xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision ba180a362128cb71d16c3f0ce6645448011d2607)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_i2c.h"
47 #include "xe_irq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_nvm.h"
51 #include "xe_oa.h"
52 #include "xe_observation.h"
53 #include "xe_pat.h"
54 #include "xe_pcode.h"
55 #include "xe_pm.h"
56 #include "xe_pmu.h"
57 #include "xe_pxp.h"
58 #include "xe_query.h"
59 #include "xe_shrinker.h"
60 #include "xe_survivability_mode.h"
61 #include "xe_sriov.h"
62 #include "xe_tile.h"
63 #include "xe_ttm_stolen_mgr.h"
64 #include "xe_ttm_sys_mgr.h"
65 #include "xe_vm.h"
66 #include "xe_vram.h"
67 #include "xe_vram_types.h"
68 #include "xe_vsec.h"
69 #include "xe_wait_user_fence.h"
70 #include "xe_wa.h"
71 
72 #include <generated/xe_device_wa_oob.h>
73 #include <generated/xe_wa_oob.h>
74 
75 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
76 {
77 	struct xe_device *xe = to_xe_device(dev);
78 	struct xe_drm_client *client;
79 	struct xe_file *xef;
80 	int ret = -ENOMEM;
81 	struct task_struct *task = NULL;
82 
83 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
84 	if (!xef)
85 		return ret;
86 
87 	client = xe_drm_client_alloc();
88 	if (!client) {
89 		kfree(xef);
90 		return ret;
91 	}
92 
93 	xef->drm = file;
94 	xef->client = client;
95 	xef->xe = xe;
96 
97 	mutex_init(&xef->vm.lock);
98 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
99 
100 	mutex_init(&xef->exec_queue.lock);
101 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
102 
103 	file->driver_priv = xef;
104 	kref_init(&xef->refcount);
105 
106 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
107 	if (task) {
108 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
109 		xef->pid = task->pid;
110 		put_task_struct(task);
111 	}
112 
113 	return 0;
114 }
115 
116 static void xe_file_destroy(struct kref *ref)
117 {
118 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
119 
120 	xa_destroy(&xef->exec_queue.xa);
121 	mutex_destroy(&xef->exec_queue.lock);
122 	xa_destroy(&xef->vm.xa);
123 	mutex_destroy(&xef->vm.lock);
124 
125 	xe_drm_client_put(xef->client);
126 	kfree(xef->process_name);
127 	kfree(xef);
128 }
129 
130 /**
131  * xe_file_get() - Take a reference to the xe file object
132  * @xef: Pointer to the xe file
133  *
134  * Anyone with a pointer to xef must take a reference to the xe file
135  * object using this call.
136  *
137  * Return: xe file pointer
138  */
139 struct xe_file *xe_file_get(struct xe_file *xef)
140 {
141 	kref_get(&xef->refcount);
142 	return xef;
143 }
144 
145 /**
146  * xe_file_put() - Drop a reference to the xe file object
147  * @xef: Pointer to the xe file
148  *
149  * Used to drop reference to the xef object
150  */
151 void xe_file_put(struct xe_file *xef)
152 {
153 	kref_put(&xef->refcount, xe_file_destroy);
154 }
155 
156 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
157 {
158 	struct xe_device *xe = to_xe_device(dev);
159 	struct xe_file *xef = file->driver_priv;
160 	struct xe_vm *vm;
161 	struct xe_exec_queue *q;
162 	unsigned long idx;
163 
164 	xe_pm_runtime_get(xe);
165 
166 	/*
167 	 * No need for exec_queue.lock here as there is no contention for it
168 	 * when FD is closing as IOCTLs presumably can't be modifying the
169 	 * xarray. Taking exec_queue.lock here causes undue dependency on
170 	 * vm->lock taken during xe_exec_queue_kill().
171 	 */
172 	xa_for_each(&xef->exec_queue.xa, idx, q) {
173 		if (q->vm && q->hwe->hw_engine_group)
174 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
175 		xe_exec_queue_kill(q);
176 		xe_exec_queue_put(q);
177 	}
178 	xa_for_each(&xef->vm.xa, idx, vm)
179 		xe_vm_close_and_put(vm);
180 
181 	xe_file_put(xef);
182 
183 	xe_pm_runtime_put(xe);
184 }
185 
186 static const struct drm_ioctl_desc xe_ioctls[] = {
187 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
196 			  DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
200 			  DRM_RENDER_ALLOW),
201 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
202 			  DRM_RENDER_ALLOW),
203 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
204 };
205 
206 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
207 {
208 	struct drm_file *file_priv = file->private_data;
209 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
210 	long ret;
211 
212 	if (xe_device_wedged(xe))
213 		return -ECANCELED;
214 
215 	ret = xe_pm_runtime_get_ioctl(xe);
216 	if (ret >= 0)
217 		ret = drm_ioctl(file, cmd, arg);
218 	xe_pm_runtime_put(xe);
219 
220 	return ret;
221 }
222 
223 #ifdef CONFIG_COMPAT
224 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
225 {
226 	struct drm_file *file_priv = file->private_data;
227 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
228 	long ret;
229 
230 	if (xe_device_wedged(xe))
231 		return -ECANCELED;
232 
233 	ret = xe_pm_runtime_get_ioctl(xe);
234 	if (ret >= 0)
235 		ret = drm_compat_ioctl(file, cmd, arg);
236 	xe_pm_runtime_put(xe);
237 
238 	return ret;
239 }
240 #else
241 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
242 #define xe_drm_compat_ioctl NULL
243 #endif
244 
245 static void barrier_open(struct vm_area_struct *vma)
246 {
247 	drm_dev_get(vma->vm_private_data);
248 }
249 
250 static void barrier_close(struct vm_area_struct *vma)
251 {
252 	drm_dev_put(vma->vm_private_data);
253 }
254 
255 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
256 {
257 	struct page *dummy_page = (struct page *)res;
258 
259 	__free_page(dummy_page);
260 }
261 
262 static vm_fault_t barrier_fault(struct vm_fault *vmf)
263 {
264 	struct drm_device *dev = vmf->vma->vm_private_data;
265 	struct vm_area_struct *vma = vmf->vma;
266 	vm_fault_t ret = VM_FAULT_NOPAGE;
267 	pgprot_t prot;
268 	int idx;
269 
270 	prot = vm_get_page_prot(vma->vm_flags);
271 
272 	if (drm_dev_enter(dev, &idx)) {
273 		unsigned long pfn;
274 
275 #define LAST_DB_PAGE_OFFSET 0x7ff001
276 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
277 				LAST_DB_PAGE_OFFSET);
278 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
279 					  pgprot_noncached(prot));
280 		drm_dev_exit(idx);
281 	} else {
282 		struct page *page;
283 
284 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
285 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
286 		if (!page)
287 			return VM_FAULT_OOM;
288 
289 		/* Set the page to be freed using drmm release action */
290 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
291 			return VM_FAULT_OOM;
292 
293 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
294 					  prot);
295 	}
296 
297 	return ret;
298 }
299 
300 static const struct vm_operations_struct vm_ops_barrier = {
301 	.open = barrier_open,
302 	.close = barrier_close,
303 	.fault = barrier_fault,
304 };
305 
306 static int xe_pci_barrier_mmap(struct file *filp,
307 			       struct vm_area_struct *vma)
308 {
309 	struct drm_file *priv = filp->private_data;
310 	struct drm_device *dev = priv->minor->dev;
311 	struct xe_device *xe = to_xe_device(dev);
312 
313 	if (!IS_DGFX(xe))
314 		return -EINVAL;
315 
316 	if (vma->vm_end - vma->vm_start > SZ_4K)
317 		return -EINVAL;
318 
319 	if (is_cow_mapping(vma->vm_flags))
320 		return -EINVAL;
321 
322 	if (vma->vm_flags & (VM_READ | VM_EXEC))
323 		return -EINVAL;
324 
325 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
326 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
327 	vma->vm_ops = &vm_ops_barrier;
328 	vma->vm_private_data = dev;
329 	drm_dev_get(vma->vm_private_data);
330 
331 	return 0;
332 }
333 
334 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
335 {
336 	struct drm_file *priv = filp->private_data;
337 	struct drm_device *dev = priv->minor->dev;
338 
339 	if (drm_dev_is_unplugged(dev))
340 		return -ENODEV;
341 
342 	switch (vma->vm_pgoff) {
343 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
344 		return xe_pci_barrier_mmap(filp, vma);
345 	}
346 
347 	return drm_gem_mmap(filp, vma);
348 }
349 
350 static const struct file_operations xe_driver_fops = {
351 	.owner = THIS_MODULE,
352 	.open = drm_open,
353 	.release = drm_release_noglobal,
354 	.unlocked_ioctl = xe_drm_ioctl,
355 	.mmap = xe_mmap,
356 	.poll = drm_poll,
357 	.read = drm_read,
358 	.compat_ioctl = xe_drm_compat_ioctl,
359 	.llseek = noop_llseek,
360 #ifdef CONFIG_PROC_FS
361 	.show_fdinfo = drm_show_fdinfo,
362 #endif
363 	.fop_flags = FOP_UNSIGNED_OFFSET,
364 };
365 
366 static struct drm_driver driver = {
367 	/* Don't use MTRRs here; the Xserver or userspace app should
368 	 * deal with them for Intel hardware.
369 	 */
370 	.driver_features =
371 	    DRIVER_GEM |
372 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
373 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
374 	.open = xe_file_open,
375 	.postclose = xe_file_close,
376 
377 	.gem_prime_import = xe_gem_prime_import,
378 
379 	.dumb_create = xe_bo_dumb_create,
380 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
381 #ifdef CONFIG_PROC_FS
382 	.show_fdinfo = xe_drm_client_fdinfo,
383 #endif
384 	.ioctls = xe_ioctls,
385 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
386 	.fops = &xe_driver_fops,
387 	.name = DRIVER_NAME,
388 	.desc = DRIVER_DESC,
389 	.major = DRIVER_MAJOR,
390 	.minor = DRIVER_MINOR,
391 	.patchlevel = DRIVER_PATCHLEVEL,
392 };
393 
394 static void xe_device_destroy(struct drm_device *dev, void *dummy)
395 {
396 	struct xe_device *xe = to_xe_device(dev);
397 
398 	xe_bo_dev_fini(&xe->bo_device);
399 
400 	if (xe->preempt_fence_wq)
401 		destroy_workqueue(xe->preempt_fence_wq);
402 
403 	if (xe->ordered_wq)
404 		destroy_workqueue(xe->ordered_wq);
405 
406 	if (xe->unordered_wq)
407 		destroy_workqueue(xe->unordered_wq);
408 
409 	if (xe->destroy_wq)
410 		destroy_workqueue(xe->destroy_wq);
411 
412 	ttm_device_fini(&xe->ttm);
413 }
414 
415 struct xe_device *xe_device_create(struct pci_dev *pdev,
416 				   const struct pci_device_id *ent)
417 {
418 	struct xe_device *xe;
419 	int err;
420 
421 	xe_display_driver_set_hooks(&driver);
422 
423 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
424 	if (err)
425 		return ERR_PTR(err);
426 
427 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
428 	if (IS_ERR(xe))
429 		return xe;
430 
431 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
432 			      xe->drm.anon_inode->i_mapping,
433 			      xe->drm.vma_offset_manager, false, false);
434 	if (WARN_ON(err))
435 		goto err;
436 
437 	xe_bo_dev_init(&xe->bo_device);
438 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
439 	if (err)
440 		goto err;
441 
442 	err = xe_shrinker_create(xe);
443 	if (err)
444 		goto err;
445 
446 	xe->info.devid = pdev->device;
447 	xe->info.revid = pdev->revision;
448 	xe->info.force_execlist = xe_modparam.force_execlist;
449 	xe->atomic_svm_timeslice_ms = 5;
450 
451 	err = xe_irq_init(xe);
452 	if (err)
453 		goto err;
454 
455 	init_waitqueue_head(&xe->ufence_wq);
456 
457 	init_rwsem(&xe->usm.lock);
458 
459 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
460 
461 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
462 		/* Trigger a large asid and an early asid wrap. */
463 		u32 asid;
464 
465 		BUILD_BUG_ON(XE_MAX_ASID < 2);
466 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
467 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
468 				      &xe->usm.next_asid, GFP_KERNEL);
469 		drm_WARN_ON(&xe->drm, err);
470 		if (err >= 0)
471 			xa_erase(&xe->usm.asid_to_vm, asid);
472 	}
473 
474 	err = xe_bo_pinned_init(xe);
475 	if (err)
476 		goto err;
477 
478 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
479 						       WQ_MEM_RECLAIM);
480 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
481 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
482 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
483 	if (!xe->ordered_wq || !xe->unordered_wq ||
484 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
485 		/*
486 		 * Cleanup done in xe_device_destroy via
487 		 * drmm_add_action_or_reset register above
488 		 */
489 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
490 		err = -ENOMEM;
491 		goto err;
492 	}
493 
494 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
495 	if (err)
496 		goto err;
497 
498 	return xe;
499 
500 err:
501 	return ERR_PTR(err);
502 }
503 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
504 
505 static bool xe_driver_flr_disabled(struct xe_device *xe)
506 {
507 	if (IS_SRIOV_VF(xe))
508 		return true;
509 
510 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
511 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
512 		return true;
513 	}
514 
515 	return false;
516 }
517 
518 /*
519  * The driver-initiated FLR is the highest level of reset that we can trigger
520  * from within the driver. It is different from the PCI FLR in that it doesn't
521  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
522  * it doesn't require a re-enumeration of the PCI BARs. However, the
523  * driver-initiated FLR does still cause a reset of both GT and display and a
524  * memory wipe of local and stolen memory, so recovery would require a full HW
525  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
526  * perform the FLR as the very last action before releasing access to the HW
527  * during the driver release flow, we don't attempt recovery at all, because
528  * if/when a new instance of i915 is bound to the device it will do a full
529  * re-init anyway.
530  */
531 static void __xe_driver_flr(struct xe_device *xe)
532 {
533 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
534 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
535 	int ret;
536 
537 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
538 
539 	/*
540 	 * Make sure any pending FLR requests have cleared by waiting for the
541 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
542 	 * to make sure it's not still set from a prior attempt (it's a write to
543 	 * clear bit).
544 	 * Note that we should never be in a situation where a previous attempt
545 	 * is still pending (unless the HW is totally dead), but better to be
546 	 * safe in case something unexpected happens
547 	 */
548 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
549 	if (ret) {
550 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
551 		return;
552 	}
553 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
554 
555 	/* Trigger the actual Driver-FLR */
556 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
557 
558 	/* Wait for hardware teardown to complete */
559 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
560 	if (ret) {
561 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
562 		return;
563 	}
564 
565 	/* Wait for hardware/firmware re-init to complete */
566 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
567 			     flr_timeout, NULL, false);
568 	if (ret) {
569 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
570 		return;
571 	}
572 
573 	/* Clear sticky completion status */
574 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
575 }
576 
577 static void xe_driver_flr(struct xe_device *xe)
578 {
579 	if (xe_driver_flr_disabled(xe))
580 		return;
581 
582 	__xe_driver_flr(xe);
583 }
584 
585 static void xe_driver_flr_fini(void *arg)
586 {
587 	struct xe_device *xe = arg;
588 
589 	if (xe->needs_flr_on_fini)
590 		xe_driver_flr(xe);
591 }
592 
593 static void xe_device_sanitize(void *arg)
594 {
595 	struct xe_device *xe = arg;
596 	struct xe_gt *gt;
597 	u8 id;
598 
599 	for_each_gt(gt, xe, id)
600 		xe_gt_sanitize(gt);
601 }
602 
603 static int xe_set_dma_info(struct xe_device *xe)
604 {
605 	unsigned int mask_size = xe->info.dma_mask_size;
606 	int err;
607 
608 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
609 
610 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
611 	if (err)
612 		goto mask_err;
613 
614 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
615 	if (err)
616 		goto mask_err;
617 
618 	return 0;
619 
620 mask_err:
621 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
622 	return err;
623 }
624 
625 static bool verify_lmem_ready(struct xe_device *xe)
626 {
627 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
628 
629 	return !!val;
630 }
631 
632 static int wait_for_lmem_ready(struct xe_device *xe)
633 {
634 	unsigned long timeout, start;
635 
636 	if (!IS_DGFX(xe))
637 		return 0;
638 
639 	if (IS_SRIOV_VF(xe))
640 		return 0;
641 
642 	if (verify_lmem_ready(xe))
643 		return 0;
644 
645 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
646 
647 	start = jiffies;
648 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
649 
650 	do {
651 		if (signal_pending(current))
652 			return -EINTR;
653 
654 		/*
655 		 * The boot firmware initializes local memory and
656 		 * assesses its health. If memory training fails,
657 		 * the punit will have been instructed to keep the GT powered
658 		 * down.we won't be able to communicate with it
659 		 *
660 		 * If the status check is done before punit updates the register,
661 		 * it can lead to the system being unusable.
662 		 * use a timeout and defer the probe to prevent this.
663 		 */
664 		if (time_after(jiffies, timeout)) {
665 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
666 			return -EPROBE_DEFER;
667 		}
668 
669 		msleep(20);
670 
671 	} while (!verify_lmem_ready(xe));
672 
673 	drm_dbg(&xe->drm, "lmem ready after %ums",
674 		jiffies_to_msecs(jiffies - start));
675 
676 	return 0;
677 }
678 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
679 
680 static void sriov_update_device_info(struct xe_device *xe)
681 {
682 	/* disable features that are not available/applicable to VFs */
683 	if (IS_SRIOV_VF(xe)) {
684 		xe->info.probe_display = 0;
685 		xe->info.has_heci_cscfi = 0;
686 		xe->info.has_heci_gscfi = 0;
687 		xe->info.skip_guc_pc = 1;
688 		xe->info.skip_pcode = 1;
689 	}
690 }
691 
692 static int xe_device_vram_alloc(struct xe_device *xe)
693 {
694 	struct xe_vram_region *vram;
695 
696 	if (!IS_DGFX(xe))
697 		return 0;
698 
699 	vram = drmm_kzalloc(&xe->drm, sizeof(*vram), GFP_KERNEL);
700 	if (!vram)
701 		return -ENOMEM;
702 
703 	xe->mem.vram = vram;
704 	return 0;
705 }
706 
707 /**
708  * xe_device_probe_early: Device early probe
709  * @xe: xe device instance
710  *
711  * Initialize MMIO resources that don't require any
712  * knowledge about tile count. Also initialize pcode and
713  * check vram initialization on root tile.
714  *
715  * Return: 0 on success, error code on failure
716  */
717 int xe_device_probe_early(struct xe_device *xe)
718 {
719 	int err;
720 
721 	xe_wa_device_init(xe);
722 	xe_wa_process_device_oob(xe);
723 
724 	err = xe_mmio_probe_early(xe);
725 	if (err)
726 		return err;
727 
728 	xe_sriov_probe_early(xe);
729 
730 	sriov_update_device_info(xe);
731 
732 	err = xe_pcode_probe_early(xe);
733 	if (err || xe_survivability_mode_is_requested(xe)) {
734 		int save_err = err;
735 
736 		/*
737 		 * Try to leave device in survivability mode if device is
738 		 * possible, but still return the previous error for error
739 		 * propagation
740 		 */
741 		err = xe_survivability_mode_enable(xe);
742 		if (err)
743 			return err;
744 
745 		return save_err;
746 	}
747 
748 	err = wait_for_lmem_ready(xe);
749 	if (err)
750 		return err;
751 
752 	xe->wedged.mode = xe_modparam.wedged_mode;
753 
754 	err = xe_device_vram_alloc(xe);
755 	if (err)
756 		return err;
757 
758 	return 0;
759 }
760 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
761 
762 static int probe_has_flat_ccs(struct xe_device *xe)
763 {
764 	struct xe_gt *gt;
765 	unsigned int fw_ref;
766 	u32 reg;
767 
768 	/* Always enabled/disabled, no runtime check to do */
769 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
770 		return 0;
771 
772 	gt = xe_root_mmio_gt(xe);
773 
774 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
775 	if (!fw_ref)
776 		return -ETIMEDOUT;
777 
778 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
779 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
780 
781 	if (!xe->info.has_flat_ccs)
782 		drm_dbg(&xe->drm,
783 			"Flat CCS has been disabled in bios, May lead to performance impact");
784 
785 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
786 
787 	return 0;
788 }
789 
790 int xe_device_probe(struct xe_device *xe)
791 {
792 	struct xe_tile *tile;
793 	struct xe_gt *gt;
794 	int err;
795 	u8 id;
796 
797 	xe_pat_init_early(xe);
798 
799 	err = xe_sriov_init(xe);
800 	if (err)
801 		return err;
802 
803 	xe->info.mem_region_mask = 1;
804 
805 	err = xe_set_dma_info(xe);
806 	if (err)
807 		return err;
808 
809 	err = xe_mmio_probe_tiles(xe);
810 	if (err)
811 		return err;
812 
813 	for_each_gt(gt, xe, id) {
814 		err = xe_gt_init_early(gt);
815 		if (err)
816 			return err;
817 	}
818 
819 	for_each_tile(tile, xe, id) {
820 		err = xe_ggtt_init_early(tile->mem.ggtt);
821 		if (err)
822 			return err;
823 	}
824 
825 	/*
826 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
827 	 */
828 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
829 	if (err)
830 		return err;
831 
832 	err = probe_has_flat_ccs(xe);
833 	if (err)
834 		return err;
835 
836 	err = xe_vram_probe(xe);
837 	if (err)
838 		return err;
839 
840 	for_each_tile(tile, xe, id) {
841 		err = xe_tile_init_noalloc(tile);
842 		if (err)
843 			return err;
844 	}
845 
846 	/*
847 	 * Allow allocations only now to ensure xe_display_init_early()
848 	 * is the first to allocate, always.
849 	 */
850 	err = xe_ttm_sys_mgr_init(xe);
851 	if (err)
852 		return err;
853 
854 	/* Allocate and map stolen after potential VRAM resize */
855 	err = xe_ttm_stolen_mgr_init(xe);
856 	if (err)
857 		return err;
858 
859 	/*
860 	 * Now that GT is initialized (TTM in particular),
861 	 * we can try to init display, and inherit the initial fb.
862 	 * This is the reason the first allocation needs to be done
863 	 * inside display.
864 	 */
865 	err = xe_display_init_early(xe);
866 	if (err)
867 		return err;
868 
869 	for_each_tile(tile, xe, id) {
870 		err = xe_tile_init(tile);
871 		if (err)
872 			return err;
873 	}
874 
875 	err = xe_irq_install(xe);
876 	if (err)
877 		return err;
878 
879 	for_each_gt(gt, xe, id) {
880 		err = xe_gt_init(gt);
881 		if (err)
882 			return err;
883 	}
884 
885 	if (xe->tiles->media_gt &&
886 	    XE_WA(xe->tiles->media_gt, 15015404425_disable))
887 		XE_DEVICE_WA_DISABLE(xe, 15015404425);
888 
889 	err = xe_devcoredump_init(xe);
890 	if (err)
891 		return err;
892 
893 	xe_nvm_init(xe);
894 
895 	err = xe_heci_gsc_init(xe);
896 	if (err)
897 		return err;
898 
899 	err = xe_oa_init(xe);
900 	if (err)
901 		return err;
902 
903 	err = xe_display_init(xe);
904 	if (err)
905 		return err;
906 
907 	err = xe_pxp_init(xe);
908 	if (err)
909 		return err;
910 
911 	err = drm_dev_register(&xe->drm, 0);
912 	if (err)
913 		return err;
914 
915 	xe_display_register(xe);
916 
917 	err = xe_oa_register(xe);
918 	if (err)
919 		goto err_unregister_display;
920 
921 	err = xe_pmu_register(&xe->pmu);
922 	if (err)
923 		goto err_unregister_display;
924 
925 	err = xe_device_sysfs_init(xe);
926 	if (err)
927 		goto err_unregister_display;
928 
929 	xe_debugfs_register(xe);
930 
931 	err = xe_hwmon_register(xe);
932 	if (err)
933 		goto err_unregister_display;
934 
935 	err = xe_i2c_probe(xe);
936 	if (err)
937 		goto err_unregister_display;
938 
939 	for_each_gt(gt, xe, id)
940 		xe_gt_sanitize_freq(gt);
941 
942 	xe_vsec_init(xe);
943 
944 	err = xe_sriov_late_init(xe);
945 	if (err)
946 		goto err_unregister_display;
947 
948 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
949 
950 err_unregister_display:
951 	xe_display_unregister(xe);
952 
953 	return err;
954 }
955 
956 void xe_device_remove(struct xe_device *xe)
957 {
958 	xe_display_unregister(xe);
959 
960 	xe_nvm_fini(xe);
961 
962 	drm_dev_unplug(&xe->drm);
963 
964 	xe_bo_pci_dev_remove_all(xe);
965 }
966 
967 void xe_device_shutdown(struct xe_device *xe)
968 {
969 	struct xe_gt *gt;
970 	u8 id;
971 
972 	drm_dbg(&xe->drm, "Shutting down device\n");
973 
974 	if (xe_driver_flr_disabled(xe)) {
975 		xe_display_pm_shutdown(xe);
976 
977 		xe_irq_suspend(xe);
978 
979 		for_each_gt(gt, xe, id)
980 			xe_gt_shutdown(gt);
981 
982 		xe_display_pm_shutdown_late(xe);
983 	} else {
984 		/* BOOM! */
985 		__xe_driver_flr(xe);
986 	}
987 }
988 
989 /**
990  * xe_device_wmb() - Device specific write memory barrier
991  * @xe: the &xe_device
992  *
993  * While wmb() is sufficient for a barrier if we use system memory, on discrete
994  * platforms with device memory we additionally need to issue a register write.
995  * Since it doesn't matter which register we write to, use the read-only VF_CAP
996  * register that is also marked as accessible by the VFs.
997  */
998 void xe_device_wmb(struct xe_device *xe)
999 {
1000 	wmb();
1001 	if (IS_DGFX(xe))
1002 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
1003 }
1004 
1005 /*
1006  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
1007  */
1008 static void tdf_request_sync(struct xe_device *xe)
1009 {
1010 	unsigned int fw_ref;
1011 	struct xe_gt *gt;
1012 	u8 id;
1013 
1014 	for_each_gt(gt, xe, id) {
1015 		if (xe_gt_is_media_type(gt))
1016 			continue;
1017 
1018 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1019 		if (!fw_ref)
1020 			return;
1021 
1022 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1023 
1024 		/*
1025 		 * FIXME: We can likely do better here with our choice of
1026 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1027 		 * which is believed to be sufficient to cover the worst case
1028 		 * scenario on current platforms if all cache entries are
1029 		 * transient and need to be flushed..
1030 		 */
1031 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1032 				   150, NULL, false))
1033 			xe_gt_err_once(gt, "TD flush timeout\n");
1034 
1035 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1036 	}
1037 }
1038 
1039 void xe_device_l2_flush(struct xe_device *xe)
1040 {
1041 	struct xe_gt *gt;
1042 	unsigned int fw_ref;
1043 
1044 	gt = xe_root_mmio_gt(xe);
1045 
1046 	if (!XE_WA(gt, 16023588340))
1047 		return;
1048 
1049 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1050 	if (!fw_ref)
1051 		return;
1052 
1053 	spin_lock(&gt->global_invl_lock);
1054 
1055 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1056 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1057 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1058 
1059 	spin_unlock(&gt->global_invl_lock);
1060 
1061 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1062 }
1063 
1064 /**
1065  * xe_device_td_flush() - Flush transient L3 cache entries
1066  * @xe: The device
1067  *
1068  * Display engine has direct access to memory and is never coherent with L3/L4
1069  * caches (or CPU caches), however KMD is responsible for specifically flushing
1070  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1071  * can happen from such a surface without seeing corruption.
1072  *
1073  * Display surfaces can be tagged as transient by mapping it using one of the
1074  * various L3:XD PAT index modes on Xe2.
1075  *
1076  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1077  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1078  * Media is not coherent with L3 and we want to support render-vs-media
1079  * usescases. For other engines like copy/blt the HW internally forces uncached
1080  * behaviour, hence why we can skip the TDF on such platforms.
1081  */
1082 void xe_device_td_flush(struct xe_device *xe)
1083 {
1084 	struct xe_gt *root_gt;
1085 
1086 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1087 		return;
1088 
1089 	root_gt = xe_root_mmio_gt(xe);
1090 	if (XE_WA(root_gt, 16023588340)) {
1091 		/* A transient flush is not sufficient: flush the L2 */
1092 		xe_device_l2_flush(xe);
1093 	} else {
1094 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1095 		tdf_request_sync(xe);
1096 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1097 	}
1098 }
1099 
1100 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1101 {
1102 	return xe_device_has_flat_ccs(xe) ?
1103 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1104 }
1105 
1106 /**
1107  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1108  * @xe: xe device instance
1109  *
1110  * To be used before any kind of memory access. It will splat a debug warning
1111  * if the device is currently sleeping. But it doesn't guarantee in any way
1112  * that the device is going to remain awake. Xe PM runtime get and put
1113  * functions might be added to the outer bound of the memory access, while
1114  * this check is intended for inner usage to splat some warning if the worst
1115  * case has just happened.
1116  */
1117 void xe_device_assert_mem_access(struct xe_device *xe)
1118 {
1119 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1120 }
1121 
1122 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1123 {
1124 	struct xe_gt *gt;
1125 	u8 id;
1126 
1127 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1128 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1129 
1130 	for_each_gt(gt, xe, id) {
1131 		drm_printf(p, "GT id: %u\n", id);
1132 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1133 		drm_printf(p, "\tType: %s\n",
1134 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1135 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1136 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1137 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1138 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1139 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1140 	}
1141 }
1142 
1143 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1144 {
1145 	return sign_extend64(address, xe->info.va_bits - 1);
1146 }
1147 
1148 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1149 {
1150 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1151 }
1152 
1153 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1154 {
1155 	struct xe_device *xe = arg;
1156 
1157 	xe_pm_runtime_put(xe);
1158 }
1159 
1160 /**
1161  * xe_device_declare_wedged - Declare device wedged
1162  * @xe: xe device instance
1163  *
1164  * This is a final state that can only be cleared with a module
1165  * re-probe (unbind + bind).
1166  * In this state every IOCTL will be blocked so the GT cannot be used.
1167  * In general it will be called upon any critical error such as gt reset
1168  * failure or guc loading failure. Userspace will be notified of this state
1169  * through device wedged uevent.
1170  * If xe.wedged module parameter is set to 2, this function will be called
1171  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1172  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1173  * the issue is preserved for further debugging.
1174  */
1175 void xe_device_declare_wedged(struct xe_device *xe)
1176 {
1177 	struct xe_gt *gt;
1178 	u8 id;
1179 
1180 	if (xe->wedged.mode == 0) {
1181 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1182 		return;
1183 	}
1184 
1185 	xe_pm_runtime_get_noresume(xe);
1186 
1187 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1188 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1189 		return;
1190 	}
1191 
1192 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1193 		xe->needs_flr_on_fini = true;
1194 		drm_err(&xe->drm,
1195 			"CRITICAL: Xe has declared device %s as wedged.\n"
1196 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1197 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1198 			dev_name(xe->drm.dev));
1199 
1200 		/* Notify userspace of wedged device */
1201 		drm_dev_wedged_event(&xe->drm,
1202 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET,
1203 				     NULL);
1204 	}
1205 
1206 	for_each_gt(gt, xe, id)
1207 		xe_gt_declare_wedged(gt);
1208 }
1209