xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision e6c2b0f23221ed43c4cc6f636e9ab7862954d562)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_i2c.h"
47 #include "xe_irq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_nvm.h"
51 #include "xe_oa.h"
52 #include "xe_observation.h"
53 #include "xe_pat.h"
54 #include "xe_pcode.h"
55 #include "xe_pm.h"
56 #include "xe_pmu.h"
57 #include "xe_pxp.h"
58 #include "xe_query.h"
59 #include "xe_shrinker.h"
60 #include "xe_survivability_mode.h"
61 #include "xe_sriov.h"
62 #include "xe_tile.h"
63 #include "xe_ttm_stolen_mgr.h"
64 #include "xe_ttm_sys_mgr.h"
65 #include "xe_vm.h"
66 #include "xe_vram.h"
67 #include "xe_vsec.h"
68 #include "xe_wait_user_fence.h"
69 #include "xe_wa.h"
70 
71 #include <generated/xe_device_wa_oob.h>
72 #include <generated/xe_wa_oob.h>
73 
74 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
75 {
76 	struct xe_device *xe = to_xe_device(dev);
77 	struct xe_drm_client *client;
78 	struct xe_file *xef;
79 	int ret = -ENOMEM;
80 	struct task_struct *task = NULL;
81 
82 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
83 	if (!xef)
84 		return ret;
85 
86 	client = xe_drm_client_alloc();
87 	if (!client) {
88 		kfree(xef);
89 		return ret;
90 	}
91 
92 	xef->drm = file;
93 	xef->client = client;
94 	xef->xe = xe;
95 
96 	mutex_init(&xef->vm.lock);
97 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
98 
99 	mutex_init(&xef->exec_queue.lock);
100 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
101 
102 	file->driver_priv = xef;
103 	kref_init(&xef->refcount);
104 
105 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
106 	if (task) {
107 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
108 		xef->pid = task->pid;
109 		put_task_struct(task);
110 	}
111 
112 	return 0;
113 }
114 
115 static void xe_file_destroy(struct kref *ref)
116 {
117 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
118 
119 	xa_destroy(&xef->exec_queue.xa);
120 	mutex_destroy(&xef->exec_queue.lock);
121 	xa_destroy(&xef->vm.xa);
122 	mutex_destroy(&xef->vm.lock);
123 
124 	xe_drm_client_put(xef->client);
125 	kfree(xef->process_name);
126 	kfree(xef);
127 }
128 
129 /**
130  * xe_file_get() - Take a reference to the xe file object
131  * @xef: Pointer to the xe file
132  *
133  * Anyone with a pointer to xef must take a reference to the xe file
134  * object using this call.
135  *
136  * Return: xe file pointer
137  */
138 struct xe_file *xe_file_get(struct xe_file *xef)
139 {
140 	kref_get(&xef->refcount);
141 	return xef;
142 }
143 
144 /**
145  * xe_file_put() - Drop a reference to the xe file object
146  * @xef: Pointer to the xe file
147  *
148  * Used to drop reference to the xef object
149  */
150 void xe_file_put(struct xe_file *xef)
151 {
152 	kref_put(&xef->refcount, xe_file_destroy);
153 }
154 
155 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
156 {
157 	struct xe_device *xe = to_xe_device(dev);
158 	struct xe_file *xef = file->driver_priv;
159 	struct xe_vm *vm;
160 	struct xe_exec_queue *q;
161 	unsigned long idx;
162 
163 	xe_pm_runtime_get(xe);
164 
165 	/*
166 	 * No need for exec_queue.lock here as there is no contention for it
167 	 * when FD is closing as IOCTLs presumably can't be modifying the
168 	 * xarray. Taking exec_queue.lock here causes undue dependency on
169 	 * vm->lock taken during xe_exec_queue_kill().
170 	 */
171 	xa_for_each(&xef->exec_queue.xa, idx, q) {
172 		if (q->vm && q->hwe->hw_engine_group)
173 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
174 		xe_exec_queue_kill(q);
175 		xe_exec_queue_put(q);
176 	}
177 	xa_for_each(&xef->vm.xa, idx, vm)
178 		xe_vm_close_and_put(vm);
179 
180 	xe_file_put(xef);
181 
182 	xe_pm_runtime_put(xe);
183 }
184 
185 static const struct drm_ioctl_desc xe_ioctls[] = {
186 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
189 			  DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
197 			  DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
199 			  DRM_RENDER_ALLOW),
200 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
201 			  DRM_RENDER_ALLOW),
202 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
203 };
204 
205 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
206 {
207 	struct drm_file *file_priv = file->private_data;
208 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
209 	long ret;
210 
211 	if (xe_device_wedged(xe))
212 		return -ECANCELED;
213 
214 	ret = xe_pm_runtime_get_ioctl(xe);
215 	if (ret >= 0)
216 		ret = drm_ioctl(file, cmd, arg);
217 	xe_pm_runtime_put(xe);
218 
219 	return ret;
220 }
221 
222 #ifdef CONFIG_COMPAT
223 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
224 {
225 	struct drm_file *file_priv = file->private_data;
226 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
227 	long ret;
228 
229 	if (xe_device_wedged(xe))
230 		return -ECANCELED;
231 
232 	ret = xe_pm_runtime_get_ioctl(xe);
233 	if (ret >= 0)
234 		ret = drm_compat_ioctl(file, cmd, arg);
235 	xe_pm_runtime_put(xe);
236 
237 	return ret;
238 }
239 #else
240 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
241 #define xe_drm_compat_ioctl NULL
242 #endif
243 
244 static void barrier_open(struct vm_area_struct *vma)
245 {
246 	drm_dev_get(vma->vm_private_data);
247 }
248 
249 static void barrier_close(struct vm_area_struct *vma)
250 {
251 	drm_dev_put(vma->vm_private_data);
252 }
253 
254 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
255 {
256 	struct page *dummy_page = (struct page *)res;
257 
258 	__free_page(dummy_page);
259 }
260 
261 static vm_fault_t barrier_fault(struct vm_fault *vmf)
262 {
263 	struct drm_device *dev = vmf->vma->vm_private_data;
264 	struct vm_area_struct *vma = vmf->vma;
265 	vm_fault_t ret = VM_FAULT_NOPAGE;
266 	pgprot_t prot;
267 	int idx;
268 
269 	prot = vm_get_page_prot(vma->vm_flags);
270 
271 	if (drm_dev_enter(dev, &idx)) {
272 		unsigned long pfn;
273 
274 #define LAST_DB_PAGE_OFFSET 0x7ff001
275 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
276 				LAST_DB_PAGE_OFFSET);
277 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
278 					  pgprot_noncached(prot));
279 		drm_dev_exit(idx);
280 	} else {
281 		struct page *page;
282 
283 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
284 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
285 		if (!page)
286 			return VM_FAULT_OOM;
287 
288 		/* Set the page to be freed using drmm release action */
289 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
290 			return VM_FAULT_OOM;
291 
292 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
293 					  prot);
294 	}
295 
296 	return ret;
297 }
298 
299 static const struct vm_operations_struct vm_ops_barrier = {
300 	.open = barrier_open,
301 	.close = barrier_close,
302 	.fault = barrier_fault,
303 };
304 
305 static int xe_pci_barrier_mmap(struct file *filp,
306 			       struct vm_area_struct *vma)
307 {
308 	struct drm_file *priv = filp->private_data;
309 	struct drm_device *dev = priv->minor->dev;
310 	struct xe_device *xe = to_xe_device(dev);
311 
312 	if (!IS_DGFX(xe))
313 		return -EINVAL;
314 
315 	if (vma->vm_end - vma->vm_start > SZ_4K)
316 		return -EINVAL;
317 
318 	if (is_cow_mapping(vma->vm_flags))
319 		return -EINVAL;
320 
321 	if (vma->vm_flags & (VM_READ | VM_EXEC))
322 		return -EINVAL;
323 
324 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
325 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
326 	vma->vm_ops = &vm_ops_barrier;
327 	vma->vm_private_data = dev;
328 	drm_dev_get(vma->vm_private_data);
329 
330 	return 0;
331 }
332 
333 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
334 {
335 	struct drm_file *priv = filp->private_data;
336 	struct drm_device *dev = priv->minor->dev;
337 
338 	if (drm_dev_is_unplugged(dev))
339 		return -ENODEV;
340 
341 	switch (vma->vm_pgoff) {
342 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
343 		return xe_pci_barrier_mmap(filp, vma);
344 	}
345 
346 	return drm_gem_mmap(filp, vma);
347 }
348 
349 static const struct file_operations xe_driver_fops = {
350 	.owner = THIS_MODULE,
351 	.open = drm_open,
352 	.release = drm_release_noglobal,
353 	.unlocked_ioctl = xe_drm_ioctl,
354 	.mmap = xe_mmap,
355 	.poll = drm_poll,
356 	.read = drm_read,
357 	.compat_ioctl = xe_drm_compat_ioctl,
358 	.llseek = noop_llseek,
359 #ifdef CONFIG_PROC_FS
360 	.show_fdinfo = drm_show_fdinfo,
361 #endif
362 	.fop_flags = FOP_UNSIGNED_OFFSET,
363 };
364 
365 static struct drm_driver driver = {
366 	/* Don't use MTRRs here; the Xserver or userspace app should
367 	 * deal with them for Intel hardware.
368 	 */
369 	.driver_features =
370 	    DRIVER_GEM |
371 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
372 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
373 	.open = xe_file_open,
374 	.postclose = xe_file_close,
375 
376 	.gem_prime_import = xe_gem_prime_import,
377 
378 	.dumb_create = xe_bo_dumb_create,
379 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
380 #ifdef CONFIG_PROC_FS
381 	.show_fdinfo = xe_drm_client_fdinfo,
382 #endif
383 	.ioctls = xe_ioctls,
384 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
385 	.fops = &xe_driver_fops,
386 	.name = DRIVER_NAME,
387 	.desc = DRIVER_DESC,
388 	.major = DRIVER_MAJOR,
389 	.minor = DRIVER_MINOR,
390 	.patchlevel = DRIVER_PATCHLEVEL,
391 };
392 
393 static void xe_device_destroy(struct drm_device *dev, void *dummy)
394 {
395 	struct xe_device *xe = to_xe_device(dev);
396 
397 	xe_bo_dev_fini(&xe->bo_device);
398 
399 	if (xe->preempt_fence_wq)
400 		destroy_workqueue(xe->preempt_fence_wq);
401 
402 	if (xe->ordered_wq)
403 		destroy_workqueue(xe->ordered_wq);
404 
405 	if (xe->unordered_wq)
406 		destroy_workqueue(xe->unordered_wq);
407 
408 	if (xe->destroy_wq)
409 		destroy_workqueue(xe->destroy_wq);
410 
411 	ttm_device_fini(&xe->ttm);
412 }
413 
414 struct xe_device *xe_device_create(struct pci_dev *pdev,
415 				   const struct pci_device_id *ent)
416 {
417 	struct xe_device *xe;
418 	int err;
419 
420 	xe_display_driver_set_hooks(&driver);
421 
422 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
423 	if (err)
424 		return ERR_PTR(err);
425 
426 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
427 	if (IS_ERR(xe))
428 		return xe;
429 
430 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
431 			      xe->drm.anon_inode->i_mapping,
432 			      xe->drm.vma_offset_manager, false, false);
433 	if (WARN_ON(err))
434 		goto err;
435 
436 	xe_bo_dev_init(&xe->bo_device);
437 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
438 	if (err)
439 		goto err;
440 
441 	err = xe_shrinker_create(xe);
442 	if (err)
443 		goto err;
444 
445 	xe->info.devid = pdev->device;
446 	xe->info.revid = pdev->revision;
447 	xe->info.force_execlist = xe_modparam.force_execlist;
448 	xe->atomic_svm_timeslice_ms = 5;
449 
450 	err = xe_irq_init(xe);
451 	if (err)
452 		goto err;
453 
454 	init_waitqueue_head(&xe->ufence_wq);
455 
456 	init_rwsem(&xe->usm.lock);
457 
458 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
459 
460 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
461 		/* Trigger a large asid and an early asid wrap. */
462 		u32 asid;
463 
464 		BUILD_BUG_ON(XE_MAX_ASID < 2);
465 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
466 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
467 				      &xe->usm.next_asid, GFP_KERNEL);
468 		drm_WARN_ON(&xe->drm, err);
469 		if (err >= 0)
470 			xa_erase(&xe->usm.asid_to_vm, asid);
471 	}
472 
473 	err = xe_bo_pinned_init(xe);
474 	if (err)
475 		goto err;
476 
477 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
478 						       WQ_MEM_RECLAIM);
479 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
480 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
481 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
482 	if (!xe->ordered_wq || !xe->unordered_wq ||
483 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
484 		/*
485 		 * Cleanup done in xe_device_destroy via
486 		 * drmm_add_action_or_reset register above
487 		 */
488 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
489 		err = -ENOMEM;
490 		goto err;
491 	}
492 
493 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
494 	if (err)
495 		goto err;
496 
497 	return xe;
498 
499 err:
500 	return ERR_PTR(err);
501 }
502 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
503 
504 static bool xe_driver_flr_disabled(struct xe_device *xe)
505 {
506 	if (IS_SRIOV_VF(xe))
507 		return true;
508 
509 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
510 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
511 		return true;
512 	}
513 
514 	return false;
515 }
516 
517 /*
518  * The driver-initiated FLR is the highest level of reset that we can trigger
519  * from within the driver. It is different from the PCI FLR in that it doesn't
520  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
521  * it doesn't require a re-enumeration of the PCI BARs. However, the
522  * driver-initiated FLR does still cause a reset of both GT and display and a
523  * memory wipe of local and stolen memory, so recovery would require a full HW
524  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
525  * perform the FLR as the very last action before releasing access to the HW
526  * during the driver release flow, we don't attempt recovery at all, because
527  * if/when a new instance of i915 is bound to the device it will do a full
528  * re-init anyway.
529  */
530 static void __xe_driver_flr(struct xe_device *xe)
531 {
532 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
533 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
534 	int ret;
535 
536 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
537 
538 	/*
539 	 * Make sure any pending FLR requests have cleared by waiting for the
540 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
541 	 * to make sure it's not still set from a prior attempt (it's a write to
542 	 * clear bit).
543 	 * Note that we should never be in a situation where a previous attempt
544 	 * is still pending (unless the HW is totally dead), but better to be
545 	 * safe in case something unexpected happens
546 	 */
547 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
548 	if (ret) {
549 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
550 		return;
551 	}
552 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
553 
554 	/* Trigger the actual Driver-FLR */
555 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
556 
557 	/* Wait for hardware teardown to complete */
558 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
559 	if (ret) {
560 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
561 		return;
562 	}
563 
564 	/* Wait for hardware/firmware re-init to complete */
565 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
566 			     flr_timeout, NULL, false);
567 	if (ret) {
568 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
569 		return;
570 	}
571 
572 	/* Clear sticky completion status */
573 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
574 }
575 
576 static void xe_driver_flr(struct xe_device *xe)
577 {
578 	if (xe_driver_flr_disabled(xe))
579 		return;
580 
581 	__xe_driver_flr(xe);
582 }
583 
584 static void xe_driver_flr_fini(void *arg)
585 {
586 	struct xe_device *xe = arg;
587 
588 	if (xe->needs_flr_on_fini)
589 		xe_driver_flr(xe);
590 }
591 
592 static void xe_device_sanitize(void *arg)
593 {
594 	struct xe_device *xe = arg;
595 	struct xe_gt *gt;
596 	u8 id;
597 
598 	for_each_gt(gt, xe, id)
599 		xe_gt_sanitize(gt);
600 }
601 
602 static int xe_set_dma_info(struct xe_device *xe)
603 {
604 	unsigned int mask_size = xe->info.dma_mask_size;
605 	int err;
606 
607 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
608 
609 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
610 	if (err)
611 		goto mask_err;
612 
613 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
614 	if (err)
615 		goto mask_err;
616 
617 	return 0;
618 
619 mask_err:
620 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
621 	return err;
622 }
623 
624 static bool verify_lmem_ready(struct xe_device *xe)
625 {
626 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
627 
628 	return !!val;
629 }
630 
631 static int wait_for_lmem_ready(struct xe_device *xe)
632 {
633 	unsigned long timeout, start;
634 
635 	if (!IS_DGFX(xe))
636 		return 0;
637 
638 	if (IS_SRIOV_VF(xe))
639 		return 0;
640 
641 	if (verify_lmem_ready(xe))
642 		return 0;
643 
644 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
645 
646 	start = jiffies;
647 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
648 
649 	do {
650 		if (signal_pending(current))
651 			return -EINTR;
652 
653 		/*
654 		 * The boot firmware initializes local memory and
655 		 * assesses its health. If memory training fails,
656 		 * the punit will have been instructed to keep the GT powered
657 		 * down.we won't be able to communicate with it
658 		 *
659 		 * If the status check is done before punit updates the register,
660 		 * it can lead to the system being unusable.
661 		 * use a timeout and defer the probe to prevent this.
662 		 */
663 		if (time_after(jiffies, timeout)) {
664 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
665 			return -EPROBE_DEFER;
666 		}
667 
668 		msleep(20);
669 
670 	} while (!verify_lmem_ready(xe));
671 
672 	drm_dbg(&xe->drm, "lmem ready after %ums",
673 		jiffies_to_msecs(jiffies - start));
674 
675 	return 0;
676 }
677 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
678 
679 static void sriov_update_device_info(struct xe_device *xe)
680 {
681 	/* disable features that are not available/applicable to VFs */
682 	if (IS_SRIOV_VF(xe)) {
683 		xe->info.probe_display = 0;
684 		xe->info.has_heci_gscfi = 0;
685 		xe->info.skip_guc_pc = 1;
686 		xe->info.skip_pcode = 1;
687 	}
688 }
689 
690 /**
691  * xe_device_probe_early: Device early probe
692  * @xe: xe device instance
693  *
694  * Initialize MMIO resources that don't require any
695  * knowledge about tile count. Also initialize pcode and
696  * check vram initialization on root tile.
697  *
698  * Return: 0 on success, error code on failure
699  */
700 int xe_device_probe_early(struct xe_device *xe)
701 {
702 	int err;
703 
704 	xe_wa_device_init(xe);
705 	xe_wa_process_device_oob(xe);
706 
707 	err = xe_mmio_probe_early(xe);
708 	if (err)
709 		return err;
710 
711 	xe_sriov_probe_early(xe);
712 
713 	sriov_update_device_info(xe);
714 
715 	err = xe_pcode_probe_early(xe);
716 	if (err || xe_survivability_mode_is_requested(xe)) {
717 		int save_err = err;
718 
719 		/*
720 		 * Try to leave device in survivability mode if device is
721 		 * possible, but still return the previous error for error
722 		 * propagation
723 		 */
724 		err = xe_survivability_mode_enable(xe);
725 		if (err)
726 			return err;
727 
728 		return save_err;
729 	}
730 
731 	err = wait_for_lmem_ready(xe);
732 	if (err)
733 		return err;
734 
735 	xe->wedged.mode = xe_modparam.wedged_mode;
736 
737 	return 0;
738 }
739 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
740 
741 static int probe_has_flat_ccs(struct xe_device *xe)
742 {
743 	struct xe_gt *gt;
744 	unsigned int fw_ref;
745 	u32 reg;
746 
747 	/* Always enabled/disabled, no runtime check to do */
748 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
749 		return 0;
750 
751 	gt = xe_root_mmio_gt(xe);
752 
753 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
754 	if (!fw_ref)
755 		return -ETIMEDOUT;
756 
757 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
758 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
759 
760 	if (!xe->info.has_flat_ccs)
761 		drm_dbg(&xe->drm,
762 			"Flat CCS has been disabled in bios, May lead to performance impact");
763 
764 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
765 
766 	return 0;
767 }
768 
769 int xe_device_probe(struct xe_device *xe)
770 {
771 	struct xe_tile *tile;
772 	struct xe_gt *gt;
773 	int err;
774 	u8 id;
775 
776 	xe_pat_init_early(xe);
777 
778 	err = xe_sriov_init(xe);
779 	if (err)
780 		return err;
781 
782 	xe->info.mem_region_mask = 1;
783 
784 	err = xe_set_dma_info(xe);
785 	if (err)
786 		return err;
787 
788 	err = xe_mmio_probe_tiles(xe);
789 	if (err)
790 		return err;
791 
792 	for_each_gt(gt, xe, id) {
793 		err = xe_gt_init_early(gt);
794 		if (err)
795 			return err;
796 	}
797 
798 	for_each_tile(tile, xe, id) {
799 		err = xe_ggtt_init_early(tile->mem.ggtt);
800 		if (err)
801 			return err;
802 	}
803 
804 	err = xe_devcoredump_init(xe);
805 	if (err)
806 		return err;
807 
808 	/*
809 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
810 	 */
811 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
812 	if (err)
813 		return err;
814 
815 	err = probe_has_flat_ccs(xe);
816 	if (err)
817 		return err;
818 
819 	err = xe_vram_probe(xe);
820 	if (err)
821 		return err;
822 
823 	for_each_tile(tile, xe, id) {
824 		err = xe_tile_init_noalloc(tile);
825 		if (err)
826 			return err;
827 	}
828 
829 	/*
830 	 * Allow allocations only now to ensure xe_display_init_early()
831 	 * is the first to allocate, always.
832 	 */
833 	err = xe_ttm_sys_mgr_init(xe);
834 	if (err)
835 		return err;
836 
837 	/* Allocate and map stolen after potential VRAM resize */
838 	err = xe_ttm_stolen_mgr_init(xe);
839 	if (err)
840 		return err;
841 
842 	/*
843 	 * Now that GT is initialized (TTM in particular),
844 	 * we can try to init display, and inherit the initial fb.
845 	 * This is the reason the first allocation needs to be done
846 	 * inside display.
847 	 */
848 	err = xe_display_init_early(xe);
849 	if (err)
850 		return err;
851 
852 	for_each_tile(tile, xe, id) {
853 		err = xe_tile_init(tile);
854 		if (err)
855 			return err;
856 	}
857 
858 	err = xe_irq_install(xe);
859 	if (err)
860 		return err;
861 
862 	for_each_gt(gt, xe, id) {
863 		err = xe_gt_init(gt);
864 		if (err)
865 			return err;
866 	}
867 
868 	if (xe->tiles->media_gt &&
869 	    XE_WA(xe->tiles->media_gt, 15015404425_disable))
870 		XE_DEVICE_WA_DISABLE(xe, 15015404425);
871 
872 	xe_nvm_init(xe);
873 
874 	err = xe_heci_gsc_init(xe);
875 	if (err)
876 		return err;
877 
878 	err = xe_oa_init(xe);
879 	if (err)
880 		return err;
881 
882 	err = xe_display_init(xe);
883 	if (err)
884 		return err;
885 
886 	err = xe_pxp_init(xe);
887 	if (err)
888 		return err;
889 
890 	err = drm_dev_register(&xe->drm, 0);
891 	if (err)
892 		return err;
893 
894 	xe_display_register(xe);
895 
896 	err = xe_oa_register(xe);
897 	if (err)
898 		goto err_unregister_display;
899 
900 	err = xe_pmu_register(&xe->pmu);
901 	if (err)
902 		goto err_unregister_display;
903 
904 	err = xe_device_sysfs_init(xe);
905 	if (err)
906 		goto err_unregister_display;
907 
908 	xe_debugfs_register(xe);
909 
910 	err = xe_hwmon_register(xe);
911 	if (err)
912 		goto err_unregister_display;
913 
914 	err = xe_i2c_probe(xe);
915 	if (err)
916 		goto err_unregister_display;
917 
918 	for_each_gt(gt, xe, id)
919 		xe_gt_sanitize_freq(gt);
920 
921 	xe_vsec_init(xe);
922 
923 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
924 
925 err_unregister_display:
926 	xe_display_unregister(xe);
927 
928 	return err;
929 }
930 
931 void xe_device_remove(struct xe_device *xe)
932 {
933 	xe_display_unregister(xe);
934 
935 	xe_nvm_fini(xe);
936 
937 	drm_dev_unplug(&xe->drm);
938 
939 	xe_bo_pci_dev_remove_all(xe);
940 }
941 
942 void xe_device_shutdown(struct xe_device *xe)
943 {
944 	struct xe_gt *gt;
945 	u8 id;
946 
947 	drm_dbg(&xe->drm, "Shutting down device\n");
948 
949 	if (xe_driver_flr_disabled(xe)) {
950 		xe_display_pm_shutdown(xe);
951 
952 		xe_irq_suspend(xe);
953 
954 		for_each_gt(gt, xe, id)
955 			xe_gt_shutdown(gt);
956 
957 		xe_display_pm_shutdown_late(xe);
958 	} else {
959 		/* BOOM! */
960 		__xe_driver_flr(xe);
961 	}
962 }
963 
964 /**
965  * xe_device_wmb() - Device specific write memory barrier
966  * @xe: the &xe_device
967  *
968  * While wmb() is sufficient for a barrier if we use system memory, on discrete
969  * platforms with device memory we additionally need to issue a register write.
970  * Since it doesn't matter which register we write to, use the read-only VF_CAP
971  * register that is also marked as accessible by the VFs.
972  */
973 void xe_device_wmb(struct xe_device *xe)
974 {
975 	wmb();
976 	if (IS_DGFX(xe))
977 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
978 }
979 
980 /*
981  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
982  */
983 static void tdf_request_sync(struct xe_device *xe)
984 {
985 	unsigned int fw_ref;
986 	struct xe_gt *gt;
987 	u8 id;
988 
989 	for_each_gt(gt, xe, id) {
990 		if (xe_gt_is_media_type(gt))
991 			continue;
992 
993 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
994 		if (!fw_ref)
995 			return;
996 
997 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
998 
999 		/*
1000 		 * FIXME: We can likely do better here with our choice of
1001 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1002 		 * which is believed to be sufficient to cover the worst case
1003 		 * scenario on current platforms if all cache entries are
1004 		 * transient and need to be flushed..
1005 		 */
1006 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1007 				   150, NULL, false))
1008 			xe_gt_err_once(gt, "TD flush timeout\n");
1009 
1010 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1011 	}
1012 }
1013 
1014 void xe_device_l2_flush(struct xe_device *xe)
1015 {
1016 	struct xe_gt *gt;
1017 	unsigned int fw_ref;
1018 
1019 	gt = xe_root_mmio_gt(xe);
1020 
1021 	if (!XE_WA(gt, 16023588340))
1022 		return;
1023 
1024 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1025 	if (!fw_ref)
1026 		return;
1027 
1028 	spin_lock(&gt->global_invl_lock);
1029 
1030 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1031 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1032 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1033 
1034 	spin_unlock(&gt->global_invl_lock);
1035 
1036 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1037 }
1038 
1039 /**
1040  * xe_device_td_flush() - Flush transient L3 cache entries
1041  * @xe: The device
1042  *
1043  * Display engine has direct access to memory and is never coherent with L3/L4
1044  * caches (or CPU caches), however KMD is responsible for specifically flushing
1045  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1046  * can happen from such a surface without seeing corruption.
1047  *
1048  * Display surfaces can be tagged as transient by mapping it using one of the
1049  * various L3:XD PAT index modes on Xe2.
1050  *
1051  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1052  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1053  * Media is not coherent with L3 and we want to support render-vs-media
1054  * usescases. For other engines like copy/blt the HW internally forces uncached
1055  * behaviour, hence why we can skip the TDF on such platforms.
1056  */
1057 void xe_device_td_flush(struct xe_device *xe)
1058 {
1059 	struct xe_gt *root_gt;
1060 
1061 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1062 		return;
1063 
1064 	root_gt = xe_root_mmio_gt(xe);
1065 	if (XE_WA(root_gt, 16023588340)) {
1066 		/* A transient flush is not sufficient: flush the L2 */
1067 		xe_device_l2_flush(xe);
1068 	} else {
1069 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1070 		tdf_request_sync(xe);
1071 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1072 	}
1073 }
1074 
1075 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1076 {
1077 	return xe_device_has_flat_ccs(xe) ?
1078 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1079 }
1080 
1081 /**
1082  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1083  * @xe: xe device instance
1084  *
1085  * To be used before any kind of memory access. It will splat a debug warning
1086  * if the device is currently sleeping. But it doesn't guarantee in any way
1087  * that the device is going to remain awake. Xe PM runtime get and put
1088  * functions might be added to the outer bound of the memory access, while
1089  * this check is intended for inner usage to splat some warning if the worst
1090  * case has just happened.
1091  */
1092 void xe_device_assert_mem_access(struct xe_device *xe)
1093 {
1094 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1095 }
1096 
1097 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1098 {
1099 	struct xe_gt *gt;
1100 	u8 id;
1101 
1102 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1103 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1104 
1105 	for_each_gt(gt, xe, id) {
1106 		drm_printf(p, "GT id: %u\n", id);
1107 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1108 		drm_printf(p, "\tType: %s\n",
1109 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1110 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1111 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1112 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1113 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1114 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1115 	}
1116 }
1117 
1118 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1119 {
1120 	return sign_extend64(address, xe->info.va_bits - 1);
1121 }
1122 
1123 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1124 {
1125 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1126 }
1127 
1128 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1129 {
1130 	struct xe_device *xe = arg;
1131 
1132 	xe_pm_runtime_put(xe);
1133 }
1134 
1135 /**
1136  * xe_device_declare_wedged - Declare device wedged
1137  * @xe: xe device instance
1138  *
1139  * This is a final state that can only be cleared with a module
1140  * re-probe (unbind + bind).
1141  * In this state every IOCTL will be blocked so the GT cannot be used.
1142  * In general it will be called upon any critical error such as gt reset
1143  * failure or guc loading failure. Userspace will be notified of this state
1144  * through device wedged uevent.
1145  * If xe.wedged module parameter is set to 2, this function will be called
1146  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1147  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1148  * the issue is preserved for further debugging.
1149  */
1150 void xe_device_declare_wedged(struct xe_device *xe)
1151 {
1152 	struct xe_gt *gt;
1153 	u8 id;
1154 
1155 	if (xe->wedged.mode == 0) {
1156 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1157 		return;
1158 	}
1159 
1160 	xe_pm_runtime_get_noresume(xe);
1161 
1162 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1163 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1164 		return;
1165 	}
1166 
1167 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1168 		xe->needs_flr_on_fini = true;
1169 		drm_err(&xe->drm,
1170 			"CRITICAL: Xe has declared device %s as wedged.\n"
1171 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1172 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1173 			dev_name(xe->drm.dev));
1174 
1175 		/* Notify userspace of wedged device */
1176 		drm_dev_wedged_event(&xe->drm,
1177 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET,
1178 				     NULL);
1179 	}
1180 
1181 	for_each_gt(gt, xe, id)
1182 		xe_gt_declare_wedged(gt);
1183 }
1184