xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_observation.h"
48 #include "xe_pat.h"
49 #include "xe_pcode.h"
50 #include "xe_pm.h"
51 #include "xe_query.h"
52 #include "xe_sriov.h"
53 #include "xe_tile.h"
54 #include "xe_ttm_stolen_mgr.h"
55 #include "xe_ttm_sys_mgr.h"
56 #include "xe_vm.h"
57 #include "xe_vram.h"
58 #include "xe_wait_user_fence.h"
59 #include "xe_wa.h"
60 
61 #include <generated/xe_wa_oob.h>
62 
63 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
64 {
65 	struct xe_device *xe = to_xe_device(dev);
66 	struct xe_drm_client *client;
67 	struct xe_file *xef;
68 	int ret = -ENOMEM;
69 	struct task_struct *task = NULL;
70 
71 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
72 	if (!xef)
73 		return ret;
74 
75 	client = xe_drm_client_alloc();
76 	if (!client) {
77 		kfree(xef);
78 		return ret;
79 	}
80 
81 	xef->drm = file;
82 	xef->client = client;
83 	xef->xe = xe;
84 
85 	mutex_init(&xef->vm.lock);
86 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
87 
88 	mutex_init(&xef->exec_queue.lock);
89 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
90 
91 	file->driver_priv = xef;
92 	kref_init(&xef->refcount);
93 
94 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
95 	if (task) {
96 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
97 		xef->pid = task->pid;
98 		put_task_struct(task);
99 	}
100 
101 	return 0;
102 }
103 
104 static void xe_file_destroy(struct kref *ref)
105 {
106 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
107 
108 	xa_destroy(&xef->exec_queue.xa);
109 	mutex_destroy(&xef->exec_queue.lock);
110 	xa_destroy(&xef->vm.xa);
111 	mutex_destroy(&xef->vm.lock);
112 
113 	xe_drm_client_put(xef->client);
114 	kfree(xef->process_name);
115 	kfree(xef);
116 }
117 
118 /**
119  * xe_file_get() - Take a reference to the xe file object
120  * @xef: Pointer to the xe file
121  *
122  * Anyone with a pointer to xef must take a reference to the xe file
123  * object using this call.
124  *
125  * Return: xe file pointer
126  */
127 struct xe_file *xe_file_get(struct xe_file *xef)
128 {
129 	kref_get(&xef->refcount);
130 	return xef;
131 }
132 
133 /**
134  * xe_file_put() - Drop a reference to the xe file object
135  * @xef: Pointer to the xe file
136  *
137  * Used to drop reference to the xef object
138  */
139 void xe_file_put(struct xe_file *xef)
140 {
141 	kref_put(&xef->refcount, xe_file_destroy);
142 }
143 
144 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
145 {
146 	struct xe_device *xe = to_xe_device(dev);
147 	struct xe_file *xef = file->driver_priv;
148 	struct xe_vm *vm;
149 	struct xe_exec_queue *q;
150 	unsigned long idx;
151 
152 	xe_pm_runtime_get(xe);
153 
154 	/*
155 	 * No need for exec_queue.lock here as there is no contention for it
156 	 * when FD is closing as IOCTLs presumably can't be modifying the
157 	 * xarray. Taking exec_queue.lock here causes undue dependency on
158 	 * vm->lock taken during xe_exec_queue_kill().
159 	 */
160 	xa_for_each(&xef->exec_queue.xa, idx, q) {
161 		if (q->vm && q->hwe->hw_engine_group)
162 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
163 		xe_exec_queue_kill(q);
164 		xe_exec_queue_put(q);
165 	}
166 	xa_for_each(&xef->vm.xa, idx, vm)
167 		xe_vm_close_and_put(vm);
168 
169 	xe_file_put(xef);
170 
171 	xe_pm_runtime_put(xe);
172 }
173 
174 static const struct drm_ioctl_desc xe_ioctls[] = {
175 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
176 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
177 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
178 			  DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
184 			  DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
186 			  DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
192 };
193 
194 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
195 {
196 	struct drm_file *file_priv = file->private_data;
197 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
198 	long ret;
199 
200 	if (xe_device_wedged(xe))
201 		return -ECANCELED;
202 
203 	ret = xe_pm_runtime_get_ioctl(xe);
204 	if (ret >= 0)
205 		ret = drm_ioctl(file, cmd, arg);
206 	xe_pm_runtime_put(xe);
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_COMPAT
212 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
213 {
214 	struct drm_file *file_priv = file->private_data;
215 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
216 	long ret;
217 
218 	if (xe_device_wedged(xe))
219 		return -ECANCELED;
220 
221 	ret = xe_pm_runtime_get_ioctl(xe);
222 	if (ret >= 0)
223 		ret = drm_compat_ioctl(file, cmd, arg);
224 	xe_pm_runtime_put(xe);
225 
226 	return ret;
227 }
228 #else
229 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
230 #define xe_drm_compat_ioctl NULL
231 #endif
232 
233 static const struct file_operations xe_driver_fops = {
234 	.owner = THIS_MODULE,
235 	.open = drm_open,
236 	.release = drm_release_noglobal,
237 	.unlocked_ioctl = xe_drm_ioctl,
238 	.mmap = drm_gem_mmap,
239 	.poll = drm_poll,
240 	.read = drm_read,
241 	.compat_ioctl = xe_drm_compat_ioctl,
242 	.llseek = noop_llseek,
243 #ifdef CONFIG_PROC_FS
244 	.show_fdinfo = drm_show_fdinfo,
245 #endif
246 	.fop_flags = FOP_UNSIGNED_OFFSET,
247 };
248 
249 static struct drm_driver driver = {
250 	/* Don't use MTRRs here; the Xserver or userspace app should
251 	 * deal with them for Intel hardware.
252 	 */
253 	.driver_features =
254 	    DRIVER_GEM |
255 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
256 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
257 	.open = xe_file_open,
258 	.postclose = xe_file_close,
259 
260 	.gem_prime_import = xe_gem_prime_import,
261 
262 	.dumb_create = xe_bo_dumb_create,
263 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
264 #ifdef CONFIG_PROC_FS
265 	.show_fdinfo = xe_drm_client_fdinfo,
266 #endif
267 	.ioctls = xe_ioctls,
268 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
269 	.fops = &xe_driver_fops,
270 	.name = DRIVER_NAME,
271 	.desc = DRIVER_DESC,
272 	.date = DRIVER_DATE,
273 	.major = DRIVER_MAJOR,
274 	.minor = DRIVER_MINOR,
275 	.patchlevel = DRIVER_PATCHLEVEL,
276 };
277 
278 static void xe_device_destroy(struct drm_device *dev, void *dummy)
279 {
280 	struct xe_device *xe = to_xe_device(dev);
281 
282 	if (xe->preempt_fence_wq)
283 		destroy_workqueue(xe->preempt_fence_wq);
284 
285 	if (xe->ordered_wq)
286 		destroy_workqueue(xe->ordered_wq);
287 
288 	if (xe->unordered_wq)
289 		destroy_workqueue(xe->unordered_wq);
290 
291 	if (xe->destroy_wq)
292 		destroy_workqueue(xe->destroy_wq);
293 
294 	ttm_device_fini(&xe->ttm);
295 }
296 
297 struct xe_device *xe_device_create(struct pci_dev *pdev,
298 				   const struct pci_device_id *ent)
299 {
300 	struct xe_device *xe;
301 	int err;
302 
303 	xe_display_driver_set_hooks(&driver);
304 
305 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
306 	if (err)
307 		return ERR_PTR(err);
308 
309 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
310 	if (IS_ERR(xe))
311 		return xe;
312 
313 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
314 			      xe->drm.anon_inode->i_mapping,
315 			      xe->drm.vma_offset_manager, false, false);
316 	if (WARN_ON(err))
317 		goto err;
318 
319 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
320 	if (err)
321 		goto err;
322 
323 	xe->info.devid = pdev->device;
324 	xe->info.revid = pdev->revision;
325 	xe->info.force_execlist = xe_modparam.force_execlist;
326 
327 	spin_lock_init(&xe->irq.lock);
328 
329 	init_waitqueue_head(&xe->ufence_wq);
330 
331 	init_rwsem(&xe->usm.lock);
332 
333 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
334 
335 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
336 		/* Trigger a large asid and an early asid wrap. */
337 		u32 asid;
338 
339 		BUILD_BUG_ON(XE_MAX_ASID < 2);
340 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
341 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
342 				      &xe->usm.next_asid, GFP_KERNEL);
343 		drm_WARN_ON(&xe->drm, err);
344 		if (err >= 0)
345 			xa_erase(&xe->usm.asid_to_vm, asid);
346 	}
347 
348 	spin_lock_init(&xe->pinned.lock);
349 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
350 	INIT_LIST_HEAD(&xe->pinned.external_vram);
351 	INIT_LIST_HEAD(&xe->pinned.evicted);
352 
353 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
354 						       WQ_MEM_RECLAIM);
355 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
356 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
357 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
358 	if (!xe->ordered_wq || !xe->unordered_wq ||
359 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
360 		/*
361 		 * Cleanup done in xe_device_destroy via
362 		 * drmm_add_action_or_reset register above
363 		 */
364 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
365 		err = -ENOMEM;
366 		goto err;
367 	}
368 
369 	err = xe_display_create(xe);
370 	if (WARN_ON(err))
371 		goto err;
372 
373 	return xe;
374 
375 err:
376 	return ERR_PTR(err);
377 }
378 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
379 
380 static bool xe_driver_flr_disabled(struct xe_device *xe)
381 {
382 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
383 }
384 
385 /*
386  * The driver-initiated FLR is the highest level of reset that we can trigger
387  * from within the driver. It is different from the PCI FLR in that it doesn't
388  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
389  * it doesn't require a re-enumeration of the PCI BARs. However, the
390  * driver-initiated FLR does still cause a reset of both GT and display and a
391  * memory wipe of local and stolen memory, so recovery would require a full HW
392  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
393  * perform the FLR as the very last action before releasing access to the HW
394  * during the driver release flow, we don't attempt recovery at all, because
395  * if/when a new instance of i915 is bound to the device it will do a full
396  * re-init anyway.
397  */
398 static void __xe_driver_flr(struct xe_device *xe)
399 {
400 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
401 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
402 	int ret;
403 
404 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
405 
406 	/*
407 	 * Make sure any pending FLR requests have cleared by waiting for the
408 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
409 	 * to make sure it's not still set from a prior attempt (it's a write to
410 	 * clear bit).
411 	 * Note that we should never be in a situation where a previous attempt
412 	 * is still pending (unless the HW is totally dead), but better to be
413 	 * safe in case something unexpected happens
414 	 */
415 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
416 	if (ret) {
417 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
418 		return;
419 	}
420 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
421 
422 	/* Trigger the actual Driver-FLR */
423 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
424 
425 	/* Wait for hardware teardown to complete */
426 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
427 	if (ret) {
428 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
429 		return;
430 	}
431 
432 	/* Wait for hardware/firmware re-init to complete */
433 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
434 			     flr_timeout, NULL, false);
435 	if (ret) {
436 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
437 		return;
438 	}
439 
440 	/* Clear sticky completion status */
441 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
442 }
443 
444 static void xe_driver_flr(struct xe_device *xe)
445 {
446 	if (xe_driver_flr_disabled(xe)) {
447 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
448 		return;
449 	}
450 
451 	__xe_driver_flr(xe);
452 }
453 
454 static void xe_driver_flr_fini(void *arg)
455 {
456 	struct xe_device *xe = arg;
457 
458 	if (xe->needs_flr_on_fini)
459 		xe_driver_flr(xe);
460 }
461 
462 static void xe_device_sanitize(void *arg)
463 {
464 	struct xe_device *xe = arg;
465 	struct xe_gt *gt;
466 	u8 id;
467 
468 	for_each_gt(gt, xe, id)
469 		xe_gt_sanitize(gt);
470 }
471 
472 static int xe_set_dma_info(struct xe_device *xe)
473 {
474 	unsigned int mask_size = xe->info.dma_mask_size;
475 	int err;
476 
477 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
478 
479 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
480 	if (err)
481 		goto mask_err;
482 
483 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
484 	if (err)
485 		goto mask_err;
486 
487 	return 0;
488 
489 mask_err:
490 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
491 	return err;
492 }
493 
494 static bool verify_lmem_ready(struct xe_device *xe)
495 {
496 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
497 
498 	return !!val;
499 }
500 
501 static int wait_for_lmem_ready(struct xe_device *xe)
502 {
503 	unsigned long timeout, start;
504 
505 	if (!IS_DGFX(xe))
506 		return 0;
507 
508 	if (IS_SRIOV_VF(xe))
509 		return 0;
510 
511 	if (verify_lmem_ready(xe))
512 		return 0;
513 
514 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
515 
516 	start = jiffies;
517 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
518 
519 	do {
520 		if (signal_pending(current))
521 			return -EINTR;
522 
523 		/*
524 		 * The boot firmware initializes local memory and
525 		 * assesses its health. If memory training fails,
526 		 * the punit will have been instructed to keep the GT powered
527 		 * down.we won't be able to communicate with it
528 		 *
529 		 * If the status check is done before punit updates the register,
530 		 * it can lead to the system being unusable.
531 		 * use a timeout and defer the probe to prevent this.
532 		 */
533 		if (time_after(jiffies, timeout)) {
534 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
535 			return -EPROBE_DEFER;
536 		}
537 
538 		msleep(20);
539 
540 	} while (!verify_lmem_ready(xe));
541 
542 	drm_dbg(&xe->drm, "lmem ready after %ums",
543 		jiffies_to_msecs(jiffies - start));
544 
545 	return 0;
546 }
547 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
548 
549 static void update_device_info(struct xe_device *xe)
550 {
551 	/* disable features that are not available/applicable to VFs */
552 	if (IS_SRIOV_VF(xe)) {
553 		xe->info.probe_display = 0;
554 		xe->info.has_heci_gscfi = 0;
555 		xe->info.skip_guc_pc = 1;
556 		xe->info.skip_pcode = 1;
557 	}
558 }
559 
560 /**
561  * xe_device_probe_early: Device early probe
562  * @xe: xe device instance
563  *
564  * Initialize MMIO resources that don't require any
565  * knowledge about tile count. Also initialize pcode and
566  * check vram initialization on root tile.
567  *
568  * Return: 0 on success, error code on failure
569  */
570 int xe_device_probe_early(struct xe_device *xe)
571 {
572 	int err;
573 
574 	err = xe_mmio_init(xe);
575 	if (err)
576 		return err;
577 
578 	xe_sriov_probe_early(xe);
579 
580 	update_device_info(xe);
581 
582 	err = xe_pcode_probe_early(xe);
583 	if (err)
584 		return err;
585 
586 	err = wait_for_lmem_ready(xe);
587 	if (err)
588 		return err;
589 
590 	xe->wedged.mode = xe_modparam.wedged_mode;
591 
592 	return 0;
593 }
594 
595 static int probe_has_flat_ccs(struct xe_device *xe)
596 {
597 	struct xe_gt *gt;
598 	unsigned int fw_ref;
599 	u32 reg;
600 
601 	/* Always enabled/disabled, no runtime check to do */
602 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
603 		return 0;
604 
605 	gt = xe_root_mmio_gt(xe);
606 
607 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
608 	if (!fw_ref)
609 		return -ETIMEDOUT;
610 
611 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
612 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
613 
614 	if (!xe->info.has_flat_ccs)
615 		drm_dbg(&xe->drm,
616 			"Flat CCS has been disabled in bios, May lead to performance impact");
617 
618 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
619 	return 0;
620 }
621 
622 int xe_device_probe(struct xe_device *xe)
623 {
624 	struct xe_tile *tile;
625 	struct xe_gt *gt;
626 	int err;
627 	u8 last_gt;
628 	u8 id;
629 
630 	xe_pat_init_early(xe);
631 
632 	err = xe_sriov_init(xe);
633 	if (err)
634 		return err;
635 
636 	xe->info.mem_region_mask = 1;
637 	err = xe_display_init_nommio(xe);
638 	if (err)
639 		return err;
640 
641 	err = xe_set_dma_info(xe);
642 	if (err)
643 		return err;
644 
645 	err = xe_mmio_probe_tiles(xe);
646 	if (err)
647 		return err;
648 
649 	xe_ttm_sys_mgr_init(xe);
650 
651 	for_each_gt(gt, xe, id) {
652 		err = xe_gt_init_early(gt);
653 		if (err)
654 			return err;
655 
656 		/*
657 		 * Only after this point can GT-specific MMIO operations
658 		 * (including things like communication with the GuC)
659 		 * be performed.
660 		 */
661 		xe_gt_mmio_init(gt);
662 	}
663 
664 	for_each_tile(tile, xe, id) {
665 		if (IS_SRIOV_VF(xe)) {
666 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
667 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
668 			if (err)
669 				return err;
670 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
671 			if (err)
672 				return err;
673 		}
674 		err = xe_ggtt_init_early(tile->mem.ggtt);
675 		if (err)
676 			return err;
677 		err = xe_memirq_init(&tile->memirq);
678 		if (err)
679 			return err;
680 	}
681 
682 	for_each_gt(gt, xe, id) {
683 		err = xe_gt_init_hwconfig(gt);
684 		if (err)
685 			return err;
686 	}
687 
688 	err = xe_devcoredump_init(xe);
689 	if (err)
690 		return err;
691 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
692 	if (err)
693 		return err;
694 
695 	err = xe_display_init_noirq(xe);
696 	if (err)
697 		return err;
698 
699 	err = xe_irq_install(xe);
700 	if (err)
701 		goto err;
702 
703 	err = probe_has_flat_ccs(xe);
704 	if (err)
705 		goto err;
706 
707 	err = xe_vram_probe(xe);
708 	if (err)
709 		goto err;
710 
711 	for_each_tile(tile, xe, id) {
712 		err = xe_tile_init_noalloc(tile);
713 		if (err)
714 			goto err;
715 	}
716 
717 	/* Allocate and map stolen after potential VRAM resize */
718 	xe_ttm_stolen_mgr_init(xe);
719 
720 	/*
721 	 * Now that GT is initialized (TTM in particular),
722 	 * we can try to init display, and inherit the initial fb.
723 	 * This is the reason the first allocation needs to be done
724 	 * inside display.
725 	 */
726 	err = xe_display_init_noaccel(xe);
727 	if (err)
728 		goto err;
729 
730 	for_each_gt(gt, xe, id) {
731 		last_gt = id;
732 
733 		err = xe_gt_init(gt);
734 		if (err)
735 			goto err_fini_gt;
736 	}
737 
738 	xe_heci_gsc_init(xe);
739 
740 	err = xe_oa_init(xe);
741 	if (err)
742 		goto err_fini_gt;
743 
744 	err = xe_display_init(xe);
745 	if (err)
746 		goto err_fini_oa;
747 
748 	err = drm_dev_register(&xe->drm, 0);
749 	if (err)
750 		goto err_fini_display;
751 
752 	xe_display_register(xe);
753 
754 	xe_oa_register(xe);
755 
756 	xe_debugfs_register(xe);
757 
758 	xe_hwmon_register(xe);
759 
760 	for_each_gt(gt, xe, id)
761 		xe_gt_sanitize_freq(gt);
762 
763 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
764 
765 err_fini_display:
766 	xe_display_driver_remove(xe);
767 
768 err_fini_oa:
769 	xe_oa_fini(xe);
770 
771 err_fini_gt:
772 	for_each_gt(gt, xe, id) {
773 		if (id < last_gt)
774 			xe_gt_remove(gt);
775 		else
776 			break;
777 	}
778 
779 err:
780 	xe_display_fini(xe);
781 	return err;
782 }
783 
784 static void xe_device_remove_display(struct xe_device *xe)
785 {
786 	xe_display_unregister(xe);
787 
788 	drm_dev_unplug(&xe->drm);
789 	xe_display_driver_remove(xe);
790 }
791 
792 void xe_device_remove(struct xe_device *xe)
793 {
794 	struct xe_gt *gt;
795 	u8 id;
796 
797 	xe_oa_unregister(xe);
798 
799 	xe_device_remove_display(xe);
800 
801 	xe_display_fini(xe);
802 
803 	xe_oa_fini(xe);
804 
805 	xe_heci_gsc_fini(xe);
806 
807 	for_each_gt(gt, xe, id)
808 		xe_gt_remove(gt);
809 }
810 
811 void xe_device_shutdown(struct xe_device *xe)
812 {
813 	struct xe_gt *gt;
814 	u8 id;
815 
816 	drm_dbg(&xe->drm, "Shutting down device\n");
817 
818 	if (xe_driver_flr_disabled(xe)) {
819 		xe_display_pm_shutdown(xe);
820 
821 		xe_irq_suspend(xe);
822 
823 		for_each_gt(gt, xe, id)
824 			xe_gt_shutdown(gt);
825 
826 		xe_display_pm_shutdown_late(xe);
827 	} else {
828 		/* BOOM! */
829 		__xe_driver_flr(xe);
830 	}
831 }
832 
833 /**
834  * xe_device_wmb() - Device specific write memory barrier
835  * @xe: the &xe_device
836  *
837  * While wmb() is sufficient for a barrier if we use system memory, on discrete
838  * platforms with device memory we additionally need to issue a register write.
839  * Since it doesn't matter which register we write to, use the read-only VF_CAP
840  * register that is also marked as accessible by the VFs.
841  */
842 void xe_device_wmb(struct xe_device *xe)
843 {
844 	wmb();
845 	if (IS_DGFX(xe))
846 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
847 }
848 
849 /**
850  * xe_device_td_flush() - Flush transient L3 cache entries
851  * @xe: The device
852  *
853  * Display engine has direct access to memory and is never coherent with L3/L4
854  * caches (or CPU caches), however KMD is responsible for specifically flushing
855  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
856  * can happen from such a surface without seeing corruption.
857  *
858  * Display surfaces can be tagged as transient by mapping it using one of the
859  * various L3:XD PAT index modes on Xe2.
860  *
861  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
862  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
863  * Media is not coherent with L3 and we want to support render-vs-media
864  * usescases. For other engines like copy/blt the HW internally forces uncached
865  * behaviour, hence why we can skip the TDF on such platforms.
866  */
867 void xe_device_td_flush(struct xe_device *xe)
868 {
869 	struct xe_gt *gt;
870 	unsigned int fw_ref;
871 	u8 id;
872 
873 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
874 		return;
875 
876 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
877 		xe_device_l2_flush(xe);
878 		return;
879 	}
880 
881 	for_each_gt(gt, xe, id) {
882 		if (xe_gt_is_media_type(gt))
883 			continue;
884 
885 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
886 		if (!fw_ref)
887 			return;
888 
889 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
890 		/*
891 		 * FIXME: We can likely do better here with our choice of
892 		 * timeout. Currently we just assume the worst case, i.e. 150us,
893 		 * which is believed to be sufficient to cover the worst case
894 		 * scenario on current platforms if all cache entries are
895 		 * transient and need to be flushed..
896 		 */
897 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
898 				   150, NULL, false))
899 			xe_gt_err_once(gt, "TD flush timeout\n");
900 
901 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
902 	}
903 }
904 
905 void xe_device_l2_flush(struct xe_device *xe)
906 {
907 	struct xe_gt *gt;
908 	unsigned int fw_ref;
909 
910 	gt = xe_root_mmio_gt(xe);
911 
912 	if (!XE_WA(gt, 16023588340))
913 		return;
914 
915 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
916 	if (!fw_ref)
917 		return;
918 
919 	spin_lock(&gt->global_invl_lock);
920 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
921 
922 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
923 		xe_gt_err_once(gt, "Global invalidation timeout\n");
924 	spin_unlock(&gt->global_invl_lock);
925 
926 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
927 }
928 
929 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
930 {
931 	return xe_device_has_flat_ccs(xe) ?
932 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
933 }
934 
935 /**
936  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
937  * @xe: xe device instance
938  *
939  * To be used before any kind of memory access. It will splat a debug warning
940  * if the device is currently sleeping. But it doesn't guarantee in any way
941  * that the device is going to remain awake. Xe PM runtime get and put
942  * functions might be added to the outer bound of the memory access, while
943  * this check is intended for inner usage to splat some warning if the worst
944  * case has just happened.
945  */
946 void xe_device_assert_mem_access(struct xe_device *xe)
947 {
948 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
949 }
950 
951 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
952 {
953 	struct xe_gt *gt;
954 	u8 id;
955 
956 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
957 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
958 
959 	for_each_gt(gt, xe, id) {
960 		drm_printf(p, "GT id: %u\n", id);
961 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
962 		drm_printf(p, "\tType: %s\n",
963 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
964 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
965 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
966 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
967 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
968 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
969 	}
970 }
971 
972 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
973 {
974 	return sign_extend64(address, xe->info.va_bits - 1);
975 }
976 
977 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
978 {
979 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
980 }
981 
982 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
983 {
984 	struct xe_device *xe = arg;
985 
986 	xe_pm_runtime_put(xe);
987 }
988 
989 /**
990  * xe_device_declare_wedged - Declare device wedged
991  * @xe: xe device instance
992  *
993  * This is a final state that can only be cleared with a mudule
994  * re-probe (unbind + bind).
995  * In this state every IOCTL will be blocked so the GT cannot be used.
996  * In general it will be called upon any critical error such as gt reset
997  * failure or guc loading failure.
998  * If xe.wedged module parameter is set to 2, this function will be called
999  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1000  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1001  * the issue is preserved for further debugging.
1002  */
1003 void xe_device_declare_wedged(struct xe_device *xe)
1004 {
1005 	struct xe_gt *gt;
1006 	u8 id;
1007 
1008 	if (xe->wedged.mode == 0) {
1009 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1010 		return;
1011 	}
1012 
1013 	xe_pm_runtime_get_noresume(xe);
1014 
1015 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1016 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1017 		return;
1018 	}
1019 
1020 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1021 		xe->needs_flr_on_fini = true;
1022 		drm_err(&xe->drm,
1023 			"CRITICAL: Xe has declared device %s as wedged.\n"
1024 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1025 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1026 			dev_name(xe->drm.dev));
1027 	}
1028 
1029 	for_each_gt(gt, xe, id)
1030 		xe_gt_declare_wedged(gt);
1031 }
1032