xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision e7aaa5fbf4fc1aa9c348075aab9bf054727f025f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_oa.h"
48 #include "xe_observation.h"
49 #include "xe_pat.h"
50 #include "xe_pcode.h"
51 #include "xe_pm.h"
52 #include "xe_pmu.h"
53 #include "xe_pxp.h"
54 #include "xe_query.h"
55 #include "xe_shrinker.h"
56 #include "xe_sriov.h"
57 #include "xe_tile.h"
58 #include "xe_ttm_stolen_mgr.h"
59 #include "xe_ttm_sys_mgr.h"
60 #include "xe_vm.h"
61 #include "xe_vram.h"
62 #include "xe_vsec.h"
63 #include "xe_wait_user_fence.h"
64 #include "xe_wa.h"
65 
66 #include <generated/xe_wa_oob.h>
67 
68 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
69 {
70 	struct xe_device *xe = to_xe_device(dev);
71 	struct xe_drm_client *client;
72 	struct xe_file *xef;
73 	int ret = -ENOMEM;
74 	struct task_struct *task = NULL;
75 
76 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
77 	if (!xef)
78 		return ret;
79 
80 	client = xe_drm_client_alloc();
81 	if (!client) {
82 		kfree(xef);
83 		return ret;
84 	}
85 
86 	xef->drm = file;
87 	xef->client = client;
88 	xef->xe = xe;
89 
90 	mutex_init(&xef->vm.lock);
91 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
92 
93 	mutex_init(&xef->exec_queue.lock);
94 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
95 
96 	file->driver_priv = xef;
97 	kref_init(&xef->refcount);
98 
99 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
100 	if (task) {
101 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
102 		xef->pid = task->pid;
103 		put_task_struct(task);
104 	}
105 
106 	return 0;
107 }
108 
109 static void xe_file_destroy(struct kref *ref)
110 {
111 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
112 
113 	xa_destroy(&xef->exec_queue.xa);
114 	mutex_destroy(&xef->exec_queue.lock);
115 	xa_destroy(&xef->vm.xa);
116 	mutex_destroy(&xef->vm.lock);
117 
118 	xe_drm_client_put(xef->client);
119 	kfree(xef->process_name);
120 	kfree(xef);
121 }
122 
123 /**
124  * xe_file_get() - Take a reference to the xe file object
125  * @xef: Pointer to the xe file
126  *
127  * Anyone with a pointer to xef must take a reference to the xe file
128  * object using this call.
129  *
130  * Return: xe file pointer
131  */
132 struct xe_file *xe_file_get(struct xe_file *xef)
133 {
134 	kref_get(&xef->refcount);
135 	return xef;
136 }
137 
138 /**
139  * xe_file_put() - Drop a reference to the xe file object
140  * @xef: Pointer to the xe file
141  *
142  * Used to drop reference to the xef object
143  */
144 void xe_file_put(struct xe_file *xef)
145 {
146 	kref_put(&xef->refcount, xe_file_destroy);
147 }
148 
149 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
150 {
151 	struct xe_device *xe = to_xe_device(dev);
152 	struct xe_file *xef = file->driver_priv;
153 	struct xe_vm *vm;
154 	struct xe_exec_queue *q;
155 	unsigned long idx;
156 
157 	xe_pm_runtime_get(xe);
158 
159 	/*
160 	 * No need for exec_queue.lock here as there is no contention for it
161 	 * when FD is closing as IOCTLs presumably can't be modifying the
162 	 * xarray. Taking exec_queue.lock here causes undue dependency on
163 	 * vm->lock taken during xe_exec_queue_kill().
164 	 */
165 	xa_for_each(&xef->exec_queue.xa, idx, q) {
166 		if (q->vm && q->hwe->hw_engine_group)
167 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
168 		xe_exec_queue_kill(q);
169 		xe_exec_queue_put(q);
170 	}
171 	xa_for_each(&xef->vm.xa, idx, vm)
172 		xe_vm_close_and_put(vm);
173 
174 	xe_file_put(xef);
175 
176 	xe_pm_runtime_put(xe);
177 }
178 
179 static const struct drm_ioctl_desc xe_ioctls[] = {
180 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
183 			  DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
189 			  DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
191 			  DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
193 			  DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
197 };
198 
199 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
200 {
201 	struct drm_file *file_priv = file->private_data;
202 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
203 	long ret;
204 
205 	if (xe_device_wedged(xe))
206 		return -ECANCELED;
207 
208 	ret = xe_pm_runtime_get_ioctl(xe);
209 	if (ret >= 0)
210 		ret = drm_ioctl(file, cmd, arg);
211 	xe_pm_runtime_put(xe);
212 
213 	return ret;
214 }
215 
216 #ifdef CONFIG_COMPAT
217 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
218 {
219 	struct drm_file *file_priv = file->private_data;
220 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
221 	long ret;
222 
223 	if (xe_device_wedged(xe))
224 		return -ECANCELED;
225 
226 	ret = xe_pm_runtime_get_ioctl(xe);
227 	if (ret >= 0)
228 		ret = drm_compat_ioctl(file, cmd, arg);
229 	xe_pm_runtime_put(xe);
230 
231 	return ret;
232 }
233 #else
234 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
235 #define xe_drm_compat_ioctl NULL
236 #endif
237 
238 static void barrier_open(struct vm_area_struct *vma)
239 {
240 	drm_dev_get(vma->vm_private_data);
241 }
242 
243 static void barrier_close(struct vm_area_struct *vma)
244 {
245 	drm_dev_put(vma->vm_private_data);
246 }
247 
248 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
249 {
250 	struct page *dummy_page = (struct page *)res;
251 
252 	__free_page(dummy_page);
253 }
254 
255 static vm_fault_t barrier_fault(struct vm_fault *vmf)
256 {
257 	struct drm_device *dev = vmf->vma->vm_private_data;
258 	struct vm_area_struct *vma = vmf->vma;
259 	vm_fault_t ret = VM_FAULT_NOPAGE;
260 	pgprot_t prot;
261 	int idx;
262 
263 	prot = vm_get_page_prot(vma->vm_flags);
264 
265 	if (drm_dev_enter(dev, &idx)) {
266 		unsigned long pfn;
267 
268 #define LAST_DB_PAGE_OFFSET 0x7ff001
269 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
270 				LAST_DB_PAGE_OFFSET);
271 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
272 					  pgprot_noncached(prot));
273 		drm_dev_exit(idx);
274 	} else {
275 		struct page *page;
276 
277 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
278 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
279 		if (!page)
280 			return VM_FAULT_OOM;
281 
282 		/* Set the page to be freed using drmm release action */
283 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
284 			return VM_FAULT_OOM;
285 
286 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
287 					  prot);
288 	}
289 
290 	return ret;
291 }
292 
293 static const struct vm_operations_struct vm_ops_barrier = {
294 	.open = barrier_open,
295 	.close = barrier_close,
296 	.fault = barrier_fault,
297 };
298 
299 static int xe_pci_barrier_mmap(struct file *filp,
300 			       struct vm_area_struct *vma)
301 {
302 	struct drm_file *priv = filp->private_data;
303 	struct drm_device *dev = priv->minor->dev;
304 	struct xe_device *xe = to_xe_device(dev);
305 
306 	if (!IS_DGFX(xe))
307 		return -EINVAL;
308 
309 	if (vma->vm_end - vma->vm_start > SZ_4K)
310 		return -EINVAL;
311 
312 	if (is_cow_mapping(vma->vm_flags))
313 		return -EINVAL;
314 
315 	if (vma->vm_flags & (VM_READ | VM_EXEC))
316 		return -EINVAL;
317 
318 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
319 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
320 	vma->vm_ops = &vm_ops_barrier;
321 	vma->vm_private_data = dev;
322 	drm_dev_get(vma->vm_private_data);
323 
324 	return 0;
325 }
326 
327 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
328 {
329 	struct drm_file *priv = filp->private_data;
330 	struct drm_device *dev = priv->minor->dev;
331 
332 	if (drm_dev_is_unplugged(dev))
333 		return -ENODEV;
334 
335 	switch (vma->vm_pgoff) {
336 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
337 		return xe_pci_barrier_mmap(filp, vma);
338 	}
339 
340 	return drm_gem_mmap(filp, vma);
341 }
342 
343 static const struct file_operations xe_driver_fops = {
344 	.owner = THIS_MODULE,
345 	.open = drm_open,
346 	.release = drm_release_noglobal,
347 	.unlocked_ioctl = xe_drm_ioctl,
348 	.mmap = xe_mmap,
349 	.poll = drm_poll,
350 	.read = drm_read,
351 	.compat_ioctl = xe_drm_compat_ioctl,
352 	.llseek = noop_llseek,
353 #ifdef CONFIG_PROC_FS
354 	.show_fdinfo = drm_show_fdinfo,
355 #endif
356 	.fop_flags = FOP_UNSIGNED_OFFSET,
357 };
358 
359 static struct drm_driver driver = {
360 	/* Don't use MTRRs here; the Xserver or userspace app should
361 	 * deal with them for Intel hardware.
362 	 */
363 	.driver_features =
364 	    DRIVER_GEM |
365 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
366 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
367 	.open = xe_file_open,
368 	.postclose = xe_file_close,
369 
370 	.gem_prime_import = xe_gem_prime_import,
371 
372 	.dumb_create = xe_bo_dumb_create,
373 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
374 #ifdef CONFIG_PROC_FS
375 	.show_fdinfo = xe_drm_client_fdinfo,
376 #endif
377 	.ioctls = xe_ioctls,
378 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
379 	.fops = &xe_driver_fops,
380 	.name = DRIVER_NAME,
381 	.desc = DRIVER_DESC,
382 	.major = DRIVER_MAJOR,
383 	.minor = DRIVER_MINOR,
384 	.patchlevel = DRIVER_PATCHLEVEL,
385 };
386 
387 static void xe_device_destroy(struct drm_device *dev, void *dummy)
388 {
389 	struct xe_device *xe = to_xe_device(dev);
390 
391 	xe_bo_dev_fini(&xe->bo_device);
392 
393 	if (xe->preempt_fence_wq)
394 		destroy_workqueue(xe->preempt_fence_wq);
395 
396 	if (xe->ordered_wq)
397 		destroy_workqueue(xe->ordered_wq);
398 
399 	if (xe->unordered_wq)
400 		destroy_workqueue(xe->unordered_wq);
401 
402 	if (!IS_ERR_OR_NULL(xe->mem.shrinker))
403 		xe_shrinker_destroy(xe->mem.shrinker);
404 
405 	if (xe->destroy_wq)
406 		destroy_workqueue(xe->destroy_wq);
407 
408 	ttm_device_fini(&xe->ttm);
409 }
410 
411 struct xe_device *xe_device_create(struct pci_dev *pdev,
412 				   const struct pci_device_id *ent)
413 {
414 	struct xe_device *xe;
415 	int err;
416 
417 	xe_display_driver_set_hooks(&driver);
418 
419 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
420 	if (err)
421 		return ERR_PTR(err);
422 
423 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
424 	if (IS_ERR(xe))
425 		return xe;
426 
427 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
428 			      xe->drm.anon_inode->i_mapping,
429 			      xe->drm.vma_offset_manager, false, false);
430 	if (WARN_ON(err))
431 		goto err;
432 
433 	xe_bo_dev_init(&xe->bo_device);
434 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
435 	if (err)
436 		goto err;
437 
438 	xe->mem.shrinker = xe_shrinker_create(xe);
439 	if (IS_ERR(xe->mem.shrinker))
440 		return ERR_CAST(xe->mem.shrinker);
441 
442 	xe->info.devid = pdev->device;
443 	xe->info.revid = pdev->revision;
444 	xe->info.force_execlist = xe_modparam.force_execlist;
445 
446 	err = xe_irq_init(xe);
447 	if (err)
448 		goto err;
449 
450 	init_waitqueue_head(&xe->ufence_wq);
451 
452 	init_rwsem(&xe->usm.lock);
453 
454 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
455 
456 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
457 		/* Trigger a large asid and an early asid wrap. */
458 		u32 asid;
459 
460 		BUILD_BUG_ON(XE_MAX_ASID < 2);
461 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
462 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
463 				      &xe->usm.next_asid, GFP_KERNEL);
464 		drm_WARN_ON(&xe->drm, err);
465 		if (err >= 0)
466 			xa_erase(&xe->usm.asid_to_vm, asid);
467 	}
468 
469 	spin_lock_init(&xe->pinned.lock);
470 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
471 	INIT_LIST_HEAD(&xe->pinned.external_vram);
472 	INIT_LIST_HEAD(&xe->pinned.evicted);
473 
474 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
475 						       WQ_MEM_RECLAIM);
476 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
477 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
478 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
479 	if (!xe->ordered_wq || !xe->unordered_wq ||
480 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
481 		/*
482 		 * Cleanup done in xe_device_destroy via
483 		 * drmm_add_action_or_reset register above
484 		 */
485 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
486 		err = -ENOMEM;
487 		goto err;
488 	}
489 
490 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
491 	if (err)
492 		goto err;
493 
494 	err = xe_display_create(xe);
495 	if (WARN_ON(err))
496 		goto err;
497 
498 	return xe;
499 
500 err:
501 	return ERR_PTR(err);
502 }
503 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
504 
505 static bool xe_driver_flr_disabled(struct xe_device *xe)
506 {
507 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
508 }
509 
510 /*
511  * The driver-initiated FLR is the highest level of reset that we can trigger
512  * from within the driver. It is different from the PCI FLR in that it doesn't
513  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
514  * it doesn't require a re-enumeration of the PCI BARs. However, the
515  * driver-initiated FLR does still cause a reset of both GT and display and a
516  * memory wipe of local and stolen memory, so recovery would require a full HW
517  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
518  * perform the FLR as the very last action before releasing access to the HW
519  * during the driver release flow, we don't attempt recovery at all, because
520  * if/when a new instance of i915 is bound to the device it will do a full
521  * re-init anyway.
522  */
523 static void __xe_driver_flr(struct xe_device *xe)
524 {
525 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
526 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
527 	int ret;
528 
529 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
530 
531 	/*
532 	 * Make sure any pending FLR requests have cleared by waiting for the
533 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
534 	 * to make sure it's not still set from a prior attempt (it's a write to
535 	 * clear bit).
536 	 * Note that we should never be in a situation where a previous attempt
537 	 * is still pending (unless the HW is totally dead), but better to be
538 	 * safe in case something unexpected happens
539 	 */
540 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
541 	if (ret) {
542 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
543 		return;
544 	}
545 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
546 
547 	/* Trigger the actual Driver-FLR */
548 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
549 
550 	/* Wait for hardware teardown to complete */
551 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
552 	if (ret) {
553 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
554 		return;
555 	}
556 
557 	/* Wait for hardware/firmware re-init to complete */
558 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
559 			     flr_timeout, NULL, false);
560 	if (ret) {
561 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
562 		return;
563 	}
564 
565 	/* Clear sticky completion status */
566 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
567 }
568 
569 static void xe_driver_flr(struct xe_device *xe)
570 {
571 	if (xe_driver_flr_disabled(xe)) {
572 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
573 		return;
574 	}
575 
576 	__xe_driver_flr(xe);
577 }
578 
579 static void xe_driver_flr_fini(void *arg)
580 {
581 	struct xe_device *xe = arg;
582 
583 	if (xe->needs_flr_on_fini)
584 		xe_driver_flr(xe);
585 }
586 
587 static void xe_device_sanitize(void *arg)
588 {
589 	struct xe_device *xe = arg;
590 	struct xe_gt *gt;
591 	u8 id;
592 
593 	for_each_gt(gt, xe, id)
594 		xe_gt_sanitize(gt);
595 }
596 
597 static int xe_set_dma_info(struct xe_device *xe)
598 {
599 	unsigned int mask_size = xe->info.dma_mask_size;
600 	int err;
601 
602 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
603 
604 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
605 	if (err)
606 		goto mask_err;
607 
608 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
609 	if (err)
610 		goto mask_err;
611 
612 	return 0;
613 
614 mask_err:
615 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
616 	return err;
617 }
618 
619 static bool verify_lmem_ready(struct xe_device *xe)
620 {
621 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
622 
623 	return !!val;
624 }
625 
626 static int wait_for_lmem_ready(struct xe_device *xe)
627 {
628 	unsigned long timeout, start;
629 
630 	if (!IS_DGFX(xe))
631 		return 0;
632 
633 	if (IS_SRIOV_VF(xe))
634 		return 0;
635 
636 	if (verify_lmem_ready(xe))
637 		return 0;
638 
639 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
640 
641 	start = jiffies;
642 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
643 
644 	do {
645 		if (signal_pending(current))
646 			return -EINTR;
647 
648 		/*
649 		 * The boot firmware initializes local memory and
650 		 * assesses its health. If memory training fails,
651 		 * the punit will have been instructed to keep the GT powered
652 		 * down.we won't be able to communicate with it
653 		 *
654 		 * If the status check is done before punit updates the register,
655 		 * it can lead to the system being unusable.
656 		 * use a timeout and defer the probe to prevent this.
657 		 */
658 		if (time_after(jiffies, timeout)) {
659 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
660 			return -EPROBE_DEFER;
661 		}
662 
663 		msleep(20);
664 
665 	} while (!verify_lmem_ready(xe));
666 
667 	drm_dbg(&xe->drm, "lmem ready after %ums",
668 		jiffies_to_msecs(jiffies - start));
669 
670 	return 0;
671 }
672 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
673 
674 static void sriov_update_device_info(struct xe_device *xe)
675 {
676 	/* disable features that are not available/applicable to VFs */
677 	if (IS_SRIOV_VF(xe)) {
678 		xe->info.probe_display = 0;
679 		xe->info.has_heci_gscfi = 0;
680 		xe->info.skip_guc_pc = 1;
681 		xe->info.skip_pcode = 1;
682 	}
683 }
684 
685 /**
686  * xe_device_probe_early: Device early probe
687  * @xe: xe device instance
688  *
689  * Initialize MMIO resources that don't require any
690  * knowledge about tile count. Also initialize pcode and
691  * check vram initialization on root tile.
692  *
693  * Return: 0 on success, error code on failure
694  */
695 int xe_device_probe_early(struct xe_device *xe)
696 {
697 	int err;
698 
699 	err = xe_mmio_probe_early(xe);
700 	if (err)
701 		return err;
702 
703 	xe_sriov_probe_early(xe);
704 
705 	sriov_update_device_info(xe);
706 
707 	err = xe_pcode_probe_early(xe);
708 	if (err)
709 		return err;
710 
711 	err = wait_for_lmem_ready(xe);
712 	if (err)
713 		return err;
714 
715 	xe->wedged.mode = xe_modparam.wedged_mode;
716 
717 	return 0;
718 }
719 
720 static int probe_has_flat_ccs(struct xe_device *xe)
721 {
722 	struct xe_gt *gt;
723 	unsigned int fw_ref;
724 	u32 reg;
725 
726 	/* Always enabled/disabled, no runtime check to do */
727 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
728 		return 0;
729 
730 	gt = xe_root_mmio_gt(xe);
731 
732 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
733 	if (!fw_ref)
734 		return -ETIMEDOUT;
735 
736 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
737 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
738 
739 	if (!xe->info.has_flat_ccs)
740 		drm_dbg(&xe->drm,
741 			"Flat CCS has been disabled in bios, May lead to performance impact");
742 
743 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
744 
745 	return 0;
746 }
747 
748 int xe_device_probe(struct xe_device *xe)
749 {
750 	struct xe_tile *tile;
751 	struct xe_gt *gt;
752 	int err;
753 	u8 id;
754 
755 	xe_pat_init_early(xe);
756 
757 	err = xe_sriov_init(xe);
758 	if (err)
759 		return err;
760 
761 	xe->info.mem_region_mask = 1;
762 
763 	err = xe_set_dma_info(xe);
764 	if (err)
765 		return err;
766 
767 	err = xe_mmio_probe_tiles(xe);
768 	if (err)
769 		return err;
770 
771 	err = xe_ttm_sys_mgr_init(xe);
772 	if (err)
773 		return err;
774 
775 	for_each_gt(gt, xe, id) {
776 		err = xe_gt_init_early(gt);
777 		if (err)
778 			return err;
779 
780 		/*
781 		 * Only after this point can GT-specific MMIO operations
782 		 * (including things like communication with the GuC)
783 		 * be performed.
784 		 */
785 		xe_gt_mmio_init(gt);
786 	}
787 
788 	for_each_tile(tile, xe, id) {
789 		if (IS_SRIOV_VF(xe)) {
790 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
791 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
792 			if (err)
793 				return err;
794 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
795 			if (err)
796 				return err;
797 		}
798 		err = xe_ggtt_init_early(tile->mem.ggtt);
799 		if (err)
800 			return err;
801 		err = xe_memirq_init(&tile->memirq);
802 		if (err)
803 			return err;
804 	}
805 
806 	for_each_gt(gt, xe, id) {
807 		err = xe_gt_init_hwconfig(gt);
808 		if (err)
809 			return err;
810 	}
811 
812 	err = xe_devcoredump_init(xe);
813 	if (err)
814 		return err;
815 
816 	/*
817 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
818 	 */
819 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
820 	if (err)
821 		return err;
822 
823 	err = probe_has_flat_ccs(xe);
824 	if (err)
825 		return err;
826 
827 	err = xe_vram_probe(xe);
828 	if (err)
829 		return err;
830 
831 	for_each_tile(tile, xe, id) {
832 		err = xe_tile_init_noalloc(tile);
833 		if (err)
834 			return err;
835 	}
836 
837 	/* Allocate and map stolen after potential VRAM resize */
838 	err = xe_ttm_stolen_mgr_init(xe);
839 	if (err)
840 		return err;
841 
842 	/*
843 	 * Now that GT is initialized (TTM in particular),
844 	 * we can try to init display, and inherit the initial fb.
845 	 * This is the reason the first allocation needs to be done
846 	 * inside display.
847 	 */
848 	err = xe_display_init_early(xe);
849 	if (err)
850 		return err;
851 
852 	for_each_tile(tile, xe, id) {
853 		err = xe_tile_init(tile);
854 		if (err)
855 			return err;
856 	}
857 
858 	err = xe_irq_install(xe);
859 	if (err)
860 		return err;
861 
862 	for_each_gt(gt, xe, id) {
863 		err = xe_gt_init(gt);
864 		if (err)
865 			return err;
866 	}
867 
868 	err = xe_heci_gsc_init(xe);
869 	if (err)
870 		return err;
871 
872 	err = xe_oa_init(xe);
873 	if (err)
874 		return err;
875 
876 	err = xe_display_init(xe);
877 	if (err)
878 		return err;
879 
880 	err = xe_pxp_init(xe);
881 	if (err)
882 		return err;
883 
884 	err = drm_dev_register(&xe->drm, 0);
885 	if (err)
886 		return err;
887 
888 	xe_display_register(xe);
889 
890 	err = xe_oa_register(xe);
891 	if (err)
892 		goto err_unregister_display;
893 
894 	err = xe_pmu_register(&xe->pmu);
895 	if (err)
896 		goto err_unregister_display;
897 
898 	xe_debugfs_register(xe);
899 
900 	err = xe_hwmon_register(xe);
901 	if (err)
902 		goto err_unregister_display;
903 
904 	for_each_gt(gt, xe, id)
905 		xe_gt_sanitize_freq(gt);
906 
907 	xe_vsec_init(xe);
908 
909 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
910 
911 err_unregister_display:
912 	xe_display_unregister(xe);
913 
914 	return err;
915 }
916 
917 void xe_device_remove(struct xe_device *xe)
918 {
919 	xe_display_unregister(xe);
920 
921 	drm_dev_unplug(&xe->drm);
922 }
923 
924 void xe_device_shutdown(struct xe_device *xe)
925 {
926 	struct xe_gt *gt;
927 	u8 id;
928 
929 	drm_dbg(&xe->drm, "Shutting down device\n");
930 
931 	if (xe_driver_flr_disabled(xe)) {
932 		xe_display_pm_shutdown(xe);
933 
934 		xe_irq_suspend(xe);
935 
936 		for_each_gt(gt, xe, id)
937 			xe_gt_shutdown(gt);
938 
939 		xe_display_pm_shutdown_late(xe);
940 	} else {
941 		/* BOOM! */
942 		__xe_driver_flr(xe);
943 	}
944 }
945 
946 /**
947  * xe_device_wmb() - Device specific write memory barrier
948  * @xe: the &xe_device
949  *
950  * While wmb() is sufficient for a barrier if we use system memory, on discrete
951  * platforms with device memory we additionally need to issue a register write.
952  * Since it doesn't matter which register we write to, use the read-only VF_CAP
953  * register that is also marked as accessible by the VFs.
954  */
955 void xe_device_wmb(struct xe_device *xe)
956 {
957 	wmb();
958 	if (IS_DGFX(xe))
959 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
960 }
961 
962 /**
963  * xe_device_td_flush() - Flush transient L3 cache entries
964  * @xe: The device
965  *
966  * Display engine has direct access to memory and is never coherent with L3/L4
967  * caches (or CPU caches), however KMD is responsible for specifically flushing
968  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
969  * can happen from such a surface without seeing corruption.
970  *
971  * Display surfaces can be tagged as transient by mapping it using one of the
972  * various L3:XD PAT index modes on Xe2.
973  *
974  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
975  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
976  * Media is not coherent with L3 and we want to support render-vs-media
977  * usescases. For other engines like copy/blt the HW internally forces uncached
978  * behaviour, hence why we can skip the TDF on such platforms.
979  */
980 void xe_device_td_flush(struct xe_device *xe)
981 {
982 	struct xe_gt *gt;
983 	unsigned int fw_ref;
984 	u8 id;
985 
986 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
987 		return;
988 
989 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
990 		xe_device_l2_flush(xe);
991 		return;
992 	}
993 
994 	for_each_gt(gt, xe, id) {
995 		if (xe_gt_is_media_type(gt))
996 			continue;
997 
998 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
999 		if (!fw_ref)
1000 			return;
1001 
1002 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1003 		/*
1004 		 * FIXME: We can likely do better here with our choice of
1005 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1006 		 * which is believed to be sufficient to cover the worst case
1007 		 * scenario on current platforms if all cache entries are
1008 		 * transient and need to be flushed..
1009 		 */
1010 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1011 				   150, NULL, false))
1012 			xe_gt_err_once(gt, "TD flush timeout\n");
1013 
1014 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1015 	}
1016 }
1017 
1018 void xe_device_l2_flush(struct xe_device *xe)
1019 {
1020 	struct xe_gt *gt;
1021 	unsigned int fw_ref;
1022 
1023 	gt = xe_root_mmio_gt(xe);
1024 
1025 	if (!XE_WA(gt, 16023588340))
1026 		return;
1027 
1028 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1029 	if (!fw_ref)
1030 		return;
1031 
1032 	spin_lock(&gt->global_invl_lock);
1033 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1034 
1035 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1036 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1037 	spin_unlock(&gt->global_invl_lock);
1038 
1039 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1040 }
1041 
1042 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1043 {
1044 	return xe_device_has_flat_ccs(xe) ?
1045 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1046 }
1047 
1048 /**
1049  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1050  * @xe: xe device instance
1051  *
1052  * To be used before any kind of memory access. It will splat a debug warning
1053  * if the device is currently sleeping. But it doesn't guarantee in any way
1054  * that the device is going to remain awake. Xe PM runtime get and put
1055  * functions might be added to the outer bound of the memory access, while
1056  * this check is intended for inner usage to splat some warning if the worst
1057  * case has just happened.
1058  */
1059 void xe_device_assert_mem_access(struct xe_device *xe)
1060 {
1061 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1062 }
1063 
1064 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1065 {
1066 	struct xe_gt *gt;
1067 	u8 id;
1068 
1069 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1070 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1071 
1072 	for_each_gt(gt, xe, id) {
1073 		drm_printf(p, "GT id: %u\n", id);
1074 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1075 		drm_printf(p, "\tType: %s\n",
1076 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1077 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1078 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1079 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1080 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1081 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1082 	}
1083 }
1084 
1085 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1086 {
1087 	return sign_extend64(address, xe->info.va_bits - 1);
1088 }
1089 
1090 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1091 {
1092 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1093 }
1094 
1095 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1096 {
1097 	struct xe_device *xe = arg;
1098 
1099 	xe_pm_runtime_put(xe);
1100 }
1101 
1102 /**
1103  * xe_device_declare_wedged - Declare device wedged
1104  * @xe: xe device instance
1105  *
1106  * This is a final state that can only be cleared with a module
1107  * re-probe (unbind + bind).
1108  * In this state every IOCTL will be blocked so the GT cannot be used.
1109  * In general it will be called upon any critical error such as gt reset
1110  * failure or guc loading failure. Userspace will be notified of this state
1111  * through device wedged uevent.
1112  * If xe.wedged module parameter is set to 2, this function will be called
1113  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1114  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1115  * the issue is preserved for further debugging.
1116  */
1117 void xe_device_declare_wedged(struct xe_device *xe)
1118 {
1119 	struct xe_gt *gt;
1120 	u8 id;
1121 
1122 	if (xe->wedged.mode == 0) {
1123 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1124 		return;
1125 	}
1126 
1127 	xe_pm_runtime_get_noresume(xe);
1128 
1129 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1130 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1131 		return;
1132 	}
1133 
1134 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1135 		xe->needs_flr_on_fini = true;
1136 		drm_err(&xe->drm,
1137 			"CRITICAL: Xe has declared device %s as wedged.\n"
1138 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1139 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1140 			dev_name(xe->drm.dev));
1141 
1142 		/* Notify userspace of wedged device */
1143 		drm_dev_wedged_event(&xe->drm,
1144 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1145 	}
1146 
1147 	for_each_gt(gt, xe, id)
1148 		xe_gt_declare_wedged(gt);
1149 }
1150