe_heci_gsc_init(xe);
532 
533 	err = xe_display_init(xe);
534 	if (err)
535 		goto err_fini_gt;
536 
537 	err = drm_dev_register(&xe->drm, 0);
538 	if (err)
539 		goto err_fini_display;
540 
541 	xe_display_register(xe);
542 
543 	xe_debugfs_register(xe);
544 
545 	xe_hwmon_register(xe);
546 
547 	err = drmm_add_action_or_reset(&xe->drm, xe_device_sanitize, xe);
548 	if (err)
549 		return err;
550 
551 	return 0;
552 
553 err_fini_display:
554 	xe_display_driver_remove(xe);
555 
556 err_fini_gt:
557 	for_each_gt(gt, xe, id) {
558 		if (id < last_gt)
559 			xe_gt_remove(gt);
560 		else
561 			break;
562 	}
563 
564 err_irq_shutdown:
565 	xe_irq_shutdown(xe);
566 err:
567 	xe_display_fini(xe);
568 	return err;
569 }
570 
571 static void xe_device_remove_display(struct xe_device *xe)
572 {
573 	xe_display_unregister(xe);
574 
575 	drm_dev_unplug(&xe->drm);
576 	xe_display_driver_remove(xe);
577 }
578 
579 void xe_device_remove(struct xe_device *xe)
580 {
581 	struct xe_gt *gt;
582 	u8 id;
583 
584 	xe_device_remove_display(xe);
585 
586 	xe_display_fini(xe);
587 
588 	xe_heci_gsc_fini(xe);
589 
590 	for_each_gt(gt, xe, id)
591 		xe_gt_remove(gt);
592 
593 	xe_irq_shutdown(xe);
594 }
595 
596 void xe_device_shutdown(struct xe_device *xe)
597 {
598 }
599 
600 void xe_device_wmb(struct xe_device *xe)
601 {
602 	struct xe_gt *gt = xe_root_mmio_gt(xe);
603 
604 	wmb();
605 	if (IS_DGFX(xe))
606 		xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0);
607 }
608 
609 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
610 {
611 	return xe_device_has_flat_ccs(xe) ?
612 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
613 }
614 
615 bool xe_device_mem_access_ongoing(struct xe_device *xe)
616 {
617 	if (xe_pm_read_callback_task(xe) != NULL)
618 		return true;
619 
620 	return atomic_read(&xe->mem_access.ref);
621 }
622 
623 void xe_device_assert_mem_access(struct xe_device *xe)
624 {
625 	XE_WARN_ON(!xe_device_mem_access_ongoing(xe));
626 }
627 
628 bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe)
629 {
630 	bool active;
631 
632 	if (xe_pm_read_callback_task(xe) == current)
633 		return true;
634 
635 	active = xe_pm_runtime_get_if_active(xe);
636 	if (active) {
637 		int ref = atomic_inc_return(&xe->mem_access.ref);
638 
639 		xe_assert(xe, ref != S32_MAX);
640 	}
641 
642 	return active;
643 }
644 
645 void xe_device_mem_access_get(struct xe_device *xe)
646 {
647 	int ref;
648 
649 	/*
650 	 * This looks racy, but should be fine since the pm_callback_task only
651 	 * transitions from NULL -> current (and back to NULL again), during the
652 	 * runtime_resume() or runtime_suspend() callbacks, for which there can
653 	 * only be a single one running for our device. We only need to prevent
654 	 * recursively calling the runtime_get or runtime_put from those
655 	 * callbacks, as well as preventing triggering any access_ongoing
656 	 * asserts.
657 	 */
658 	if (xe_pm_read_callback_task(xe) == current)
659 		return;
660 
661 	/*
662 	 * Since the resume here is synchronous it can be quite easy to deadlock
663 	 * if we are not careful. Also in practice it might be quite timing
664 	 * sensitive to ever see the 0 -> 1 transition with the callers locks
665 	 * held, so deadlocks might exist but are hard for lockdep to ever see.
666 	 * With this in mind, help lockdep learn about the potentially scary
667 	 * stuff that can happen inside the runtime_resume callback by acquiring
668 	 * a dummy lock (it doesn't protect anything and gets compiled out on
669 	 * non-debug builds).  Lockdep then only needs to see the
670 	 * mem_access_lockdep_map -> runtime_resume callback once, and then can
671 	 * hopefully validate all the (callers_locks) -> mem_access_lockdep_map.
672 	 * For example if the (callers_locks) are ever grabbed in the
673 	 * runtime_resume callback, lockdep should give us a nice splat.
674 	 */
675 	lock_map_acquire(&xe_device_mem_access_lockdep_map);
676 	lock_map_release(&xe_device_mem_access_lockdep_map);
677 
678 	xe_pm_runtime_get(xe);
679 	ref = atomic_inc_return(&xe->mem_access.ref);
680 
681 	xe_assert(xe, ref != S32_MAX);
682 
683 }
684 
685 void xe_device_mem_access_put(struct xe_device *xe)
686 {
687 	int ref;
688 
689 	if (xe_pm_read_callback_task(xe) == current)
690 		return;
691 
692 	ref = atomic_dec_return(&xe->mem_access.ref);
693 	xe_pm_runtime_put(xe);
694 
695 	xe_assert(xe, ref >= 0);
696 }
697 
698 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
699 {
700 	struct xe_gt *gt;
701 	u8 id;
702 
703 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
704 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
705 
706 	for_each_gt(gt, xe, id) {
707 		drm_printf(p, "GT id: %u\n", id);
708 		drm_printf(p, "\tType: %s\n",
709 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
710 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
711 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
712 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
713 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
714 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
715 	}
716 }
717 
718 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
719 {
720 	return sign_extend64(address, xe->info.va_bits - 1);
721 }
722 
723 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
724 {
725 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
726 }
727