xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision bd00b29b5f236dce677089319176dee5872b5a7a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_oa.h"
48 #include "xe_observation.h"
49 #include "xe_pat.h"
50 #include "xe_pcode.h"
51 #include "xe_pm.h"
52 #include "xe_pmu.h"
53 #include "xe_pxp.h"
54 #include "xe_query.h"
55 #include "xe_shrinker.h"
56 #include "xe_sriov.h"
57 #include "xe_survivability_mode.h"
58 #include "xe_tile.h"
59 #include "xe_ttm_stolen_mgr.h"
60 #include "xe_ttm_sys_mgr.h"
61 #include "xe_vm.h"
62 #include "xe_vram.h"
63 #include "xe_vsec.h"
64 #include "xe_wait_user_fence.h"
65 #include "xe_wa.h"
66 
67 #include <generated/xe_wa_oob.h>
68 
69 struct xe_device_remove_action {
70 	struct list_head node;
71 	void (*action)(void *);
72 	void *data;
73 };
74 
75 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
76 {
77 	struct xe_device *xe = to_xe_device(dev);
78 	struct xe_drm_client *client;
79 	struct xe_file *xef;
80 	int ret = -ENOMEM;
81 	struct task_struct *task = NULL;
82 
83 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
84 	if (!xef)
85 		return ret;
86 
87 	client = xe_drm_client_alloc();
88 	if (!client) {
89 		kfree(xef);
90 		return ret;
91 	}
92 
93 	xef->drm = file;
94 	xef->client = client;
95 	xef->xe = xe;
96 
97 	mutex_init(&xef->vm.lock);
98 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
99 
100 	mutex_init(&xef->exec_queue.lock);
101 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
102 
103 	file->driver_priv = xef;
104 	kref_init(&xef->refcount);
105 
106 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
107 	if (task) {
108 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
109 		xef->pid = task->pid;
110 		put_task_struct(task);
111 	}
112 
113 	return 0;
114 }
115 
116 static void xe_file_destroy(struct kref *ref)
117 {
118 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
119 
120 	xa_destroy(&xef->exec_queue.xa);
121 	mutex_destroy(&xef->exec_queue.lock);
122 	xa_destroy(&xef->vm.xa);
123 	mutex_destroy(&xef->vm.lock);
124 
125 	xe_drm_client_put(xef->client);
126 	kfree(xef->process_name);
127 	kfree(xef);
128 }
129 
130 /**
131  * xe_file_get() - Take a reference to the xe file object
132  * @xef: Pointer to the xe file
133  *
134  * Anyone with a pointer to xef must take a reference to the xe file
135  * object using this call.
136  *
137  * Return: xe file pointer
138  */
139 struct xe_file *xe_file_get(struct xe_file *xef)
140 {
141 	kref_get(&xef->refcount);
142 	return xef;
143 }
144 
145 /**
146  * xe_file_put() - Drop a reference to the xe file object
147  * @xef: Pointer to the xe file
148  *
149  * Used to drop reference to the xef object
150  */
151 void xe_file_put(struct xe_file *xef)
152 {
153 	kref_put(&xef->refcount, xe_file_destroy);
154 }
155 
156 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
157 {
158 	struct xe_device *xe = to_xe_device(dev);
159 	struct xe_file *xef = file->driver_priv;
160 	struct xe_vm *vm;
161 	struct xe_exec_queue *q;
162 	unsigned long idx;
163 
164 	xe_pm_runtime_get(xe);
165 
166 	/*
167 	 * No need for exec_queue.lock here as there is no contention for it
168 	 * when FD is closing as IOCTLs presumably can't be modifying the
169 	 * xarray. Taking exec_queue.lock here causes undue dependency on
170 	 * vm->lock taken during xe_exec_queue_kill().
171 	 */
172 	xa_for_each(&xef->exec_queue.xa, idx, q) {
173 		if (q->vm && q->hwe->hw_engine_group)
174 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
175 		xe_exec_queue_kill(q);
176 		xe_exec_queue_put(q);
177 	}
178 	xa_for_each(&xef->vm.xa, idx, vm)
179 		xe_vm_close_and_put(vm);
180 
181 	xe_file_put(xef);
182 
183 	xe_pm_runtime_put(xe);
184 }
185 
186 static const struct drm_ioctl_desc xe_ioctls[] = {
187 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
196 			  DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
200 			  DRM_RENDER_ALLOW),
201 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
202 			  DRM_RENDER_ALLOW),
203 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
204 };
205 
206 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
207 {
208 	struct drm_file *file_priv = file->private_data;
209 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
210 	long ret;
211 
212 	if (xe_device_wedged(xe))
213 		return -ECANCELED;
214 
215 	ret = xe_pm_runtime_get_ioctl(xe);
216 	if (ret >= 0)
217 		ret = drm_ioctl(file, cmd, arg);
218 	xe_pm_runtime_put(xe);
219 
220 	return ret;
221 }
222 
223 #ifdef CONFIG_COMPAT
224 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
225 {
226 	struct drm_file *file_priv = file->private_data;
227 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
228 	long ret;
229 
230 	if (xe_device_wedged(xe))
231 		return -ECANCELED;
232 
233 	ret = xe_pm_runtime_get_ioctl(xe);
234 	if (ret >= 0)
235 		ret = drm_compat_ioctl(file, cmd, arg);
236 	xe_pm_runtime_put(xe);
237 
238 	return ret;
239 }
240 #else
241 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
242 #define xe_drm_compat_ioctl NULL
243 #endif
244 
245 static void barrier_open(struct vm_area_struct *vma)
246 {
247 	drm_dev_get(vma->vm_private_data);
248 }
249 
250 static void barrier_close(struct vm_area_struct *vma)
251 {
252 	drm_dev_put(vma->vm_private_data);
253 }
254 
255 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
256 {
257 	struct page *dummy_page = (struct page *)res;
258 
259 	__free_page(dummy_page);
260 }
261 
262 static vm_fault_t barrier_fault(struct vm_fault *vmf)
263 {
264 	struct drm_device *dev = vmf->vma->vm_private_data;
265 	struct vm_area_struct *vma = vmf->vma;
266 	vm_fault_t ret = VM_FAULT_NOPAGE;
267 	pgprot_t prot;
268 	int idx;
269 
270 	prot = vm_get_page_prot(vma->vm_flags);
271 
272 	if (drm_dev_enter(dev, &idx)) {
273 		unsigned long pfn;
274 
275 #define LAST_DB_PAGE_OFFSET 0x7ff001
276 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
277 				LAST_DB_PAGE_OFFSET);
278 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
279 					  pgprot_noncached(prot));
280 		drm_dev_exit(idx);
281 	} else {
282 		struct page *page;
283 
284 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
285 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
286 		if (!page)
287 			return VM_FAULT_OOM;
288 
289 		/* Set the page to be freed using drmm release action */
290 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
291 			return VM_FAULT_OOM;
292 
293 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
294 					  prot);
295 	}
296 
297 	return ret;
298 }
299 
300 static const struct vm_operations_struct vm_ops_barrier = {
301 	.open = barrier_open,
302 	.close = barrier_close,
303 	.fault = barrier_fault,
304 };
305 
306 static int xe_pci_barrier_mmap(struct file *filp,
307 			       struct vm_area_struct *vma)
308 {
309 	struct drm_file *priv = filp->private_data;
310 	struct drm_device *dev = priv->minor->dev;
311 	struct xe_device *xe = to_xe_device(dev);
312 
313 	if (!IS_DGFX(xe))
314 		return -EINVAL;
315 
316 	if (vma->vm_end - vma->vm_start > SZ_4K)
317 		return -EINVAL;
318 
319 	if (is_cow_mapping(vma->vm_flags))
320 		return -EINVAL;
321 
322 	if (vma->vm_flags & (VM_READ | VM_EXEC))
323 		return -EINVAL;
324 
325 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
326 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
327 	vma->vm_ops = &vm_ops_barrier;
328 	vma->vm_private_data = dev;
329 	drm_dev_get(vma->vm_private_data);
330 
331 	return 0;
332 }
333 
334 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
335 {
336 	struct drm_file *priv = filp->private_data;
337 	struct drm_device *dev = priv->minor->dev;
338 
339 	if (drm_dev_is_unplugged(dev))
340 		return -ENODEV;
341 
342 	switch (vma->vm_pgoff) {
343 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
344 		return xe_pci_barrier_mmap(filp, vma);
345 	}
346 
347 	return drm_gem_mmap(filp, vma);
348 }
349 
350 static const struct file_operations xe_driver_fops = {
351 	.owner = THIS_MODULE,
352 	.open = drm_open,
353 	.release = drm_release_noglobal,
354 	.unlocked_ioctl = xe_drm_ioctl,
355 	.mmap = xe_mmap,
356 	.poll = drm_poll,
357 	.read = drm_read,
358 	.compat_ioctl = xe_drm_compat_ioctl,
359 	.llseek = noop_llseek,
360 #ifdef CONFIG_PROC_FS
361 	.show_fdinfo = drm_show_fdinfo,
362 #endif
363 	.fop_flags = FOP_UNSIGNED_OFFSET,
364 };
365 
366 static struct drm_driver driver = {
367 	/* Don't use MTRRs here; the Xserver or userspace app should
368 	 * deal with them for Intel hardware.
369 	 */
370 	.driver_features =
371 	    DRIVER_GEM |
372 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
373 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
374 	.open = xe_file_open,
375 	.postclose = xe_file_close,
376 
377 	.gem_prime_import = xe_gem_prime_import,
378 
379 	.dumb_create = xe_bo_dumb_create,
380 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
381 #ifdef CONFIG_PROC_FS
382 	.show_fdinfo = xe_drm_client_fdinfo,
383 #endif
384 	.ioctls = xe_ioctls,
385 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
386 	.fops = &xe_driver_fops,
387 	.name = DRIVER_NAME,
388 	.desc = DRIVER_DESC,
389 	.major = DRIVER_MAJOR,
390 	.minor = DRIVER_MINOR,
391 	.patchlevel = DRIVER_PATCHLEVEL,
392 };
393 
394 static void xe_device_destroy(struct drm_device *dev, void *dummy)
395 {
396 	struct xe_device *xe = to_xe_device(dev);
397 
398 	if (xe->preempt_fence_wq)
399 		destroy_workqueue(xe->preempt_fence_wq);
400 
401 	if (xe->ordered_wq)
402 		destroy_workqueue(xe->ordered_wq);
403 
404 	if (xe->unordered_wq)
405 		destroy_workqueue(xe->unordered_wq);
406 
407 	if (!IS_ERR_OR_NULL(xe->mem.shrinker))
408 		xe_shrinker_destroy(xe->mem.shrinker);
409 
410 	if (xe->destroy_wq)
411 		destroy_workqueue(xe->destroy_wq);
412 
413 	ttm_device_fini(&xe->ttm);
414 }
415 
416 struct xe_device *xe_device_create(struct pci_dev *pdev,
417 				   const struct pci_device_id *ent)
418 {
419 	struct xe_device *xe;
420 	int err;
421 
422 	xe_display_driver_set_hooks(&driver);
423 
424 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
425 	if (err)
426 		return ERR_PTR(err);
427 
428 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
429 	if (IS_ERR(xe))
430 		return xe;
431 
432 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
433 			      xe->drm.anon_inode->i_mapping,
434 			      xe->drm.vma_offset_manager, false, false);
435 	if (WARN_ON(err))
436 		goto err;
437 
438 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
439 	if (err)
440 		goto err;
441 
442 	xe->mem.shrinker = xe_shrinker_create(xe);
443 	if (IS_ERR(xe->mem.shrinker))
444 		return ERR_CAST(xe->mem.shrinker);
445 
446 	xe->info.devid = pdev->device;
447 	xe->info.revid = pdev->revision;
448 	xe->info.force_execlist = xe_modparam.force_execlist;
449 
450 	err = xe_irq_init(xe);
451 	if (err)
452 		goto err;
453 
454 	init_waitqueue_head(&xe->ufence_wq);
455 
456 	init_rwsem(&xe->usm.lock);
457 
458 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
459 
460 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
461 		/* Trigger a large asid and an early asid wrap. */
462 		u32 asid;
463 
464 		BUILD_BUG_ON(XE_MAX_ASID < 2);
465 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
466 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
467 				      &xe->usm.next_asid, GFP_KERNEL);
468 		drm_WARN_ON(&xe->drm, err);
469 		if (err >= 0)
470 			xa_erase(&xe->usm.asid_to_vm, asid);
471 	}
472 
473 	spin_lock_init(&xe->pinned.lock);
474 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
475 	INIT_LIST_HEAD(&xe->pinned.external_vram);
476 	INIT_LIST_HEAD(&xe->pinned.evicted);
477 
478 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
479 						       WQ_MEM_RECLAIM);
480 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
481 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
482 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
483 	if (!xe->ordered_wq || !xe->unordered_wq ||
484 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
485 		/*
486 		 * Cleanup done in xe_device_destroy via
487 		 * drmm_add_action_or_reset register above
488 		 */
489 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
490 		err = -ENOMEM;
491 		goto err;
492 	}
493 
494 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
495 	if (err)
496 		goto err;
497 
498 	err = xe_display_create(xe);
499 	if (WARN_ON(err))
500 		goto err;
501 
502 	return xe;
503 
504 err:
505 	return ERR_PTR(err);
506 }
507 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
508 
509 static bool xe_driver_flr_disabled(struct xe_device *xe)
510 {
511 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
512 }
513 
514 /*
515  * The driver-initiated FLR is the highest level of reset that we can trigger
516  * from within the driver. It is different from the PCI FLR in that it doesn't
517  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
518  * it doesn't require a re-enumeration of the PCI BARs. However, the
519  * driver-initiated FLR does still cause a reset of both GT and display and a
520  * memory wipe of local and stolen memory, so recovery would require a full HW
521  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
522  * perform the FLR as the very last action before releasing access to the HW
523  * during the driver release flow, we don't attempt recovery at all, because
524  * if/when a new instance of i915 is bound to the device it will do a full
525  * re-init anyway.
526  */
527 static void __xe_driver_flr(struct xe_device *xe)
528 {
529 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
530 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
531 	int ret;
532 
533 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
534 
535 	/*
536 	 * Make sure any pending FLR requests have cleared by waiting for the
537 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
538 	 * to make sure it's not still set from a prior attempt (it's a write to
539 	 * clear bit).
540 	 * Note that we should never be in a situation where a previous attempt
541 	 * is still pending (unless the HW is totally dead), but better to be
542 	 * safe in case something unexpected happens
543 	 */
544 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
545 	if (ret) {
546 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
547 		return;
548 	}
549 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
550 
551 	/* Trigger the actual Driver-FLR */
552 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
553 
554 	/* Wait for hardware teardown to complete */
555 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
556 	if (ret) {
557 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
558 		return;
559 	}
560 
561 	/* Wait for hardware/firmware re-init to complete */
562 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
563 			     flr_timeout, NULL, false);
564 	if (ret) {
565 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
566 		return;
567 	}
568 
569 	/* Clear sticky completion status */
570 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
571 }
572 
573 static void xe_driver_flr(struct xe_device *xe)
574 {
575 	if (xe_driver_flr_disabled(xe)) {
576 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
577 		return;
578 	}
579 
580 	__xe_driver_flr(xe);
581 }
582 
583 static void xe_driver_flr_fini(void *arg)
584 {
585 	struct xe_device *xe = arg;
586 
587 	if (xe->needs_flr_on_fini)
588 		xe_driver_flr(xe);
589 }
590 
591 static void xe_device_sanitize(void *arg)
592 {
593 	struct xe_device *xe = arg;
594 	struct xe_gt *gt;
595 	u8 id;
596 
597 	for_each_gt(gt, xe, id)
598 		xe_gt_sanitize(gt);
599 }
600 
601 static int xe_set_dma_info(struct xe_device *xe)
602 {
603 	unsigned int mask_size = xe->info.dma_mask_size;
604 	int err;
605 
606 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
607 
608 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
609 	if (err)
610 		goto mask_err;
611 
612 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
613 	if (err)
614 		goto mask_err;
615 
616 	return 0;
617 
618 mask_err:
619 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
620 	return err;
621 }
622 
623 static bool verify_lmem_ready(struct xe_device *xe)
624 {
625 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
626 
627 	return !!val;
628 }
629 
630 static int wait_for_lmem_ready(struct xe_device *xe)
631 {
632 	unsigned long timeout, start;
633 
634 	if (!IS_DGFX(xe))
635 		return 0;
636 
637 	if (IS_SRIOV_VF(xe))
638 		return 0;
639 
640 	if (verify_lmem_ready(xe))
641 		return 0;
642 
643 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
644 
645 	start = jiffies;
646 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
647 
648 	do {
649 		if (signal_pending(current))
650 			return -EINTR;
651 
652 		/*
653 		 * The boot firmware initializes local memory and
654 		 * assesses its health. If memory training fails,
655 		 * the punit will have been instructed to keep the GT powered
656 		 * down.we won't be able to communicate with it
657 		 *
658 		 * If the status check is done before punit updates the register,
659 		 * it can lead to the system being unusable.
660 		 * use a timeout and defer the probe to prevent this.
661 		 */
662 		if (time_after(jiffies, timeout)) {
663 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
664 			return -EPROBE_DEFER;
665 		}
666 
667 		msleep(20);
668 
669 	} while (!verify_lmem_ready(xe));
670 
671 	drm_dbg(&xe->drm, "lmem ready after %ums",
672 		jiffies_to_msecs(jiffies - start));
673 
674 	return 0;
675 }
676 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
677 
678 static void update_device_info(struct xe_device *xe)
679 {
680 	/* disable features that are not available/applicable to VFs */
681 	if (IS_SRIOV_VF(xe)) {
682 		xe->info.probe_display = 0;
683 		xe->info.has_heci_gscfi = 0;
684 		xe->info.skip_guc_pc = 1;
685 		xe->info.skip_pcode = 1;
686 	}
687 }
688 
689 /**
690  * xe_device_probe_early: Device early probe
691  * @xe: xe device instance
692  *
693  * Initialize MMIO resources that don't require any
694  * knowledge about tile count. Also initialize pcode and
695  * check vram initialization on root tile.
696  *
697  * Return: 0 on success, error code on failure
698  */
699 int xe_device_probe_early(struct xe_device *xe)
700 {
701 	int err;
702 
703 	err = xe_mmio_probe_early(xe);
704 	if (err)
705 		return err;
706 
707 	xe_sriov_probe_early(xe);
708 
709 	update_device_info(xe);
710 
711 	err = xe_pcode_probe_early(xe);
712 	if (err) {
713 		if (xe_survivability_mode_required(xe))
714 			xe_survivability_mode_init(xe);
715 
716 		return err;
717 	}
718 
719 	err = wait_for_lmem_ready(xe);
720 	if (err)
721 		return err;
722 
723 	xe->wedged.mode = xe_modparam.wedged_mode;
724 
725 	return 0;
726 }
727 
728 static int probe_has_flat_ccs(struct xe_device *xe)
729 {
730 	struct xe_gt *gt;
731 	unsigned int fw_ref;
732 	u32 reg;
733 
734 	/* Always enabled/disabled, no runtime check to do */
735 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
736 		return 0;
737 
738 	gt = xe_root_mmio_gt(xe);
739 
740 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
741 	if (!fw_ref)
742 		return -ETIMEDOUT;
743 
744 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
745 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
746 
747 	if (!xe->info.has_flat_ccs)
748 		drm_dbg(&xe->drm,
749 			"Flat CCS has been disabled in bios, May lead to performance impact");
750 
751 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
752 
753 	return 0;
754 }
755 
756 int xe_device_probe(struct xe_device *xe)
757 {
758 	struct xe_tile *tile;
759 	struct xe_gt *gt;
760 	int err;
761 	u8 id;
762 
763 	xe->probing = true;
764 	INIT_LIST_HEAD(&xe->remove_action_list);
765 
766 	xe_pat_init_early(xe);
767 
768 	err = xe_sriov_init(xe);
769 	if (err)
770 		return err;
771 
772 	xe->info.mem_region_mask = 1;
773 	err = xe_set_dma_info(xe);
774 	if (err)
775 		return err;
776 
777 	err = xe_mmio_probe_tiles(xe);
778 	if (err)
779 		return err;
780 
781 	xe_ttm_sys_mgr_init(xe);
782 
783 	for_each_gt(gt, xe, id) {
784 		err = xe_gt_init_early(gt);
785 		if (err)
786 			return err;
787 
788 		/*
789 		 * Only after this point can GT-specific MMIO operations
790 		 * (including things like communication with the GuC)
791 		 * be performed.
792 		 */
793 		xe_gt_mmio_init(gt);
794 	}
795 
796 	for_each_tile(tile, xe, id) {
797 		if (IS_SRIOV_VF(xe)) {
798 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
799 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
800 			if (err)
801 				return err;
802 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
803 			if (err)
804 				return err;
805 		}
806 		err = xe_ggtt_init_early(tile->mem.ggtt);
807 		if (err)
808 			return err;
809 		err = xe_memirq_init(&tile->memirq);
810 		if (err)
811 			return err;
812 	}
813 
814 	for_each_gt(gt, xe, id) {
815 		err = xe_gt_init_hwconfig(gt);
816 		if (err)
817 			return err;
818 	}
819 
820 	err = xe_devcoredump_init(xe);
821 	if (err)
822 		return err;
823 
824 	/*
825 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
826 	 */
827 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
828 	if (err)
829 		return err;
830 
831 	err = probe_has_flat_ccs(xe);
832 	if (err)
833 		return err;
834 
835 	err = xe_vram_probe(xe);
836 	if (err)
837 		return err;
838 
839 	for_each_tile(tile, xe, id) {
840 		err = xe_tile_init_noalloc(tile);
841 		if (err)
842 			return err;
843 	}
844 
845 	/* Allocate and map stolen after potential VRAM resize */
846 	err = xe_ttm_stolen_mgr_init(xe);
847 	if (err)
848 		return err;
849 
850 	/*
851 	 * Now that GT is initialized (TTM in particular),
852 	 * we can try to init display, and inherit the initial fb.
853 	 * This is the reason the first allocation needs to be done
854 	 * inside display.
855 	 */
856 	err = xe_display_init_early(xe);
857 	if (err)
858 		return err;
859 
860 	for_each_tile(tile, xe, id) {
861 		err = xe_tile_init(tile);
862 		if (err)
863 			return err;
864 	}
865 
866 	err = xe_irq_install(xe);
867 	if (err)
868 		return err;
869 
870 	for_each_gt(gt, xe, id) {
871 		err = xe_gt_init(gt);
872 		if (err)
873 			return err;
874 	}
875 
876 	xe_heci_gsc_init(xe);
877 
878 	err = xe_oa_init(xe);
879 	if (err)
880 		return err;
881 
882 	err = xe_display_init(xe);
883 	if (err)
884 		return err;
885 
886 	err = xe_pxp_init(xe);
887 	if (err)
888 		goto err_remove_display;
889 
890 	err = drm_dev_register(&xe->drm, 0);
891 	if (err)
892 		goto err_remove_display;
893 
894 	xe_display_register(xe);
895 
896 	err = xe_oa_register(xe);
897 	if (err)
898 		goto err_unregister_display;
899 
900 	err = xe_pmu_register(&xe->pmu);
901 	if (err)
902 		goto err_unregister_display;
903 
904 	xe_debugfs_register(xe);
905 
906 	err = xe_hwmon_register(xe);
907 	if (err)
908 		goto err_unregister_display;
909 
910 	for_each_gt(gt, xe, id)
911 		xe_gt_sanitize_freq(gt);
912 
913 	xe_vsec_init(xe);
914 
915 	xe->probing = false;
916 
917 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
918 
919 err_unregister_display:
920 	xe_display_unregister(xe);
921 err_remove_display:
922 	xe_display_driver_remove(xe);
923 
924 	return err;
925 }
926 
927 /**
928  * xe_device_call_remove_actions - Call the remove actions
929  * @xe: xe device instance
930  *
931  * This is only to be used by xe_pci and xe_device to call the remove actions
932  * while removing the driver or handling probe failures.
933  */
934 void xe_device_call_remove_actions(struct xe_device *xe)
935 {
936 	struct xe_device_remove_action *ra, *tmp;
937 
938 	list_for_each_entry_safe(ra, tmp, &xe->remove_action_list, node) {
939 		ra->action(ra->data);
940 		list_del(&ra->node);
941 		kfree(ra);
942 	}
943 
944 	xe->probing = false;
945 }
946 
947 /**
948  * xe_device_add_action_or_reset - Add an action to run on driver removal
949  * @xe: xe device instance
950  * @action: Function that should be called on device remove
951  * @data: Pointer to data passed to @action implementation
952  *
953  * This adds a custom action to the list of remove callbacks executed on device
954  * remove, before any dev or drm managed resources are removed.  This is only
955  * needed if the action leads to component_del()/component_master_del() since
956  * that is not compatible with devres cleanup.
957  *
958  * Returns: 0 on success or a negative error code on failure, in which case
959  * @action is already called.
960  */
961 int xe_device_add_action_or_reset(struct xe_device *xe,
962 				  void (*action)(void *), void *data)
963 {
964 	struct xe_device_remove_action *ra;
965 
966 	drm_WARN_ON(&xe->drm, !xe->probing);
967 
968 	ra = kmalloc(sizeof(*ra), GFP_KERNEL);
969 	if (!ra) {
970 		action(data);
971 		return -ENOMEM;
972 	}
973 
974 	INIT_LIST_HEAD(&ra->node);
975 	ra->action = action;
976 	ra->data = data;
977 	list_add(&ra->node, &xe->remove_action_list);
978 
979 	return 0;
980 }
981 
982 void xe_device_remove(struct xe_device *xe)
983 {
984 	xe_display_unregister(xe);
985 
986 	drm_dev_unplug(&xe->drm);
987 
988 	xe_display_driver_remove(xe);
989 
990 	xe_heci_gsc_fini(xe);
991 
992 	xe_device_call_remove_actions(xe);
993 }
994 
995 void xe_device_shutdown(struct xe_device *xe)
996 {
997 	struct xe_gt *gt;
998 	u8 id;
999 
1000 	drm_dbg(&xe->drm, "Shutting down device\n");
1001 
1002 	if (xe_driver_flr_disabled(xe)) {
1003 		xe_display_pm_shutdown(xe);
1004 
1005 		xe_irq_suspend(xe);
1006 
1007 		for_each_gt(gt, xe, id)
1008 			xe_gt_shutdown(gt);
1009 
1010 		xe_display_pm_shutdown_late(xe);
1011 	} else {
1012 		/* BOOM! */
1013 		__xe_driver_flr(xe);
1014 	}
1015 }
1016 
1017 /**
1018  * xe_device_wmb() - Device specific write memory barrier
1019  * @xe: the &xe_device
1020  *
1021  * While wmb() is sufficient for a barrier if we use system memory, on discrete
1022  * platforms with device memory we additionally need to issue a register write.
1023  * Since it doesn't matter which register we write to, use the read-only VF_CAP
1024  * register that is also marked as accessible by the VFs.
1025  */
1026 void xe_device_wmb(struct xe_device *xe)
1027 {
1028 	wmb();
1029 	if (IS_DGFX(xe))
1030 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
1031 }
1032 
1033 /**
1034  * xe_device_td_flush() - Flush transient L3 cache entries
1035  * @xe: The device
1036  *
1037  * Display engine has direct access to memory and is never coherent with L3/L4
1038  * caches (or CPU caches), however KMD is responsible for specifically flushing
1039  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1040  * can happen from such a surface without seeing corruption.
1041  *
1042  * Display surfaces can be tagged as transient by mapping it using one of the
1043  * various L3:XD PAT index modes on Xe2.
1044  *
1045  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1046  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1047  * Media is not coherent with L3 and we want to support render-vs-media
1048  * usescases. For other engines like copy/blt the HW internally forces uncached
1049  * behaviour, hence why we can skip the TDF on such platforms.
1050  */
1051 void xe_device_td_flush(struct xe_device *xe)
1052 {
1053 	struct xe_gt *gt;
1054 	unsigned int fw_ref;
1055 	u8 id;
1056 
1057 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1058 		return;
1059 
1060 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
1061 		xe_device_l2_flush(xe);
1062 		return;
1063 	}
1064 
1065 	for_each_gt(gt, xe, id) {
1066 		if (xe_gt_is_media_type(gt))
1067 			continue;
1068 
1069 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1070 		if (!fw_ref)
1071 			return;
1072 
1073 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1074 		/*
1075 		 * FIXME: We can likely do better here with our choice of
1076 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1077 		 * which is believed to be sufficient to cover the worst case
1078 		 * scenario on current platforms if all cache entries are
1079 		 * transient and need to be flushed..
1080 		 */
1081 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1082 				   150, NULL, false))
1083 			xe_gt_err_once(gt, "TD flush timeout\n");
1084 
1085 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1086 	}
1087 }
1088 
1089 void xe_device_l2_flush(struct xe_device *xe)
1090 {
1091 	struct xe_gt *gt;
1092 	unsigned int fw_ref;
1093 
1094 	gt = xe_root_mmio_gt(xe);
1095 
1096 	if (!XE_WA(gt, 16023588340))
1097 		return;
1098 
1099 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1100 	if (!fw_ref)
1101 		return;
1102 
1103 	spin_lock(&gt->global_invl_lock);
1104 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1105 
1106 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1107 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1108 	spin_unlock(&gt->global_invl_lock);
1109 
1110 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1111 }
1112 
1113 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1114 {
1115 	return xe_device_has_flat_ccs(xe) ?
1116 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1117 }
1118 
1119 /**
1120  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1121  * @xe: xe device instance
1122  *
1123  * To be used before any kind of memory access. It will splat a debug warning
1124  * if the device is currently sleeping. But it doesn't guarantee in any way
1125  * that the device is going to remain awake. Xe PM runtime get and put
1126  * functions might be added to the outer bound of the memory access, while
1127  * this check is intended for inner usage to splat some warning if the worst
1128  * case has just happened.
1129  */
1130 void xe_device_assert_mem_access(struct xe_device *xe)
1131 {
1132 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1133 }
1134 
1135 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1136 {
1137 	struct xe_gt *gt;
1138 	u8 id;
1139 
1140 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1141 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1142 
1143 	for_each_gt(gt, xe, id) {
1144 		drm_printf(p, "GT id: %u\n", id);
1145 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1146 		drm_printf(p, "\tType: %s\n",
1147 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1148 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1149 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1150 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1151 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1152 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1153 	}
1154 }
1155 
1156 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1157 {
1158 	return sign_extend64(address, xe->info.va_bits - 1);
1159 }
1160 
1161 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1162 {
1163 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1164 }
1165 
1166 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1167 {
1168 	struct xe_device *xe = arg;
1169 
1170 	xe_pm_runtime_put(xe);
1171 }
1172 
1173 /**
1174  * xe_device_declare_wedged - Declare device wedged
1175  * @xe: xe device instance
1176  *
1177  * This is a final state that can only be cleared with a module
1178  * re-probe (unbind + bind).
1179  * In this state every IOCTL will be blocked so the GT cannot be used.
1180  * In general it will be called upon any critical error such as gt reset
1181  * failure or guc loading failure. Userspace will be notified of this state
1182  * through device wedged uevent.
1183  * If xe.wedged module parameter is set to 2, this function will be called
1184  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1185  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1186  * the issue is preserved for further debugging.
1187  */
1188 void xe_device_declare_wedged(struct xe_device *xe)
1189 {
1190 	struct xe_gt *gt;
1191 	u8 id;
1192 
1193 	if (xe->wedged.mode == 0) {
1194 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1195 		return;
1196 	}
1197 
1198 	xe_pm_runtime_get_noresume(xe);
1199 
1200 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1201 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1202 		return;
1203 	}
1204 
1205 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1206 		xe->needs_flr_on_fini = true;
1207 		drm_err(&xe->drm,
1208 			"CRITICAL: Xe has declared device %s as wedged.\n"
1209 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1210 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1211 			dev_name(xe->drm.dev));
1212 
1213 		/* Notify userspace of wedged device */
1214 		drm_dev_wedged_event(&xe->drm,
1215 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1216 	}
1217 
1218 	for_each_gt(gt, xe, id)
1219 		xe_gt_declare_wedged(gt);
1220 }
1221