xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/delay.h>
9 #include <linux/units.h>
10 
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <uapi/drm/xe_drm.h>
19 
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_hw_engine_group.h"
41 #include "xe_hwmon.h"
42 #include "xe_irq.h"
43 #include "xe_memirq.h"
44 #include "xe_mmio.h"
45 #include "xe_module.h"
46 #include "xe_observation.h"
47 #include "xe_pat.h"
48 #include "xe_pcode.h"
49 #include "xe_pm.h"
50 #include "xe_query.h"
51 #include "xe_sriov.h"
52 #include "xe_tile.h"
53 #include "xe_ttm_stolen_mgr.h"
54 #include "xe_ttm_sys_mgr.h"
55 #include "xe_vm.h"
56 #include "xe_vram.h"
57 #include "xe_wait_user_fence.h"
58 #include "xe_wa.h"
59 
60 #include <generated/xe_wa_oob.h>
61 
62 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
63 {
64 	struct xe_device *xe = to_xe_device(dev);
65 	struct xe_drm_client *client;
66 	struct xe_file *xef;
67 	int ret = -ENOMEM;
68 	struct task_struct *task = NULL;
69 
70 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
71 	if (!xef)
72 		return ret;
73 
74 	client = xe_drm_client_alloc();
75 	if (!client) {
76 		kfree(xef);
77 		return ret;
78 	}
79 
80 	xef->drm = file;
81 	xef->client = client;
82 	xef->xe = xe;
83 
84 	mutex_init(&xef->vm.lock);
85 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
86 
87 	mutex_init(&xef->exec_queue.lock);
88 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
89 
90 	file->driver_priv = xef;
91 	kref_init(&xef->refcount);
92 
93 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
94 	if (task) {
95 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
96 		xef->pid = task->pid;
97 		put_task_struct(task);
98 	}
99 
100 	return 0;
101 }
102 
103 static void xe_file_destroy(struct kref *ref)
104 {
105 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
106 
107 	xa_destroy(&xef->exec_queue.xa);
108 	mutex_destroy(&xef->exec_queue.lock);
109 	xa_destroy(&xef->vm.xa);
110 	mutex_destroy(&xef->vm.lock);
111 
112 	xe_drm_client_put(xef->client);
113 	kfree(xef->process_name);
114 	kfree(xef);
115 }
116 
117 /**
118  * xe_file_get() - Take a reference to the xe file object
119  * @xef: Pointer to the xe file
120  *
121  * Anyone with a pointer to xef must take a reference to the xe file
122  * object using this call.
123  *
124  * Return: xe file pointer
125  */
126 struct xe_file *xe_file_get(struct xe_file *xef)
127 {
128 	kref_get(&xef->refcount);
129 	return xef;
130 }
131 
132 /**
133  * xe_file_put() - Drop a reference to the xe file object
134  * @xef: Pointer to the xe file
135  *
136  * Used to drop reference to the xef object
137  */
138 void xe_file_put(struct xe_file *xef)
139 {
140 	kref_put(&xef->refcount, xe_file_destroy);
141 }
142 
143 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
144 {
145 	struct xe_device *xe = to_xe_device(dev);
146 	struct xe_file *xef = file->driver_priv;
147 	struct xe_vm *vm;
148 	struct xe_exec_queue *q;
149 	unsigned long idx;
150 
151 	xe_pm_runtime_get(xe);
152 
153 	/*
154 	 * No need for exec_queue.lock here as there is no contention for it
155 	 * when FD is closing as IOCTLs presumably can't be modifying the
156 	 * xarray. Taking exec_queue.lock here causes undue dependency on
157 	 * vm->lock taken during xe_exec_queue_kill().
158 	 */
159 	xa_for_each(&xef->exec_queue.xa, idx, q) {
160 		if (q->vm && q->hwe->hw_engine_group)
161 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
162 		xe_exec_queue_kill(q);
163 		xe_exec_queue_put(q);
164 	}
165 	xa_for_each(&xef->vm.xa, idx, vm)
166 		xe_vm_close_and_put(vm);
167 
168 	xe_file_put(xef);
169 
170 	xe_pm_runtime_put(xe);
171 }
172 
173 static const struct drm_ioctl_desc xe_ioctls[] = {
174 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
175 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
176 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
177 			  DRM_RENDER_ALLOW),
178 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
183 			  DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
185 			  DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
187 			  DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
189 			  DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
191 };
192 
193 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
194 {
195 	struct drm_file *file_priv = file->private_data;
196 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
197 	long ret;
198 
199 	if (xe_device_wedged(xe))
200 		return -ECANCELED;
201 
202 	ret = xe_pm_runtime_get_ioctl(xe);
203 	if (ret >= 0)
204 		ret = drm_ioctl(file, cmd, arg);
205 	xe_pm_runtime_put(xe);
206 
207 	return ret;
208 }
209 
210 #ifdef CONFIG_COMPAT
211 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
212 {
213 	struct drm_file *file_priv = file->private_data;
214 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
215 	long ret;
216 
217 	if (xe_device_wedged(xe))
218 		return -ECANCELED;
219 
220 	ret = xe_pm_runtime_get_ioctl(xe);
221 	if (ret >= 0)
222 		ret = drm_compat_ioctl(file, cmd, arg);
223 	xe_pm_runtime_put(xe);
224 
225 	return ret;
226 }
227 #else
228 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
229 #define xe_drm_compat_ioctl NULL
230 #endif
231 
232 static const struct file_operations xe_driver_fops = {
233 	.owner = THIS_MODULE,
234 	.open = drm_open,
235 	.release = drm_release_noglobal,
236 	.unlocked_ioctl = xe_drm_ioctl,
237 	.mmap = drm_gem_mmap,
238 	.poll = drm_poll,
239 	.read = drm_read,
240 	.compat_ioctl = xe_drm_compat_ioctl,
241 	.llseek = noop_llseek,
242 #ifdef CONFIG_PROC_FS
243 	.show_fdinfo = drm_show_fdinfo,
244 #endif
245 	.fop_flags = FOP_UNSIGNED_OFFSET,
246 };
247 
248 static struct drm_driver driver = {
249 	/* Don't use MTRRs here; the Xserver or userspace app should
250 	 * deal with them for Intel hardware.
251 	 */
252 	.driver_features =
253 	    DRIVER_GEM |
254 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
255 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
256 	.open = xe_file_open,
257 	.postclose = xe_file_close,
258 
259 	.gem_prime_import = xe_gem_prime_import,
260 
261 	.dumb_create = xe_bo_dumb_create,
262 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
263 #ifdef CONFIG_PROC_FS
264 	.show_fdinfo = xe_drm_client_fdinfo,
265 #endif
266 	.ioctls = xe_ioctls,
267 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
268 	.fops = &xe_driver_fops,
269 	.name = DRIVER_NAME,
270 	.desc = DRIVER_DESC,
271 	.date = DRIVER_DATE,
272 	.major = DRIVER_MAJOR,
273 	.minor = DRIVER_MINOR,
274 	.patchlevel = DRIVER_PATCHLEVEL,
275 };
276 
277 static void xe_device_destroy(struct drm_device *dev, void *dummy)
278 {
279 	struct xe_device *xe = to_xe_device(dev);
280 
281 	if (xe->preempt_fence_wq)
282 		destroy_workqueue(xe->preempt_fence_wq);
283 
284 	if (xe->ordered_wq)
285 		destroy_workqueue(xe->ordered_wq);
286 
287 	if (xe->unordered_wq)
288 		destroy_workqueue(xe->unordered_wq);
289 
290 	if (xe->destroy_wq)
291 		destroy_workqueue(xe->destroy_wq);
292 
293 	ttm_device_fini(&xe->ttm);
294 }
295 
296 struct xe_device *xe_device_create(struct pci_dev *pdev,
297 				   const struct pci_device_id *ent)
298 {
299 	struct xe_device *xe;
300 	int err;
301 
302 	xe_display_driver_set_hooks(&driver);
303 
304 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
305 	if (err)
306 		return ERR_PTR(err);
307 
308 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
309 	if (IS_ERR(xe))
310 		return xe;
311 
312 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
313 			      xe->drm.anon_inode->i_mapping,
314 			      xe->drm.vma_offset_manager, false, false);
315 	if (WARN_ON(err))
316 		goto err;
317 
318 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
319 	if (err)
320 		goto err;
321 
322 	xe->info.devid = pdev->device;
323 	xe->info.revid = pdev->revision;
324 	xe->info.force_execlist = xe_modparam.force_execlist;
325 
326 	spin_lock_init(&xe->irq.lock);
327 
328 	init_waitqueue_head(&xe->ufence_wq);
329 
330 	init_rwsem(&xe->usm.lock);
331 
332 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
333 
334 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
335 		/* Trigger a large asid and an early asid wrap. */
336 		u32 asid;
337 
338 		BUILD_BUG_ON(XE_MAX_ASID < 2);
339 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
340 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
341 				      &xe->usm.next_asid, GFP_KERNEL);
342 		drm_WARN_ON(&xe->drm, err);
343 		if (err >= 0)
344 			xa_erase(&xe->usm.asid_to_vm, asid);
345 	}
346 
347 	spin_lock_init(&xe->pinned.lock);
348 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
349 	INIT_LIST_HEAD(&xe->pinned.external_vram);
350 	INIT_LIST_HEAD(&xe->pinned.evicted);
351 
352 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
353 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
354 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
355 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
356 	if (!xe->ordered_wq || !xe->unordered_wq ||
357 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
358 		/*
359 		 * Cleanup done in xe_device_destroy via
360 		 * drmm_add_action_or_reset register above
361 		 */
362 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
363 		err = -ENOMEM;
364 		goto err;
365 	}
366 
367 	err = xe_display_create(xe);
368 	if (WARN_ON(err))
369 		goto err;
370 
371 	return xe;
372 
373 err:
374 	return ERR_PTR(err);
375 }
376 
377 /*
378  * The driver-initiated FLR is the highest level of reset that we can trigger
379  * from within the driver. It is different from the PCI FLR in that it doesn't
380  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
381  * it doesn't require a re-enumeration of the PCI BARs. However, the
382  * driver-initiated FLR does still cause a reset of both GT and display and a
383  * memory wipe of local and stolen memory, so recovery would require a full HW
384  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
385  * perform the FLR as the very last action before releasing access to the HW
386  * during the driver release flow, we don't attempt recovery at all, because
387  * if/when a new instance of i915 is bound to the device it will do a full
388  * re-init anyway.
389  */
390 static void xe_driver_flr(struct xe_device *xe)
391 {
392 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
393 	struct xe_gt *gt = xe_root_mmio_gt(xe);
394 	int ret;
395 
396 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
397 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
398 		return;
399 	}
400 
401 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
402 
403 	/*
404 	 * Make sure any pending FLR requests have cleared by waiting for the
405 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
406 	 * to make sure it's not still set from a prior attempt (it's a write to
407 	 * clear bit).
408 	 * Note that we should never be in a situation where a previous attempt
409 	 * is still pending (unless the HW is totally dead), but better to be
410 	 * safe in case something unexpected happens
411 	 */
412 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
413 	if (ret) {
414 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
415 		return;
416 	}
417 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
418 
419 	/* Trigger the actual Driver-FLR */
420 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
421 
422 	/* Wait for hardware teardown to complete */
423 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
424 	if (ret) {
425 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
426 		return;
427 	}
428 
429 	/* Wait for hardware/firmware re-init to complete */
430 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
431 			     flr_timeout, NULL, false);
432 	if (ret) {
433 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
434 		return;
435 	}
436 
437 	/* Clear sticky completion status */
438 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
439 }
440 
441 static void xe_driver_flr_fini(void *arg)
442 {
443 	struct xe_device *xe = arg;
444 
445 	if (xe->needs_flr_on_fini)
446 		xe_driver_flr(xe);
447 }
448 
449 static void xe_device_sanitize(void *arg)
450 {
451 	struct xe_device *xe = arg;
452 	struct xe_gt *gt;
453 	u8 id;
454 
455 	for_each_gt(gt, xe, id)
456 		xe_gt_sanitize(gt);
457 }
458 
459 static int xe_set_dma_info(struct xe_device *xe)
460 {
461 	unsigned int mask_size = xe->info.dma_mask_size;
462 	int err;
463 
464 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
465 
466 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
467 	if (err)
468 		goto mask_err;
469 
470 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
471 	if (err)
472 		goto mask_err;
473 
474 	return 0;
475 
476 mask_err:
477 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
478 	return err;
479 }
480 
481 static bool verify_lmem_ready(struct xe_gt *gt)
482 {
483 	u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
484 
485 	return !!val;
486 }
487 
488 static int wait_for_lmem_ready(struct xe_device *xe)
489 {
490 	struct xe_gt *gt = xe_root_mmio_gt(xe);
491 	unsigned long timeout, start;
492 
493 	if (!IS_DGFX(xe))
494 		return 0;
495 
496 	if (IS_SRIOV_VF(xe))
497 		return 0;
498 
499 	if (verify_lmem_ready(gt))
500 		return 0;
501 
502 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
503 
504 	start = jiffies;
505 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
506 
507 	do {
508 		if (signal_pending(current))
509 			return -EINTR;
510 
511 		/*
512 		 * The boot firmware initializes local memory and
513 		 * assesses its health. If memory training fails,
514 		 * the punit will have been instructed to keep the GT powered
515 		 * down.we won't be able to communicate with it
516 		 *
517 		 * If the status check is done before punit updates the register,
518 		 * it can lead to the system being unusable.
519 		 * use a timeout and defer the probe to prevent this.
520 		 */
521 		if (time_after(jiffies, timeout)) {
522 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
523 			return -EPROBE_DEFER;
524 		}
525 
526 		msleep(20);
527 
528 	} while (!verify_lmem_ready(gt));
529 
530 	drm_dbg(&xe->drm, "lmem ready after %ums",
531 		jiffies_to_msecs(jiffies - start));
532 
533 	return 0;
534 }
535 
536 static void update_device_info(struct xe_device *xe)
537 {
538 	/* disable features that are not available/applicable to VFs */
539 	if (IS_SRIOV_VF(xe)) {
540 		xe->info.probe_display = 0;
541 		xe->info.has_heci_gscfi = 0;
542 		xe->info.skip_guc_pc = 1;
543 		xe->info.skip_pcode = 1;
544 	}
545 }
546 
547 /**
548  * xe_device_probe_early: Device early probe
549  * @xe: xe device instance
550  *
551  * Initialize MMIO resources that don't require any
552  * knowledge about tile count. Also initialize pcode and
553  * check vram initialization on root tile.
554  *
555  * Return: 0 on success, error code on failure
556  */
557 int xe_device_probe_early(struct xe_device *xe)
558 {
559 	int err;
560 
561 	err = xe_mmio_init(xe);
562 	if (err)
563 		return err;
564 
565 	xe_sriov_probe_early(xe);
566 
567 	update_device_info(xe);
568 
569 	err = xe_pcode_probe_early(xe);
570 	if (err)
571 		return err;
572 
573 	err = wait_for_lmem_ready(xe);
574 	if (err)
575 		return err;
576 
577 	xe->wedged.mode = xe_modparam.wedged_mode;
578 
579 	return 0;
580 }
581 
582 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
583 {
584 	u32 reg;
585 	int err;
586 
587 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
588 		return 0;
589 
590 	struct xe_gt *gt = xe_root_mmio_gt(xe);
591 
592 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
593 	if (err)
594 		return err;
595 
596 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
597 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
598 
599 	if (!xe->info.has_flat_ccs)
600 		drm_dbg(&xe->drm,
601 			"Flat CCS has been disabled in bios, May lead to performance impact");
602 
603 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
604 }
605 
606 int xe_device_probe(struct xe_device *xe)
607 {
608 	struct xe_tile *tile;
609 	struct xe_gt *gt;
610 	int err;
611 	u8 last_gt;
612 	u8 id;
613 
614 	xe_pat_init_early(xe);
615 
616 	err = xe_sriov_init(xe);
617 	if (err)
618 		return err;
619 
620 	xe->info.mem_region_mask = 1;
621 	err = xe_display_init_nommio(xe);
622 	if (err)
623 		return err;
624 
625 	err = xe_set_dma_info(xe);
626 	if (err)
627 		return err;
628 
629 	err = xe_mmio_probe_tiles(xe);
630 	if (err)
631 		return err;
632 
633 	xe_ttm_sys_mgr_init(xe);
634 
635 	for_each_gt(gt, xe, id) {
636 		err = xe_gt_init_early(gt);
637 		if (err)
638 			return err;
639 	}
640 
641 	for_each_tile(tile, xe, id) {
642 		if (IS_SRIOV_VF(xe)) {
643 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
644 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
645 			if (err)
646 				return err;
647 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
648 			if (err)
649 				return err;
650 		}
651 		err = xe_ggtt_init_early(tile->mem.ggtt);
652 		if (err)
653 			return err;
654 		if (IS_SRIOV_VF(xe)) {
655 			err = xe_memirq_init(&tile->sriov.vf.memirq);
656 			if (err)
657 				return err;
658 		}
659 	}
660 
661 	for_each_gt(gt, xe, id) {
662 		err = xe_gt_init_hwconfig(gt);
663 		if (err)
664 			return err;
665 	}
666 
667 	err = xe_devcoredump_init(xe);
668 	if (err)
669 		return err;
670 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
671 	if (err)
672 		return err;
673 
674 	err = xe_display_init_noirq(xe);
675 	if (err)
676 		return err;
677 
678 	err = xe_irq_install(xe);
679 	if (err)
680 		goto err;
681 
682 	err = xe_device_set_has_flat_ccs(xe);
683 	if (err)
684 		goto err;
685 
686 	err = xe_vram_probe(xe);
687 	if (err)
688 		goto err;
689 
690 	for_each_tile(tile, xe, id) {
691 		err = xe_tile_init_noalloc(tile);
692 		if (err)
693 			goto err;
694 	}
695 
696 	/* Allocate and map stolen after potential VRAM resize */
697 	xe_ttm_stolen_mgr_init(xe);
698 
699 	/*
700 	 * Now that GT is initialized (TTM in particular),
701 	 * we can try to init display, and inherit the initial fb.
702 	 * This is the reason the first allocation needs to be done
703 	 * inside display.
704 	 */
705 	err = xe_display_init_noaccel(xe);
706 	if (err)
707 		goto err;
708 
709 	for_each_gt(gt, xe, id) {
710 		last_gt = id;
711 
712 		err = xe_gt_init(gt);
713 		if (err)
714 			goto err_fini_gt;
715 	}
716 
717 	xe_heci_gsc_init(xe);
718 
719 	err = xe_oa_init(xe);
720 	if (err)
721 		goto err_fini_gt;
722 
723 	err = xe_display_init(xe);
724 	if (err)
725 		goto err_fini_oa;
726 
727 	err = drm_dev_register(&xe->drm, 0);
728 	if (err)
729 		goto err_fini_display;
730 
731 	xe_display_register(xe);
732 
733 	xe_oa_register(xe);
734 
735 	xe_debugfs_register(xe);
736 
737 	xe_hwmon_register(xe);
738 
739 	for_each_gt(gt, xe, id)
740 		xe_gt_sanitize_freq(gt);
741 
742 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
743 
744 err_fini_display:
745 	xe_display_driver_remove(xe);
746 
747 err_fini_oa:
748 	xe_oa_fini(xe);
749 
750 err_fini_gt:
751 	for_each_gt(gt, xe, id) {
752 		if (id < last_gt)
753 			xe_gt_remove(gt);
754 		else
755 			break;
756 	}
757 
758 err:
759 	xe_display_fini(xe);
760 	return err;
761 }
762 
763 static void xe_device_remove_display(struct xe_device *xe)
764 {
765 	xe_display_unregister(xe);
766 
767 	drm_dev_unplug(&xe->drm);
768 	xe_display_driver_remove(xe);
769 }
770 
771 void xe_device_remove(struct xe_device *xe)
772 {
773 	struct xe_gt *gt;
774 	u8 id;
775 
776 	xe_oa_unregister(xe);
777 
778 	xe_device_remove_display(xe);
779 
780 	xe_display_fini(xe);
781 
782 	xe_oa_fini(xe);
783 
784 	xe_heci_gsc_fini(xe);
785 
786 	for_each_gt(gt, xe, id)
787 		xe_gt_remove(gt);
788 }
789 
790 void xe_device_shutdown(struct xe_device *xe)
791 {
792 }
793 
794 /**
795  * xe_device_wmb() - Device specific write memory barrier
796  * @xe: the &xe_device
797  *
798  * While wmb() is sufficient for a barrier if we use system memory, on discrete
799  * platforms with device memory we additionally need to issue a register write.
800  * Since it doesn't matter which register we write to, use the read-only VF_CAP
801  * register that is also marked as accessible by the VFs.
802  */
803 void xe_device_wmb(struct xe_device *xe)
804 {
805 	struct xe_gt *gt = xe_root_mmio_gt(xe);
806 
807 	wmb();
808 	if (IS_DGFX(xe))
809 		xe_mmio_write32(gt, VF_CAP_REG, 0);
810 }
811 
812 /**
813  * xe_device_td_flush() - Flush transient L3 cache entries
814  * @xe: The device
815  *
816  * Display engine has direct access to memory and is never coherent with L3/L4
817  * caches (or CPU caches), however KMD is responsible for specifically flushing
818  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
819  * can happen from such a surface without seeing corruption.
820  *
821  * Display surfaces can be tagged as transient by mapping it using one of the
822  * various L3:XD PAT index modes on Xe2.
823  *
824  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
825  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
826  * Media is not coherent with L3 and we want to support render-vs-media
827  * usescases. For other engines like copy/blt the HW internally forces uncached
828  * behaviour, hence why we can skip the TDF on such platforms.
829  */
830 void xe_device_td_flush(struct xe_device *xe)
831 {
832 	struct xe_gt *gt;
833 	u8 id;
834 
835 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
836 		return;
837 
838 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
839 		xe_device_l2_flush(xe);
840 		return;
841 	}
842 
843 	for_each_gt(gt, xe, id) {
844 		if (xe_gt_is_media_type(gt))
845 			continue;
846 
847 		if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
848 			return;
849 
850 		xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
851 		/*
852 		 * FIXME: We can likely do better here with our choice of
853 		 * timeout. Currently we just assume the worst case, i.e. 150us,
854 		 * which is believed to be sufficient to cover the worst case
855 		 * scenario on current platforms if all cache entries are
856 		 * transient and need to be flushed..
857 		 */
858 		if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
859 				   150, NULL, false))
860 			xe_gt_err_once(gt, "TD flush timeout\n");
861 
862 		xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
863 	}
864 }
865 
866 void xe_device_l2_flush(struct xe_device *xe)
867 {
868 	struct xe_gt *gt;
869 	int err;
870 
871 	gt = xe_root_mmio_gt(xe);
872 
873 	if (!XE_WA(gt, 16023588340))
874 		return;
875 
876 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
877 	if (err)
878 		return;
879 
880 	spin_lock(&gt->global_invl_lock);
881 	xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
882 
883 	if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
884 		xe_gt_err_once(gt, "Global invalidation timeout\n");
885 	spin_unlock(&gt->global_invl_lock);
886 
887 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
888 }
889 
890 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
891 {
892 	return xe_device_has_flat_ccs(xe) ?
893 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
894 }
895 
896 /**
897  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
898  * @xe: xe device instance
899  *
900  * To be used before any kind of memory access. It will splat a debug warning
901  * if the device is currently sleeping. But it doesn't guarantee in any way
902  * that the device is going to remain awake. Xe PM runtime get and put
903  * functions might be added to the outer bound of the memory access, while
904  * this check is intended for inner usage to splat some warning if the worst
905  * case has just happened.
906  */
907 void xe_device_assert_mem_access(struct xe_device *xe)
908 {
909 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
910 }
911 
912 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
913 {
914 	struct xe_gt *gt;
915 	u8 id;
916 
917 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
918 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
919 
920 	for_each_gt(gt, xe, id) {
921 		drm_printf(p, "GT id: %u\n", id);
922 		drm_printf(p, "\tType: %s\n",
923 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
924 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
925 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
926 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
927 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
928 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
929 	}
930 }
931 
932 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
933 {
934 	return sign_extend64(address, xe->info.va_bits - 1);
935 }
936 
937 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
938 {
939 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
940 }
941 
942 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
943 {
944 	struct xe_device *xe = arg;
945 
946 	xe_pm_runtime_put(xe);
947 }
948 
949 /**
950  * xe_device_declare_wedged - Declare device wedged
951  * @xe: xe device instance
952  *
953  * This is a final state that can only be cleared with a mudule
954  * re-probe (unbind + bind).
955  * In this state every IOCTL will be blocked so the GT cannot be used.
956  * In general it will be called upon any critical error such as gt reset
957  * failure or guc loading failure.
958  * If xe.wedged module parameter is set to 2, this function will be called
959  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
960  * snapshot capture. In this mode, GT reset won't be attempted so the state of
961  * the issue is preserved for further debugging.
962  */
963 void xe_device_declare_wedged(struct xe_device *xe)
964 {
965 	struct xe_gt *gt;
966 	u8 id;
967 
968 	if (xe->wedged.mode == 0) {
969 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
970 		return;
971 	}
972 
973 	xe_pm_runtime_get_noresume(xe);
974 
975 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
976 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
977 		return;
978 	}
979 
980 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
981 		xe->needs_flr_on_fini = true;
982 		drm_err(&xe->drm,
983 			"CRITICAL: Xe has declared device %s as wedged.\n"
984 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
985 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
986 			dev_name(xe->drm.dev));
987 	}
988 
989 	for_each_gt(gt, xe, id)
990 		xe_gt_declare_wedged(gt);
991 }
992