1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/delay.h> 9 #include <linux/units.h> 10 11 #include <drm/drm_aperture.h> 12 #include <drm/drm_atomic_helper.h> 13 #include <drm/drm_client.h> 14 #include <drm/drm_gem_ttm_helper.h> 15 #include <drm/drm_ioctl.h> 16 #include <drm/drm_managed.h> 17 #include <drm/drm_print.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include "display/xe_display.h" 21 #include "instructions/xe_gpu_commands.h" 22 #include "regs/xe_gt_regs.h" 23 #include "regs/xe_regs.h" 24 #include "xe_bo.h" 25 #include "xe_debugfs.h" 26 #include "xe_devcoredump.h" 27 #include "xe_dma_buf.h" 28 #include "xe_drm_client.h" 29 #include "xe_drv.h" 30 #include "xe_exec.h" 31 #include "xe_exec_queue.h" 32 #include "xe_force_wake.h" 33 #include "xe_ggtt.h" 34 #include "xe_gsc_proxy.h" 35 #include "xe_gt.h" 36 #include "xe_gt_mcr.h" 37 #include "xe_gt_printk.h" 38 #include "xe_gt_sriov_vf.h" 39 #include "xe_guc.h" 40 #include "xe_hw_engine_group.h" 41 #include "xe_hwmon.h" 42 #include "xe_irq.h" 43 #include "xe_memirq.h" 44 #include "xe_mmio.h" 45 #include "xe_module.h" 46 #include "xe_observation.h" 47 #include "xe_pat.h" 48 #include "xe_pcode.h" 49 #include "xe_pm.h" 50 #include "xe_query.h" 51 #include "xe_sriov.h" 52 #include "xe_tile.h" 53 #include "xe_ttm_stolen_mgr.h" 54 #include "xe_ttm_sys_mgr.h" 55 #include "xe_vm.h" 56 #include "xe_vram.h" 57 #include "xe_wait_user_fence.h" 58 #include "xe_wa.h" 59 60 #include <generated/xe_wa_oob.h> 61 62 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 63 { 64 struct xe_device *xe = to_xe_device(dev); 65 struct xe_drm_client *client; 66 struct xe_file *xef; 67 int ret = -ENOMEM; 68 struct task_struct *task = NULL; 69 70 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 71 if (!xef) 72 return ret; 73 74 client = xe_drm_client_alloc(); 75 if (!client) { 76 kfree(xef); 77 return ret; 78 } 79 80 xef->drm = file; 81 xef->client = client; 82 xef->xe = xe; 83 84 mutex_init(&xef->vm.lock); 85 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 86 87 mutex_init(&xef->exec_queue.lock); 88 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 89 90 file->driver_priv = xef; 91 kref_init(&xef->refcount); 92 93 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 94 if (task) { 95 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 96 xef->pid = task->pid; 97 put_task_struct(task); 98 } 99 100 return 0; 101 } 102 103 static void xe_file_destroy(struct kref *ref) 104 { 105 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 106 107 xa_destroy(&xef->exec_queue.xa); 108 mutex_destroy(&xef->exec_queue.lock); 109 xa_destroy(&xef->vm.xa); 110 mutex_destroy(&xef->vm.lock); 111 112 xe_drm_client_put(xef->client); 113 kfree(xef->process_name); 114 kfree(xef); 115 } 116 117 /** 118 * xe_file_get() - Take a reference to the xe file object 119 * @xef: Pointer to the xe file 120 * 121 * Anyone with a pointer to xef must take a reference to the xe file 122 * object using this call. 123 * 124 * Return: xe file pointer 125 */ 126 struct xe_file *xe_file_get(struct xe_file *xef) 127 { 128 kref_get(&xef->refcount); 129 return xef; 130 } 131 132 /** 133 * xe_file_put() - Drop a reference to the xe file object 134 * @xef: Pointer to the xe file 135 * 136 * Used to drop reference to the xef object 137 */ 138 void xe_file_put(struct xe_file *xef) 139 { 140 kref_put(&xef->refcount, xe_file_destroy); 141 } 142 143 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 144 { 145 struct xe_device *xe = to_xe_device(dev); 146 struct xe_file *xef = file->driver_priv; 147 struct xe_vm *vm; 148 struct xe_exec_queue *q; 149 unsigned long idx; 150 151 xe_pm_runtime_get(xe); 152 153 /* 154 * No need for exec_queue.lock here as there is no contention for it 155 * when FD is closing as IOCTLs presumably can't be modifying the 156 * xarray. Taking exec_queue.lock here causes undue dependency on 157 * vm->lock taken during xe_exec_queue_kill(). 158 */ 159 xa_for_each(&xef->exec_queue.xa, idx, q) { 160 if (q->vm && q->hwe->hw_engine_group) 161 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 162 xe_exec_queue_kill(q); 163 xe_exec_queue_put(q); 164 } 165 xa_for_each(&xef->vm.xa, idx, vm) 166 xe_vm_close_and_put(vm); 167 168 xe_file_put(xef); 169 170 xe_pm_runtime_put(xe); 171 } 172 173 static const struct drm_ioctl_desc xe_ioctls[] = { 174 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 175 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 176 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 177 DRM_RENDER_ALLOW), 178 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 179 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 180 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 181 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 183 DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 185 DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 187 DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 189 DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 191 }; 192 193 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 194 { 195 struct drm_file *file_priv = file->private_data; 196 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 197 long ret; 198 199 if (xe_device_wedged(xe)) 200 return -ECANCELED; 201 202 ret = xe_pm_runtime_get_ioctl(xe); 203 if (ret >= 0) 204 ret = drm_ioctl(file, cmd, arg); 205 xe_pm_runtime_put(xe); 206 207 return ret; 208 } 209 210 #ifdef CONFIG_COMPAT 211 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 212 { 213 struct drm_file *file_priv = file->private_data; 214 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 215 long ret; 216 217 if (xe_device_wedged(xe)) 218 return -ECANCELED; 219 220 ret = xe_pm_runtime_get_ioctl(xe); 221 if (ret >= 0) 222 ret = drm_compat_ioctl(file, cmd, arg); 223 xe_pm_runtime_put(xe); 224 225 return ret; 226 } 227 #else 228 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 229 #define xe_drm_compat_ioctl NULL 230 #endif 231 232 static const struct file_operations xe_driver_fops = { 233 .owner = THIS_MODULE, 234 .open = drm_open, 235 .release = drm_release_noglobal, 236 .unlocked_ioctl = xe_drm_ioctl, 237 .mmap = drm_gem_mmap, 238 .poll = drm_poll, 239 .read = drm_read, 240 .compat_ioctl = xe_drm_compat_ioctl, 241 .llseek = noop_llseek, 242 #ifdef CONFIG_PROC_FS 243 .show_fdinfo = drm_show_fdinfo, 244 #endif 245 .fop_flags = FOP_UNSIGNED_OFFSET, 246 }; 247 248 static struct drm_driver driver = { 249 /* Don't use MTRRs here; the Xserver or userspace app should 250 * deal with them for Intel hardware. 251 */ 252 .driver_features = 253 DRIVER_GEM | 254 DRIVER_RENDER | DRIVER_SYNCOBJ | 255 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 256 .open = xe_file_open, 257 .postclose = xe_file_close, 258 259 .gem_prime_import = xe_gem_prime_import, 260 261 .dumb_create = xe_bo_dumb_create, 262 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 263 #ifdef CONFIG_PROC_FS 264 .show_fdinfo = xe_drm_client_fdinfo, 265 #endif 266 .ioctls = xe_ioctls, 267 .num_ioctls = ARRAY_SIZE(xe_ioctls), 268 .fops = &xe_driver_fops, 269 .name = DRIVER_NAME, 270 .desc = DRIVER_DESC, 271 .date = DRIVER_DATE, 272 .major = DRIVER_MAJOR, 273 .minor = DRIVER_MINOR, 274 .patchlevel = DRIVER_PATCHLEVEL, 275 }; 276 277 static void xe_device_destroy(struct drm_device *dev, void *dummy) 278 { 279 struct xe_device *xe = to_xe_device(dev); 280 281 if (xe->preempt_fence_wq) 282 destroy_workqueue(xe->preempt_fence_wq); 283 284 if (xe->ordered_wq) 285 destroy_workqueue(xe->ordered_wq); 286 287 if (xe->unordered_wq) 288 destroy_workqueue(xe->unordered_wq); 289 290 if (xe->destroy_wq) 291 destroy_workqueue(xe->destroy_wq); 292 293 ttm_device_fini(&xe->ttm); 294 } 295 296 struct xe_device *xe_device_create(struct pci_dev *pdev, 297 const struct pci_device_id *ent) 298 { 299 struct xe_device *xe; 300 int err; 301 302 xe_display_driver_set_hooks(&driver); 303 304 err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); 305 if (err) 306 return ERR_PTR(err); 307 308 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 309 if (IS_ERR(xe)) 310 return xe; 311 312 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 313 xe->drm.anon_inode->i_mapping, 314 xe->drm.vma_offset_manager, false, false); 315 if (WARN_ON(err)) 316 goto err; 317 318 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 319 if (err) 320 goto err; 321 322 xe->info.devid = pdev->device; 323 xe->info.revid = pdev->revision; 324 xe->info.force_execlist = xe_modparam.force_execlist; 325 326 spin_lock_init(&xe->irq.lock); 327 328 init_waitqueue_head(&xe->ufence_wq); 329 330 init_rwsem(&xe->usm.lock); 331 332 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 333 334 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 335 /* Trigger a large asid and an early asid wrap. */ 336 u32 asid; 337 338 BUILD_BUG_ON(XE_MAX_ASID < 2); 339 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 340 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 341 &xe->usm.next_asid, GFP_KERNEL); 342 drm_WARN_ON(&xe->drm, err); 343 if (err >= 0) 344 xa_erase(&xe->usm.asid_to_vm, asid); 345 } 346 347 spin_lock_init(&xe->pinned.lock); 348 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 349 INIT_LIST_HEAD(&xe->pinned.external_vram); 350 INIT_LIST_HEAD(&xe->pinned.evicted); 351 352 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); 353 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 354 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 355 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 356 if (!xe->ordered_wq || !xe->unordered_wq || 357 !xe->preempt_fence_wq || !xe->destroy_wq) { 358 /* 359 * Cleanup done in xe_device_destroy via 360 * drmm_add_action_or_reset register above 361 */ 362 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 363 err = -ENOMEM; 364 goto err; 365 } 366 367 err = xe_display_create(xe); 368 if (WARN_ON(err)) 369 goto err; 370 371 return xe; 372 373 err: 374 return ERR_PTR(err); 375 } 376 377 /* 378 * The driver-initiated FLR is the highest level of reset that we can trigger 379 * from within the driver. It is different from the PCI FLR in that it doesn't 380 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 381 * it doesn't require a re-enumeration of the PCI BARs. However, the 382 * driver-initiated FLR does still cause a reset of both GT and display and a 383 * memory wipe of local and stolen memory, so recovery would require a full HW 384 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 385 * perform the FLR as the very last action before releasing access to the HW 386 * during the driver release flow, we don't attempt recovery at all, because 387 * if/when a new instance of i915 is bound to the device it will do a full 388 * re-init anyway. 389 */ 390 static void xe_driver_flr(struct xe_device *xe) 391 { 392 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 393 struct xe_gt *gt = xe_root_mmio_gt(xe); 394 int ret; 395 396 if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 397 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 398 return; 399 } 400 401 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 402 403 /* 404 * Make sure any pending FLR requests have cleared by waiting for the 405 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 406 * to make sure it's not still set from a prior attempt (it's a write to 407 * clear bit). 408 * Note that we should never be in a situation where a previous attempt 409 * is still pending (unless the HW is totally dead), but better to be 410 * safe in case something unexpected happens 411 */ 412 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 413 if (ret) { 414 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 415 return; 416 } 417 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); 418 419 /* Trigger the actual Driver-FLR */ 420 xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); 421 422 /* Wait for hardware teardown to complete */ 423 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 424 if (ret) { 425 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 426 return; 427 } 428 429 /* Wait for hardware/firmware re-init to complete */ 430 ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 431 flr_timeout, NULL, false); 432 if (ret) { 433 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 434 return; 435 } 436 437 /* Clear sticky completion status */ 438 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); 439 } 440 441 static void xe_driver_flr_fini(void *arg) 442 { 443 struct xe_device *xe = arg; 444 445 if (xe->needs_flr_on_fini) 446 xe_driver_flr(xe); 447 } 448 449 static void xe_device_sanitize(void *arg) 450 { 451 struct xe_device *xe = arg; 452 struct xe_gt *gt; 453 u8 id; 454 455 for_each_gt(gt, xe, id) 456 xe_gt_sanitize(gt); 457 } 458 459 static int xe_set_dma_info(struct xe_device *xe) 460 { 461 unsigned int mask_size = xe->info.dma_mask_size; 462 int err; 463 464 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 465 466 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 467 if (err) 468 goto mask_err; 469 470 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 471 if (err) 472 goto mask_err; 473 474 return 0; 475 476 mask_err: 477 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 478 return err; 479 } 480 481 static bool verify_lmem_ready(struct xe_gt *gt) 482 { 483 u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT; 484 485 return !!val; 486 } 487 488 static int wait_for_lmem_ready(struct xe_device *xe) 489 { 490 struct xe_gt *gt = xe_root_mmio_gt(xe); 491 unsigned long timeout, start; 492 493 if (!IS_DGFX(xe)) 494 return 0; 495 496 if (IS_SRIOV_VF(xe)) 497 return 0; 498 499 if (verify_lmem_ready(gt)) 500 return 0; 501 502 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 503 504 start = jiffies; 505 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 506 507 do { 508 if (signal_pending(current)) 509 return -EINTR; 510 511 /* 512 * The boot firmware initializes local memory and 513 * assesses its health. If memory training fails, 514 * the punit will have been instructed to keep the GT powered 515 * down.we won't be able to communicate with it 516 * 517 * If the status check is done before punit updates the register, 518 * it can lead to the system being unusable. 519 * use a timeout and defer the probe to prevent this. 520 */ 521 if (time_after(jiffies, timeout)) { 522 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 523 return -EPROBE_DEFER; 524 } 525 526 msleep(20); 527 528 } while (!verify_lmem_ready(gt)); 529 530 drm_dbg(&xe->drm, "lmem ready after %ums", 531 jiffies_to_msecs(jiffies - start)); 532 533 return 0; 534 } 535 536 static void update_device_info(struct xe_device *xe) 537 { 538 /* disable features that are not available/applicable to VFs */ 539 if (IS_SRIOV_VF(xe)) { 540 xe->info.probe_display = 0; 541 xe->info.has_heci_gscfi = 0; 542 xe->info.skip_guc_pc = 1; 543 xe->info.skip_pcode = 1; 544 } 545 } 546 547 /** 548 * xe_device_probe_early: Device early probe 549 * @xe: xe device instance 550 * 551 * Initialize MMIO resources that don't require any 552 * knowledge about tile count. Also initialize pcode and 553 * check vram initialization on root tile. 554 * 555 * Return: 0 on success, error code on failure 556 */ 557 int xe_device_probe_early(struct xe_device *xe) 558 { 559 int err; 560 561 err = xe_mmio_init(xe); 562 if (err) 563 return err; 564 565 xe_sriov_probe_early(xe); 566 567 update_device_info(xe); 568 569 err = xe_pcode_probe_early(xe); 570 if (err) 571 return err; 572 573 err = wait_for_lmem_ready(xe); 574 if (err) 575 return err; 576 577 xe->wedged.mode = xe_modparam.wedged_mode; 578 579 return 0; 580 } 581 582 static int xe_device_set_has_flat_ccs(struct xe_device *xe) 583 { 584 u32 reg; 585 int err; 586 587 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) 588 return 0; 589 590 struct xe_gt *gt = xe_root_mmio_gt(xe); 591 592 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 593 if (err) 594 return err; 595 596 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 597 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 598 599 if (!xe->info.has_flat_ccs) 600 drm_dbg(&xe->drm, 601 "Flat CCS has been disabled in bios, May lead to performance impact"); 602 603 return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 604 } 605 606 int xe_device_probe(struct xe_device *xe) 607 { 608 struct xe_tile *tile; 609 struct xe_gt *gt; 610 int err; 611 u8 last_gt; 612 u8 id; 613 614 xe_pat_init_early(xe); 615 616 err = xe_sriov_init(xe); 617 if (err) 618 return err; 619 620 xe->info.mem_region_mask = 1; 621 err = xe_display_init_nommio(xe); 622 if (err) 623 return err; 624 625 err = xe_set_dma_info(xe); 626 if (err) 627 return err; 628 629 err = xe_mmio_probe_tiles(xe); 630 if (err) 631 return err; 632 633 xe_ttm_sys_mgr_init(xe); 634 635 for_each_gt(gt, xe, id) { 636 err = xe_gt_init_early(gt); 637 if (err) 638 return err; 639 } 640 641 for_each_tile(tile, xe, id) { 642 if (IS_SRIOV_VF(xe)) { 643 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 644 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 645 if (err) 646 return err; 647 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 648 if (err) 649 return err; 650 } 651 err = xe_ggtt_init_early(tile->mem.ggtt); 652 if (err) 653 return err; 654 if (IS_SRIOV_VF(xe)) { 655 err = xe_memirq_init(&tile->sriov.vf.memirq); 656 if (err) 657 return err; 658 } 659 } 660 661 for_each_gt(gt, xe, id) { 662 err = xe_gt_init_hwconfig(gt); 663 if (err) 664 return err; 665 } 666 667 err = xe_devcoredump_init(xe); 668 if (err) 669 return err; 670 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 671 if (err) 672 return err; 673 674 err = xe_display_init_noirq(xe); 675 if (err) 676 return err; 677 678 err = xe_irq_install(xe); 679 if (err) 680 goto err; 681 682 err = xe_device_set_has_flat_ccs(xe); 683 if (err) 684 goto err; 685 686 err = xe_vram_probe(xe); 687 if (err) 688 goto err; 689 690 for_each_tile(tile, xe, id) { 691 err = xe_tile_init_noalloc(tile); 692 if (err) 693 goto err; 694 } 695 696 /* Allocate and map stolen after potential VRAM resize */ 697 xe_ttm_stolen_mgr_init(xe); 698 699 /* 700 * Now that GT is initialized (TTM in particular), 701 * we can try to init display, and inherit the initial fb. 702 * This is the reason the first allocation needs to be done 703 * inside display. 704 */ 705 err = xe_display_init_noaccel(xe); 706 if (err) 707 goto err; 708 709 for_each_gt(gt, xe, id) { 710 last_gt = id; 711 712 err = xe_gt_init(gt); 713 if (err) 714 goto err_fini_gt; 715 } 716 717 xe_heci_gsc_init(xe); 718 719 err = xe_oa_init(xe); 720 if (err) 721 goto err_fini_gt; 722 723 err = xe_display_init(xe); 724 if (err) 725 goto err_fini_oa; 726 727 err = drm_dev_register(&xe->drm, 0); 728 if (err) 729 goto err_fini_display; 730 731 xe_display_register(xe); 732 733 xe_oa_register(xe); 734 735 xe_debugfs_register(xe); 736 737 xe_hwmon_register(xe); 738 739 for_each_gt(gt, xe, id) 740 xe_gt_sanitize_freq(gt); 741 742 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 743 744 err_fini_display: 745 xe_display_driver_remove(xe); 746 747 err_fini_oa: 748 xe_oa_fini(xe); 749 750 err_fini_gt: 751 for_each_gt(gt, xe, id) { 752 if (id < last_gt) 753 xe_gt_remove(gt); 754 else 755 break; 756 } 757 758 err: 759 xe_display_fini(xe); 760 return err; 761 } 762 763 static void xe_device_remove_display(struct xe_device *xe) 764 { 765 xe_display_unregister(xe); 766 767 drm_dev_unplug(&xe->drm); 768 xe_display_driver_remove(xe); 769 } 770 771 void xe_device_remove(struct xe_device *xe) 772 { 773 struct xe_gt *gt; 774 u8 id; 775 776 xe_oa_unregister(xe); 777 778 xe_device_remove_display(xe); 779 780 xe_display_fini(xe); 781 782 xe_oa_fini(xe); 783 784 xe_heci_gsc_fini(xe); 785 786 for_each_gt(gt, xe, id) 787 xe_gt_remove(gt); 788 } 789 790 void xe_device_shutdown(struct xe_device *xe) 791 { 792 } 793 794 /** 795 * xe_device_wmb() - Device specific write memory barrier 796 * @xe: the &xe_device 797 * 798 * While wmb() is sufficient for a barrier if we use system memory, on discrete 799 * platforms with device memory we additionally need to issue a register write. 800 * Since it doesn't matter which register we write to, use the read-only VF_CAP 801 * register that is also marked as accessible by the VFs. 802 */ 803 void xe_device_wmb(struct xe_device *xe) 804 { 805 struct xe_gt *gt = xe_root_mmio_gt(xe); 806 807 wmb(); 808 if (IS_DGFX(xe)) 809 xe_mmio_write32(gt, VF_CAP_REG, 0); 810 } 811 812 /** 813 * xe_device_td_flush() - Flush transient L3 cache entries 814 * @xe: The device 815 * 816 * Display engine has direct access to memory and is never coherent with L3/L4 817 * caches (or CPU caches), however KMD is responsible for specifically flushing 818 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 819 * can happen from such a surface without seeing corruption. 820 * 821 * Display surfaces can be tagged as transient by mapping it using one of the 822 * various L3:XD PAT index modes on Xe2. 823 * 824 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 825 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 826 * Media is not coherent with L3 and we want to support render-vs-media 827 * usescases. For other engines like copy/blt the HW internally forces uncached 828 * behaviour, hence why we can skip the TDF on such platforms. 829 */ 830 void xe_device_td_flush(struct xe_device *xe) 831 { 832 struct xe_gt *gt; 833 u8 id; 834 835 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 836 return; 837 838 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 839 xe_device_l2_flush(xe); 840 return; 841 } 842 843 for_each_gt(gt, xe, id) { 844 if (xe_gt_is_media_type(gt)) 845 continue; 846 847 if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) 848 return; 849 850 xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 851 /* 852 * FIXME: We can likely do better here with our choice of 853 * timeout. Currently we just assume the worst case, i.e. 150us, 854 * which is believed to be sufficient to cover the worst case 855 * scenario on current platforms if all cache entries are 856 * transient and need to be flushed.. 857 */ 858 if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 859 150, NULL, false)) 860 xe_gt_err_once(gt, "TD flush timeout\n"); 861 862 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 863 } 864 } 865 866 void xe_device_l2_flush(struct xe_device *xe) 867 { 868 struct xe_gt *gt; 869 int err; 870 871 gt = xe_root_mmio_gt(xe); 872 873 if (!XE_WA(gt, 16023588340)) 874 return; 875 876 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 877 if (err) 878 return; 879 880 spin_lock(>->global_invl_lock); 881 xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1); 882 883 if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 884 xe_gt_err_once(gt, "Global invalidation timeout\n"); 885 spin_unlock(>->global_invl_lock); 886 887 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 888 } 889 890 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 891 { 892 return xe_device_has_flat_ccs(xe) ? 893 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 894 } 895 896 /** 897 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 898 * @xe: xe device instance 899 * 900 * To be used before any kind of memory access. It will splat a debug warning 901 * if the device is currently sleeping. But it doesn't guarantee in any way 902 * that the device is going to remain awake. Xe PM runtime get and put 903 * functions might be added to the outer bound of the memory access, while 904 * this check is intended for inner usage to splat some warning if the worst 905 * case has just happened. 906 */ 907 void xe_device_assert_mem_access(struct xe_device *xe) 908 { 909 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 910 } 911 912 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 913 { 914 struct xe_gt *gt; 915 u8 id; 916 917 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 918 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 919 920 for_each_gt(gt, xe, id) { 921 drm_printf(p, "GT id: %u\n", id); 922 drm_printf(p, "\tType: %s\n", 923 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 924 drm_printf(p, "\tIP ver: %u.%u.%u\n", 925 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 926 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 927 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 928 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 929 } 930 } 931 932 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 933 { 934 return sign_extend64(address, xe->info.va_bits - 1); 935 } 936 937 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 938 { 939 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 940 } 941 942 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 943 { 944 struct xe_device *xe = arg; 945 946 xe_pm_runtime_put(xe); 947 } 948 949 /** 950 * xe_device_declare_wedged - Declare device wedged 951 * @xe: xe device instance 952 * 953 * This is a final state that can only be cleared with a mudule 954 * re-probe (unbind + bind). 955 * In this state every IOCTL will be blocked so the GT cannot be used. 956 * In general it will be called upon any critical error such as gt reset 957 * failure or guc loading failure. 958 * If xe.wedged module parameter is set to 2, this function will be called 959 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 960 * snapshot capture. In this mode, GT reset won't be attempted so the state of 961 * the issue is preserved for further debugging. 962 */ 963 void xe_device_declare_wedged(struct xe_device *xe) 964 { 965 struct xe_gt *gt; 966 u8 id; 967 968 if (xe->wedged.mode == 0) { 969 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 970 return; 971 } 972 973 xe_pm_runtime_get_noresume(xe); 974 975 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 976 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 977 return; 978 } 979 980 if (!atomic_xchg(&xe->wedged.flag, 1)) { 981 xe->needs_flr_on_fini = true; 982 drm_err(&xe->drm, 983 "CRITICAL: Xe has declared device %s as wedged.\n" 984 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 985 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 986 dev_name(xe->drm.dev)); 987 } 988 989 for_each_gt(gt, xe, id) 990 xe_gt_declare_wedged(gt); 991 } 992