1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_pmu.h" 53 #include "xe_pxp.h" 54 #include "xe_query.h" 55 #include "xe_sriov.h" 56 #include "xe_survivability_mode.h" 57 #include "xe_tile.h" 58 #include "xe_ttm_stolen_mgr.h" 59 #include "xe_ttm_sys_mgr.h" 60 #include "xe_vm.h" 61 #include "xe_vram.h" 62 #include "xe_vsec.h" 63 #include "xe_wait_user_fence.h" 64 #include "xe_wa.h" 65 66 #include <generated/xe_wa_oob.h> 67 68 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 69 { 70 struct xe_device *xe = to_xe_device(dev); 71 struct xe_drm_client *client; 72 struct xe_file *xef; 73 int ret = -ENOMEM; 74 struct task_struct *task = NULL; 75 76 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 77 if (!xef) 78 return ret; 79 80 client = xe_drm_client_alloc(); 81 if (!client) { 82 kfree(xef); 83 return ret; 84 } 85 86 xef->drm = file; 87 xef->client = client; 88 xef->xe = xe; 89 90 mutex_init(&xef->vm.lock); 91 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 92 93 mutex_init(&xef->exec_queue.lock); 94 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 95 96 file->driver_priv = xef; 97 kref_init(&xef->refcount); 98 99 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 100 if (task) { 101 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 102 xef->pid = task->pid; 103 put_task_struct(task); 104 } 105 106 return 0; 107 } 108 109 static void xe_file_destroy(struct kref *ref) 110 { 111 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 112 113 xa_destroy(&xef->exec_queue.xa); 114 mutex_destroy(&xef->exec_queue.lock); 115 xa_destroy(&xef->vm.xa); 116 mutex_destroy(&xef->vm.lock); 117 118 xe_drm_client_put(xef->client); 119 kfree(xef->process_name); 120 kfree(xef); 121 } 122 123 /** 124 * xe_file_get() - Take a reference to the xe file object 125 * @xef: Pointer to the xe file 126 * 127 * Anyone with a pointer to xef must take a reference to the xe file 128 * object using this call. 129 * 130 * Return: xe file pointer 131 */ 132 struct xe_file *xe_file_get(struct xe_file *xef) 133 { 134 kref_get(&xef->refcount); 135 return xef; 136 } 137 138 /** 139 * xe_file_put() - Drop a reference to the xe file object 140 * @xef: Pointer to the xe file 141 * 142 * Used to drop reference to the xef object 143 */ 144 void xe_file_put(struct xe_file *xef) 145 { 146 kref_put(&xef->refcount, xe_file_destroy); 147 } 148 149 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 150 { 151 struct xe_device *xe = to_xe_device(dev); 152 struct xe_file *xef = file->driver_priv; 153 struct xe_vm *vm; 154 struct xe_exec_queue *q; 155 unsigned long idx; 156 157 xe_pm_runtime_get(xe); 158 159 /* 160 * No need for exec_queue.lock here as there is no contention for it 161 * when FD is closing as IOCTLs presumably can't be modifying the 162 * xarray. Taking exec_queue.lock here causes undue dependency on 163 * vm->lock taken during xe_exec_queue_kill(). 164 */ 165 xa_for_each(&xef->exec_queue.xa, idx, q) { 166 if (q->vm && q->hwe->hw_engine_group) 167 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 168 xe_exec_queue_kill(q); 169 xe_exec_queue_put(q); 170 } 171 xa_for_each(&xef->vm.xa, idx, vm) 172 xe_vm_close_and_put(vm); 173 174 xe_file_put(xef); 175 176 xe_pm_runtime_put(xe); 177 } 178 179 static const struct drm_ioctl_desc xe_ioctls[] = { 180 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 181 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 183 DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 189 DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 191 DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 193 DRM_RENDER_ALLOW), 194 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 195 DRM_RENDER_ALLOW), 196 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 197 }; 198 199 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 200 { 201 struct drm_file *file_priv = file->private_data; 202 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 203 long ret; 204 205 if (xe_device_wedged(xe)) 206 return -ECANCELED; 207 208 ret = xe_pm_runtime_get_ioctl(xe); 209 if (ret >= 0) 210 ret = drm_ioctl(file, cmd, arg); 211 xe_pm_runtime_put(xe); 212 213 return ret; 214 } 215 216 #ifdef CONFIG_COMPAT 217 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 218 { 219 struct drm_file *file_priv = file->private_data; 220 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 221 long ret; 222 223 if (xe_device_wedged(xe)) 224 return -ECANCELED; 225 226 ret = xe_pm_runtime_get_ioctl(xe); 227 if (ret >= 0) 228 ret = drm_compat_ioctl(file, cmd, arg); 229 xe_pm_runtime_put(xe); 230 231 return ret; 232 } 233 #else 234 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 235 #define xe_drm_compat_ioctl NULL 236 #endif 237 238 static void barrier_open(struct vm_area_struct *vma) 239 { 240 drm_dev_get(vma->vm_private_data); 241 } 242 243 static void barrier_close(struct vm_area_struct *vma) 244 { 245 drm_dev_put(vma->vm_private_data); 246 } 247 248 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 249 { 250 struct page *dummy_page = (struct page *)res; 251 252 __free_page(dummy_page); 253 } 254 255 static vm_fault_t barrier_fault(struct vm_fault *vmf) 256 { 257 struct drm_device *dev = vmf->vma->vm_private_data; 258 struct vm_area_struct *vma = vmf->vma; 259 vm_fault_t ret = VM_FAULT_NOPAGE; 260 pgprot_t prot; 261 int idx; 262 263 prot = vm_get_page_prot(vma->vm_flags); 264 265 if (drm_dev_enter(dev, &idx)) { 266 unsigned long pfn; 267 268 #define LAST_DB_PAGE_OFFSET 0x7ff001 269 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 270 LAST_DB_PAGE_OFFSET); 271 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 272 pgprot_noncached(prot)); 273 drm_dev_exit(idx); 274 } else { 275 struct page *page; 276 277 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 278 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 279 if (!page) 280 return VM_FAULT_OOM; 281 282 /* Set the page to be freed using drmm release action */ 283 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 284 return VM_FAULT_OOM; 285 286 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 287 prot); 288 } 289 290 return ret; 291 } 292 293 static const struct vm_operations_struct vm_ops_barrier = { 294 .open = barrier_open, 295 .close = barrier_close, 296 .fault = barrier_fault, 297 }; 298 299 static int xe_pci_barrier_mmap(struct file *filp, 300 struct vm_area_struct *vma) 301 { 302 struct drm_file *priv = filp->private_data; 303 struct drm_device *dev = priv->minor->dev; 304 struct xe_device *xe = to_xe_device(dev); 305 306 if (!IS_DGFX(xe)) 307 return -EINVAL; 308 309 if (vma->vm_end - vma->vm_start > SZ_4K) 310 return -EINVAL; 311 312 if (is_cow_mapping(vma->vm_flags)) 313 return -EINVAL; 314 315 if (vma->vm_flags & (VM_READ | VM_EXEC)) 316 return -EINVAL; 317 318 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 319 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 320 vma->vm_ops = &vm_ops_barrier; 321 vma->vm_private_data = dev; 322 drm_dev_get(vma->vm_private_data); 323 324 return 0; 325 } 326 327 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 328 { 329 struct drm_file *priv = filp->private_data; 330 struct drm_device *dev = priv->minor->dev; 331 332 if (drm_dev_is_unplugged(dev)) 333 return -ENODEV; 334 335 switch (vma->vm_pgoff) { 336 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 337 return xe_pci_barrier_mmap(filp, vma); 338 } 339 340 return drm_gem_mmap(filp, vma); 341 } 342 343 static const struct file_operations xe_driver_fops = { 344 .owner = THIS_MODULE, 345 .open = drm_open, 346 .release = drm_release_noglobal, 347 .unlocked_ioctl = xe_drm_ioctl, 348 .mmap = xe_mmap, 349 .poll = drm_poll, 350 .read = drm_read, 351 .compat_ioctl = xe_drm_compat_ioctl, 352 .llseek = noop_llseek, 353 #ifdef CONFIG_PROC_FS 354 .show_fdinfo = drm_show_fdinfo, 355 #endif 356 .fop_flags = FOP_UNSIGNED_OFFSET, 357 }; 358 359 static struct drm_driver driver = { 360 /* Don't use MTRRs here; the Xserver or userspace app should 361 * deal with them for Intel hardware. 362 */ 363 .driver_features = 364 DRIVER_GEM | 365 DRIVER_RENDER | DRIVER_SYNCOBJ | 366 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 367 .open = xe_file_open, 368 .postclose = xe_file_close, 369 370 .gem_prime_import = xe_gem_prime_import, 371 372 .dumb_create = xe_bo_dumb_create, 373 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 374 #ifdef CONFIG_PROC_FS 375 .show_fdinfo = xe_drm_client_fdinfo, 376 #endif 377 .ioctls = xe_ioctls, 378 .num_ioctls = ARRAY_SIZE(xe_ioctls), 379 .fops = &xe_driver_fops, 380 .name = DRIVER_NAME, 381 .desc = DRIVER_DESC, 382 .major = DRIVER_MAJOR, 383 .minor = DRIVER_MINOR, 384 .patchlevel = DRIVER_PATCHLEVEL, 385 }; 386 387 static void xe_device_destroy(struct drm_device *dev, void *dummy) 388 { 389 struct xe_device *xe = to_xe_device(dev); 390 391 if (xe->preempt_fence_wq) 392 destroy_workqueue(xe->preempt_fence_wq); 393 394 if (xe->ordered_wq) 395 destroy_workqueue(xe->ordered_wq); 396 397 if (xe->unordered_wq) 398 destroy_workqueue(xe->unordered_wq); 399 400 if (xe->destroy_wq) 401 destroy_workqueue(xe->destroy_wq); 402 403 ttm_device_fini(&xe->ttm); 404 } 405 406 struct xe_device *xe_device_create(struct pci_dev *pdev, 407 const struct pci_device_id *ent) 408 { 409 struct xe_device *xe; 410 int err; 411 412 xe_display_driver_set_hooks(&driver); 413 414 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 415 if (err) 416 return ERR_PTR(err); 417 418 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 419 if (IS_ERR(xe)) 420 return xe; 421 422 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 423 xe->drm.anon_inode->i_mapping, 424 xe->drm.vma_offset_manager, false, false); 425 if (WARN_ON(err)) 426 goto err; 427 428 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 429 if (err) 430 goto err; 431 432 xe->info.devid = pdev->device; 433 xe->info.revid = pdev->revision; 434 xe->info.force_execlist = xe_modparam.force_execlist; 435 436 err = xe_irq_init(xe); 437 if (err) 438 goto err; 439 440 init_waitqueue_head(&xe->ufence_wq); 441 442 init_rwsem(&xe->usm.lock); 443 444 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 445 446 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 447 /* Trigger a large asid and an early asid wrap. */ 448 u32 asid; 449 450 BUILD_BUG_ON(XE_MAX_ASID < 2); 451 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 452 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 453 &xe->usm.next_asid, GFP_KERNEL); 454 drm_WARN_ON(&xe->drm, err); 455 if (err >= 0) 456 xa_erase(&xe->usm.asid_to_vm, asid); 457 } 458 459 spin_lock_init(&xe->pinned.lock); 460 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 461 INIT_LIST_HEAD(&xe->pinned.external_vram); 462 INIT_LIST_HEAD(&xe->pinned.evicted); 463 464 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 465 WQ_MEM_RECLAIM); 466 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 467 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 468 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 469 if (!xe->ordered_wq || !xe->unordered_wq || 470 !xe->preempt_fence_wq || !xe->destroy_wq) { 471 /* 472 * Cleanup done in xe_device_destroy via 473 * drmm_add_action_or_reset register above 474 */ 475 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 476 err = -ENOMEM; 477 goto err; 478 } 479 480 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 481 if (err) 482 goto err; 483 484 err = xe_display_create(xe); 485 if (WARN_ON(err)) 486 goto err; 487 488 return xe; 489 490 err: 491 return ERR_PTR(err); 492 } 493 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 494 495 static bool xe_driver_flr_disabled(struct xe_device *xe) 496 { 497 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 498 } 499 500 /* 501 * The driver-initiated FLR is the highest level of reset that we can trigger 502 * from within the driver. It is different from the PCI FLR in that it doesn't 503 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 504 * it doesn't require a re-enumeration of the PCI BARs. However, the 505 * driver-initiated FLR does still cause a reset of both GT and display and a 506 * memory wipe of local and stolen memory, so recovery would require a full HW 507 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 508 * perform the FLR as the very last action before releasing access to the HW 509 * during the driver release flow, we don't attempt recovery at all, because 510 * if/when a new instance of i915 is bound to the device it will do a full 511 * re-init anyway. 512 */ 513 static void __xe_driver_flr(struct xe_device *xe) 514 { 515 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 516 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 517 int ret; 518 519 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 520 521 /* 522 * Make sure any pending FLR requests have cleared by waiting for the 523 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 524 * to make sure it's not still set from a prior attempt (it's a write to 525 * clear bit). 526 * Note that we should never be in a situation where a previous attempt 527 * is still pending (unless the HW is totally dead), but better to be 528 * safe in case something unexpected happens 529 */ 530 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 531 if (ret) { 532 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 533 return; 534 } 535 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 536 537 /* Trigger the actual Driver-FLR */ 538 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 539 540 /* Wait for hardware teardown to complete */ 541 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 542 if (ret) { 543 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 544 return; 545 } 546 547 /* Wait for hardware/firmware re-init to complete */ 548 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 549 flr_timeout, NULL, false); 550 if (ret) { 551 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 552 return; 553 } 554 555 /* Clear sticky completion status */ 556 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 557 } 558 559 static void xe_driver_flr(struct xe_device *xe) 560 { 561 if (xe_driver_flr_disabled(xe)) { 562 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 563 return; 564 } 565 566 __xe_driver_flr(xe); 567 } 568 569 static void xe_driver_flr_fini(void *arg) 570 { 571 struct xe_device *xe = arg; 572 573 if (xe->needs_flr_on_fini) 574 xe_driver_flr(xe); 575 } 576 577 static void xe_device_sanitize(void *arg) 578 { 579 struct xe_device *xe = arg; 580 struct xe_gt *gt; 581 u8 id; 582 583 for_each_gt(gt, xe, id) 584 xe_gt_sanitize(gt); 585 } 586 587 static int xe_set_dma_info(struct xe_device *xe) 588 { 589 unsigned int mask_size = xe->info.dma_mask_size; 590 int err; 591 592 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 593 594 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 595 if (err) 596 goto mask_err; 597 598 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 599 if (err) 600 goto mask_err; 601 602 return 0; 603 604 mask_err: 605 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 606 return err; 607 } 608 609 static bool verify_lmem_ready(struct xe_device *xe) 610 { 611 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 612 613 return !!val; 614 } 615 616 static int wait_for_lmem_ready(struct xe_device *xe) 617 { 618 unsigned long timeout, start; 619 620 if (!IS_DGFX(xe)) 621 return 0; 622 623 if (IS_SRIOV_VF(xe)) 624 return 0; 625 626 if (verify_lmem_ready(xe)) 627 return 0; 628 629 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 630 631 start = jiffies; 632 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 633 634 do { 635 if (signal_pending(current)) 636 return -EINTR; 637 638 /* 639 * The boot firmware initializes local memory and 640 * assesses its health. If memory training fails, 641 * the punit will have been instructed to keep the GT powered 642 * down.we won't be able to communicate with it 643 * 644 * If the status check is done before punit updates the register, 645 * it can lead to the system being unusable. 646 * use a timeout and defer the probe to prevent this. 647 */ 648 if (time_after(jiffies, timeout)) { 649 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 650 return -EPROBE_DEFER; 651 } 652 653 msleep(20); 654 655 } while (!verify_lmem_ready(xe)); 656 657 drm_dbg(&xe->drm, "lmem ready after %ums", 658 jiffies_to_msecs(jiffies - start)); 659 660 return 0; 661 } 662 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 663 664 static void update_device_info(struct xe_device *xe) 665 { 666 /* disable features that are not available/applicable to VFs */ 667 if (IS_SRIOV_VF(xe)) { 668 xe->info.probe_display = 0; 669 xe->info.has_heci_gscfi = 0; 670 xe->info.skip_guc_pc = 1; 671 xe->info.skip_pcode = 1; 672 } 673 } 674 675 /** 676 * xe_device_probe_early: Device early probe 677 * @xe: xe device instance 678 * 679 * Initialize MMIO resources that don't require any 680 * knowledge about tile count. Also initialize pcode and 681 * check vram initialization on root tile. 682 * 683 * Return: 0 on success, error code on failure 684 */ 685 int xe_device_probe_early(struct xe_device *xe) 686 { 687 int err; 688 689 err = xe_mmio_init(xe); 690 if (err) 691 return err; 692 693 xe_sriov_probe_early(xe); 694 695 update_device_info(xe); 696 697 err = xe_pcode_probe_early(xe); 698 if (err) { 699 if (xe_survivability_mode_required(xe)) 700 xe_survivability_mode_init(xe); 701 702 return err; 703 } 704 705 err = wait_for_lmem_ready(xe); 706 if (err) 707 return err; 708 709 xe->wedged.mode = xe_modparam.wedged_mode; 710 711 return 0; 712 } 713 714 static int probe_has_flat_ccs(struct xe_device *xe) 715 { 716 struct xe_gt *gt; 717 unsigned int fw_ref; 718 u32 reg; 719 720 /* Always enabled/disabled, no runtime check to do */ 721 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 722 return 0; 723 724 gt = xe_root_mmio_gt(xe); 725 726 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 727 if (!fw_ref) 728 return -ETIMEDOUT; 729 730 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 731 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 732 733 if (!xe->info.has_flat_ccs) 734 drm_dbg(&xe->drm, 735 "Flat CCS has been disabled in bios, May lead to performance impact"); 736 737 xe_force_wake_put(gt_to_fw(gt), fw_ref); 738 return 0; 739 } 740 741 int xe_device_probe(struct xe_device *xe) 742 { 743 struct xe_tile *tile; 744 struct xe_gt *gt; 745 int err; 746 u8 last_gt; 747 u8 id; 748 749 xe_pat_init_early(xe); 750 751 err = xe_sriov_init(xe); 752 if (err) 753 return err; 754 755 xe->info.mem_region_mask = 1; 756 err = xe_set_dma_info(xe); 757 if (err) 758 return err; 759 760 err = xe_mmio_probe_tiles(xe); 761 if (err) 762 return err; 763 764 xe_ttm_sys_mgr_init(xe); 765 766 for_each_gt(gt, xe, id) { 767 err = xe_gt_init_early(gt); 768 if (err) 769 return err; 770 771 /* 772 * Only after this point can GT-specific MMIO operations 773 * (including things like communication with the GuC) 774 * be performed. 775 */ 776 xe_gt_mmio_init(gt); 777 } 778 779 for_each_tile(tile, xe, id) { 780 if (IS_SRIOV_VF(xe)) { 781 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 782 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 783 if (err) 784 return err; 785 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 786 if (err) 787 return err; 788 } 789 err = xe_ggtt_init_early(tile->mem.ggtt); 790 if (err) 791 return err; 792 err = xe_memirq_init(&tile->memirq); 793 if (err) 794 return err; 795 } 796 797 for_each_gt(gt, xe, id) { 798 err = xe_gt_init_hwconfig(gt); 799 if (err) 800 return err; 801 } 802 803 err = xe_devcoredump_init(xe); 804 if (err) 805 return err; 806 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 807 if (err) 808 return err; 809 810 err = probe_has_flat_ccs(xe); 811 if (err) 812 goto err; 813 814 err = xe_vram_probe(xe); 815 if (err) 816 goto err; 817 818 for_each_tile(tile, xe, id) { 819 err = xe_tile_init_noalloc(tile); 820 if (err) 821 goto err; 822 } 823 824 /* Allocate and map stolen after potential VRAM resize */ 825 xe_ttm_stolen_mgr_init(xe); 826 827 /* 828 * Now that GT is initialized (TTM in particular), 829 * we can try to init display, and inherit the initial fb. 830 * This is the reason the first allocation needs to be done 831 * inside display. 832 */ 833 err = xe_display_init_early(xe); 834 if (err) 835 goto err; 836 837 for_each_tile(tile, xe, id) { 838 err = xe_tile_init(tile); 839 if (err) 840 goto err; 841 } 842 843 err = xe_irq_install(xe); 844 if (err) 845 goto err; 846 847 for_each_gt(gt, xe, id) { 848 last_gt = id; 849 850 err = xe_gt_init(gt); 851 if (err) 852 goto err_fini_gt; 853 } 854 855 xe_heci_gsc_init(xe); 856 857 err = xe_oa_init(xe); 858 if (err) 859 goto err_fini_gt; 860 861 err = xe_display_init(xe); 862 if (err) 863 goto err_fini_oa; 864 865 /* A PXP init failure is not fatal */ 866 err = xe_pxp_init(xe); 867 if (err && err != -EOPNOTSUPP) 868 drm_err(&xe->drm, "PXP initialization failed: %pe\n", ERR_PTR(err)); 869 870 err = drm_dev_register(&xe->drm, 0); 871 if (err) 872 goto err_fini_display; 873 874 xe_display_register(xe); 875 876 xe_oa_register(xe); 877 878 xe_pmu_register(&xe->pmu); 879 880 xe_debugfs_register(xe); 881 882 xe_hwmon_register(xe); 883 884 for_each_gt(gt, xe, id) 885 xe_gt_sanitize_freq(gt); 886 887 xe_vsec_init(xe); 888 889 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 890 891 err_fini_display: 892 xe_display_driver_remove(xe); 893 894 err_fini_oa: 895 xe_oa_fini(xe); 896 897 err_fini_gt: 898 for_each_gt(gt, xe, id) { 899 if (id < last_gt) 900 xe_gt_remove(gt); 901 else 902 break; 903 } 904 905 err: 906 xe_display_fini(xe); 907 return err; 908 } 909 910 static void xe_device_remove_display(struct xe_device *xe) 911 { 912 xe_display_unregister(xe); 913 914 drm_dev_unplug(&xe->drm); 915 xe_display_driver_remove(xe); 916 } 917 918 void xe_device_remove(struct xe_device *xe) 919 { 920 struct xe_gt *gt; 921 u8 id; 922 923 xe_oa_unregister(xe); 924 925 xe_device_remove_display(xe); 926 927 xe_display_fini(xe); 928 929 xe_oa_fini(xe); 930 931 xe_heci_gsc_fini(xe); 932 933 for_each_gt(gt, xe, id) 934 xe_gt_remove(gt); 935 } 936 937 void xe_device_shutdown(struct xe_device *xe) 938 { 939 struct xe_gt *gt; 940 u8 id; 941 942 drm_dbg(&xe->drm, "Shutting down device\n"); 943 944 if (xe_driver_flr_disabled(xe)) { 945 xe_display_pm_shutdown(xe); 946 947 xe_irq_suspend(xe); 948 949 for_each_gt(gt, xe, id) 950 xe_gt_shutdown(gt); 951 952 xe_display_pm_shutdown_late(xe); 953 } else { 954 /* BOOM! */ 955 __xe_driver_flr(xe); 956 } 957 } 958 959 /** 960 * xe_device_wmb() - Device specific write memory barrier 961 * @xe: the &xe_device 962 * 963 * While wmb() is sufficient for a barrier if we use system memory, on discrete 964 * platforms with device memory we additionally need to issue a register write. 965 * Since it doesn't matter which register we write to, use the read-only VF_CAP 966 * register that is also marked as accessible by the VFs. 967 */ 968 void xe_device_wmb(struct xe_device *xe) 969 { 970 wmb(); 971 if (IS_DGFX(xe)) 972 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 973 } 974 975 /** 976 * xe_device_td_flush() - Flush transient L3 cache entries 977 * @xe: The device 978 * 979 * Display engine has direct access to memory and is never coherent with L3/L4 980 * caches (or CPU caches), however KMD is responsible for specifically flushing 981 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 982 * can happen from such a surface without seeing corruption. 983 * 984 * Display surfaces can be tagged as transient by mapping it using one of the 985 * various L3:XD PAT index modes on Xe2. 986 * 987 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 988 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 989 * Media is not coherent with L3 and we want to support render-vs-media 990 * usescases. For other engines like copy/blt the HW internally forces uncached 991 * behaviour, hence why we can skip the TDF on such platforms. 992 */ 993 void xe_device_td_flush(struct xe_device *xe) 994 { 995 struct xe_gt *gt; 996 unsigned int fw_ref; 997 u8 id; 998 999 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1000 return; 1001 1002 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1003 xe_device_l2_flush(xe); 1004 return; 1005 } 1006 1007 for_each_gt(gt, xe, id) { 1008 if (xe_gt_is_media_type(gt)) 1009 continue; 1010 1011 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1012 if (!fw_ref) 1013 return; 1014 1015 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1016 /* 1017 * FIXME: We can likely do better here with our choice of 1018 * timeout. Currently we just assume the worst case, i.e. 150us, 1019 * which is believed to be sufficient to cover the worst case 1020 * scenario on current platforms if all cache entries are 1021 * transient and need to be flushed.. 1022 */ 1023 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1024 150, NULL, false)) 1025 xe_gt_err_once(gt, "TD flush timeout\n"); 1026 1027 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1028 } 1029 } 1030 1031 void xe_device_l2_flush(struct xe_device *xe) 1032 { 1033 struct xe_gt *gt; 1034 unsigned int fw_ref; 1035 1036 gt = xe_root_mmio_gt(xe); 1037 1038 if (!XE_WA(gt, 16023588340)) 1039 return; 1040 1041 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1042 if (!fw_ref) 1043 return; 1044 1045 spin_lock(>->global_invl_lock); 1046 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1047 1048 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1049 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1050 spin_unlock(>->global_invl_lock); 1051 1052 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1053 } 1054 1055 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1056 { 1057 return xe_device_has_flat_ccs(xe) ? 1058 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1059 } 1060 1061 /** 1062 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1063 * @xe: xe device instance 1064 * 1065 * To be used before any kind of memory access. It will splat a debug warning 1066 * if the device is currently sleeping. But it doesn't guarantee in any way 1067 * that the device is going to remain awake. Xe PM runtime get and put 1068 * functions might be added to the outer bound of the memory access, while 1069 * this check is intended for inner usage to splat some warning if the worst 1070 * case has just happened. 1071 */ 1072 void xe_device_assert_mem_access(struct xe_device *xe) 1073 { 1074 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1075 } 1076 1077 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1078 { 1079 struct xe_gt *gt; 1080 u8 id; 1081 1082 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1083 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1084 1085 for_each_gt(gt, xe, id) { 1086 drm_printf(p, "GT id: %u\n", id); 1087 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1088 drm_printf(p, "\tType: %s\n", 1089 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1090 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1091 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1092 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1093 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1094 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1095 } 1096 } 1097 1098 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1099 { 1100 return sign_extend64(address, xe->info.va_bits - 1); 1101 } 1102 1103 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1104 { 1105 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1106 } 1107 1108 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1109 { 1110 struct xe_device *xe = arg; 1111 1112 xe_pm_runtime_put(xe); 1113 } 1114 1115 /** 1116 * xe_device_declare_wedged - Declare device wedged 1117 * @xe: xe device instance 1118 * 1119 * This is a final state that can only be cleared with a module 1120 * re-probe (unbind + bind). 1121 * In this state every IOCTL will be blocked so the GT cannot be used. 1122 * In general it will be called upon any critical error such as gt reset 1123 * failure or guc loading failure. 1124 * If xe.wedged module parameter is set to 2, this function will be called 1125 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1126 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1127 * the issue is preserved for further debugging. 1128 */ 1129 void xe_device_declare_wedged(struct xe_device *xe) 1130 { 1131 struct xe_gt *gt; 1132 u8 id; 1133 1134 if (xe->wedged.mode == 0) { 1135 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1136 return; 1137 } 1138 1139 xe_pm_runtime_get_noresume(xe); 1140 1141 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1142 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1143 return; 1144 } 1145 1146 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1147 xe->needs_flr_on_fini = true; 1148 drm_err(&xe->drm, 1149 "CRITICAL: Xe has declared device %s as wedged.\n" 1150 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1151 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1152 dev_name(xe->drm.dev)); 1153 } 1154 1155 for_each_gt(gt, xe, id) 1156 xe_gt_declare_wedged(gt); 1157 } 1158