1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_pmu.h" 53 #include "xe_pxp.h" 54 #include "xe_query.h" 55 #include "xe_sriov.h" 56 #include "xe_survivability_mode.h" 57 #include "xe_tile.h" 58 #include "xe_ttm_stolen_mgr.h" 59 #include "xe_ttm_sys_mgr.h" 60 #include "xe_vm.h" 61 #include "xe_vram.h" 62 #include "xe_vsec.h" 63 #include "xe_wait_user_fence.h" 64 #include "xe_wa.h" 65 66 #include <generated/xe_wa_oob.h> 67 68 struct xe_device_remove_action { 69 struct list_head node; 70 void (*action)(void *); 71 void *data; 72 }; 73 74 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 75 { 76 struct xe_device *xe = to_xe_device(dev); 77 struct xe_drm_client *client; 78 struct xe_file *xef; 79 int ret = -ENOMEM; 80 struct task_struct *task = NULL; 81 82 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 83 if (!xef) 84 return ret; 85 86 client = xe_drm_client_alloc(); 87 if (!client) { 88 kfree(xef); 89 return ret; 90 } 91 92 xef->drm = file; 93 xef->client = client; 94 xef->xe = xe; 95 96 mutex_init(&xef->vm.lock); 97 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 98 99 mutex_init(&xef->exec_queue.lock); 100 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 101 102 file->driver_priv = xef; 103 kref_init(&xef->refcount); 104 105 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 106 if (task) { 107 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 108 xef->pid = task->pid; 109 put_task_struct(task); 110 } 111 112 return 0; 113 } 114 115 static void xe_file_destroy(struct kref *ref) 116 { 117 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 118 119 xa_destroy(&xef->exec_queue.xa); 120 mutex_destroy(&xef->exec_queue.lock); 121 xa_destroy(&xef->vm.xa); 122 mutex_destroy(&xef->vm.lock); 123 124 xe_drm_client_put(xef->client); 125 kfree(xef->process_name); 126 kfree(xef); 127 } 128 129 /** 130 * xe_file_get() - Take a reference to the xe file object 131 * @xef: Pointer to the xe file 132 * 133 * Anyone with a pointer to xef must take a reference to the xe file 134 * object using this call. 135 * 136 * Return: xe file pointer 137 */ 138 struct xe_file *xe_file_get(struct xe_file *xef) 139 { 140 kref_get(&xef->refcount); 141 return xef; 142 } 143 144 /** 145 * xe_file_put() - Drop a reference to the xe file object 146 * @xef: Pointer to the xe file 147 * 148 * Used to drop reference to the xef object 149 */ 150 void xe_file_put(struct xe_file *xef) 151 { 152 kref_put(&xef->refcount, xe_file_destroy); 153 } 154 155 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 156 { 157 struct xe_device *xe = to_xe_device(dev); 158 struct xe_file *xef = file->driver_priv; 159 struct xe_vm *vm; 160 struct xe_exec_queue *q; 161 unsigned long idx; 162 163 xe_pm_runtime_get(xe); 164 165 /* 166 * No need for exec_queue.lock here as there is no contention for it 167 * when FD is closing as IOCTLs presumably can't be modifying the 168 * xarray. Taking exec_queue.lock here causes undue dependency on 169 * vm->lock taken during xe_exec_queue_kill(). 170 */ 171 xa_for_each(&xef->exec_queue.xa, idx, q) { 172 if (q->vm && q->hwe->hw_engine_group) 173 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 174 xe_exec_queue_kill(q); 175 xe_exec_queue_put(q); 176 } 177 xa_for_each(&xef->vm.xa, idx, vm) 178 xe_vm_close_and_put(vm); 179 180 xe_file_put(xef); 181 182 xe_pm_runtime_put(xe); 183 } 184 185 static const struct drm_ioctl_desc xe_ioctls[] = { 186 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 189 DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 194 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 195 DRM_RENDER_ALLOW), 196 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 197 DRM_RENDER_ALLOW), 198 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 199 DRM_RENDER_ALLOW), 200 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 201 DRM_RENDER_ALLOW), 202 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 203 }; 204 205 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 206 { 207 struct drm_file *file_priv = file->private_data; 208 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 209 long ret; 210 211 if (xe_device_wedged(xe)) 212 return -ECANCELED; 213 214 ret = xe_pm_runtime_get_ioctl(xe); 215 if (ret >= 0) 216 ret = drm_ioctl(file, cmd, arg); 217 xe_pm_runtime_put(xe); 218 219 return ret; 220 } 221 222 #ifdef CONFIG_COMPAT 223 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 224 { 225 struct drm_file *file_priv = file->private_data; 226 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 227 long ret; 228 229 if (xe_device_wedged(xe)) 230 return -ECANCELED; 231 232 ret = xe_pm_runtime_get_ioctl(xe); 233 if (ret >= 0) 234 ret = drm_compat_ioctl(file, cmd, arg); 235 xe_pm_runtime_put(xe); 236 237 return ret; 238 } 239 #else 240 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 241 #define xe_drm_compat_ioctl NULL 242 #endif 243 244 static void barrier_open(struct vm_area_struct *vma) 245 { 246 drm_dev_get(vma->vm_private_data); 247 } 248 249 static void barrier_close(struct vm_area_struct *vma) 250 { 251 drm_dev_put(vma->vm_private_data); 252 } 253 254 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 255 { 256 struct page *dummy_page = (struct page *)res; 257 258 __free_page(dummy_page); 259 } 260 261 static vm_fault_t barrier_fault(struct vm_fault *vmf) 262 { 263 struct drm_device *dev = vmf->vma->vm_private_data; 264 struct vm_area_struct *vma = vmf->vma; 265 vm_fault_t ret = VM_FAULT_NOPAGE; 266 pgprot_t prot; 267 int idx; 268 269 prot = vm_get_page_prot(vma->vm_flags); 270 271 if (drm_dev_enter(dev, &idx)) { 272 unsigned long pfn; 273 274 #define LAST_DB_PAGE_OFFSET 0x7ff001 275 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 276 LAST_DB_PAGE_OFFSET); 277 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 278 pgprot_noncached(prot)); 279 drm_dev_exit(idx); 280 } else { 281 struct page *page; 282 283 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 284 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 285 if (!page) 286 return VM_FAULT_OOM; 287 288 /* Set the page to be freed using drmm release action */ 289 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 290 return VM_FAULT_OOM; 291 292 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 293 prot); 294 } 295 296 return ret; 297 } 298 299 static const struct vm_operations_struct vm_ops_barrier = { 300 .open = barrier_open, 301 .close = barrier_close, 302 .fault = barrier_fault, 303 }; 304 305 static int xe_pci_barrier_mmap(struct file *filp, 306 struct vm_area_struct *vma) 307 { 308 struct drm_file *priv = filp->private_data; 309 struct drm_device *dev = priv->minor->dev; 310 struct xe_device *xe = to_xe_device(dev); 311 312 if (!IS_DGFX(xe)) 313 return -EINVAL; 314 315 if (vma->vm_end - vma->vm_start > SZ_4K) 316 return -EINVAL; 317 318 if (is_cow_mapping(vma->vm_flags)) 319 return -EINVAL; 320 321 if (vma->vm_flags & (VM_READ | VM_EXEC)) 322 return -EINVAL; 323 324 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 325 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 326 vma->vm_ops = &vm_ops_barrier; 327 vma->vm_private_data = dev; 328 drm_dev_get(vma->vm_private_data); 329 330 return 0; 331 } 332 333 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 334 { 335 struct drm_file *priv = filp->private_data; 336 struct drm_device *dev = priv->minor->dev; 337 338 if (drm_dev_is_unplugged(dev)) 339 return -ENODEV; 340 341 switch (vma->vm_pgoff) { 342 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 343 return xe_pci_barrier_mmap(filp, vma); 344 } 345 346 return drm_gem_mmap(filp, vma); 347 } 348 349 static const struct file_operations xe_driver_fops = { 350 .owner = THIS_MODULE, 351 .open = drm_open, 352 .release = drm_release_noglobal, 353 .unlocked_ioctl = xe_drm_ioctl, 354 .mmap = xe_mmap, 355 .poll = drm_poll, 356 .read = drm_read, 357 .compat_ioctl = xe_drm_compat_ioctl, 358 .llseek = noop_llseek, 359 #ifdef CONFIG_PROC_FS 360 .show_fdinfo = drm_show_fdinfo, 361 #endif 362 .fop_flags = FOP_UNSIGNED_OFFSET, 363 }; 364 365 static struct drm_driver driver = { 366 /* Don't use MTRRs here; the Xserver or userspace app should 367 * deal with them for Intel hardware. 368 */ 369 .driver_features = 370 DRIVER_GEM | 371 DRIVER_RENDER | DRIVER_SYNCOBJ | 372 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 373 .open = xe_file_open, 374 .postclose = xe_file_close, 375 376 .gem_prime_import = xe_gem_prime_import, 377 378 .dumb_create = xe_bo_dumb_create, 379 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 380 #ifdef CONFIG_PROC_FS 381 .show_fdinfo = xe_drm_client_fdinfo, 382 #endif 383 .ioctls = xe_ioctls, 384 .num_ioctls = ARRAY_SIZE(xe_ioctls), 385 .fops = &xe_driver_fops, 386 .name = DRIVER_NAME, 387 .desc = DRIVER_DESC, 388 .major = DRIVER_MAJOR, 389 .minor = DRIVER_MINOR, 390 .patchlevel = DRIVER_PATCHLEVEL, 391 }; 392 393 static void xe_device_destroy(struct drm_device *dev, void *dummy) 394 { 395 struct xe_device *xe = to_xe_device(dev); 396 397 if (xe->preempt_fence_wq) 398 destroy_workqueue(xe->preempt_fence_wq); 399 400 if (xe->ordered_wq) 401 destroy_workqueue(xe->ordered_wq); 402 403 if (xe->unordered_wq) 404 destroy_workqueue(xe->unordered_wq); 405 406 if (xe->destroy_wq) 407 destroy_workqueue(xe->destroy_wq); 408 409 ttm_device_fini(&xe->ttm); 410 } 411 412 struct xe_device *xe_device_create(struct pci_dev *pdev, 413 const struct pci_device_id *ent) 414 { 415 struct xe_device *xe; 416 int err; 417 418 xe_display_driver_set_hooks(&driver); 419 420 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 421 if (err) 422 return ERR_PTR(err); 423 424 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 425 if (IS_ERR(xe)) 426 return xe; 427 428 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 429 xe->drm.anon_inode->i_mapping, 430 xe->drm.vma_offset_manager, false, false); 431 if (WARN_ON(err)) 432 goto err; 433 434 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 435 if (err) 436 goto err; 437 438 xe->info.devid = pdev->device; 439 xe->info.revid = pdev->revision; 440 xe->info.force_execlist = xe_modparam.force_execlist; 441 442 err = xe_irq_init(xe); 443 if (err) 444 goto err; 445 446 init_waitqueue_head(&xe->ufence_wq); 447 448 init_rwsem(&xe->usm.lock); 449 450 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 451 452 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 453 /* Trigger a large asid and an early asid wrap. */ 454 u32 asid; 455 456 BUILD_BUG_ON(XE_MAX_ASID < 2); 457 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 458 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 459 &xe->usm.next_asid, GFP_KERNEL); 460 drm_WARN_ON(&xe->drm, err); 461 if (err >= 0) 462 xa_erase(&xe->usm.asid_to_vm, asid); 463 } 464 465 spin_lock_init(&xe->pinned.lock); 466 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 467 INIT_LIST_HEAD(&xe->pinned.external_vram); 468 INIT_LIST_HEAD(&xe->pinned.evicted); 469 470 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 471 WQ_MEM_RECLAIM); 472 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 473 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 474 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 475 if (!xe->ordered_wq || !xe->unordered_wq || 476 !xe->preempt_fence_wq || !xe->destroy_wq) { 477 /* 478 * Cleanup done in xe_device_destroy via 479 * drmm_add_action_or_reset register above 480 */ 481 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 482 err = -ENOMEM; 483 goto err; 484 } 485 486 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 487 if (err) 488 goto err; 489 490 err = xe_display_create(xe); 491 if (WARN_ON(err)) 492 goto err; 493 494 return xe; 495 496 err: 497 return ERR_PTR(err); 498 } 499 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 500 501 static bool xe_driver_flr_disabled(struct xe_device *xe) 502 { 503 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 504 } 505 506 /* 507 * The driver-initiated FLR is the highest level of reset that we can trigger 508 * from within the driver. It is different from the PCI FLR in that it doesn't 509 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 510 * it doesn't require a re-enumeration of the PCI BARs. However, the 511 * driver-initiated FLR does still cause a reset of both GT and display and a 512 * memory wipe of local and stolen memory, so recovery would require a full HW 513 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 514 * perform the FLR as the very last action before releasing access to the HW 515 * during the driver release flow, we don't attempt recovery at all, because 516 * if/when a new instance of i915 is bound to the device it will do a full 517 * re-init anyway. 518 */ 519 static void __xe_driver_flr(struct xe_device *xe) 520 { 521 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 522 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 523 int ret; 524 525 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 526 527 /* 528 * Make sure any pending FLR requests have cleared by waiting for the 529 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 530 * to make sure it's not still set from a prior attempt (it's a write to 531 * clear bit). 532 * Note that we should never be in a situation where a previous attempt 533 * is still pending (unless the HW is totally dead), but better to be 534 * safe in case something unexpected happens 535 */ 536 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 537 if (ret) { 538 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 539 return; 540 } 541 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 542 543 /* Trigger the actual Driver-FLR */ 544 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 545 546 /* Wait for hardware teardown to complete */ 547 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 548 if (ret) { 549 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 550 return; 551 } 552 553 /* Wait for hardware/firmware re-init to complete */ 554 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 555 flr_timeout, NULL, false); 556 if (ret) { 557 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 558 return; 559 } 560 561 /* Clear sticky completion status */ 562 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 563 } 564 565 static void xe_driver_flr(struct xe_device *xe) 566 { 567 if (xe_driver_flr_disabled(xe)) { 568 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 569 return; 570 } 571 572 __xe_driver_flr(xe); 573 } 574 575 static void xe_driver_flr_fini(void *arg) 576 { 577 struct xe_device *xe = arg; 578 579 if (xe->needs_flr_on_fini) 580 xe_driver_flr(xe); 581 } 582 583 static void xe_device_sanitize(void *arg) 584 { 585 struct xe_device *xe = arg; 586 struct xe_gt *gt; 587 u8 id; 588 589 for_each_gt(gt, xe, id) 590 xe_gt_sanitize(gt); 591 } 592 593 static int xe_set_dma_info(struct xe_device *xe) 594 { 595 unsigned int mask_size = xe->info.dma_mask_size; 596 int err; 597 598 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 599 600 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 601 if (err) 602 goto mask_err; 603 604 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 605 if (err) 606 goto mask_err; 607 608 return 0; 609 610 mask_err: 611 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 612 return err; 613 } 614 615 static bool verify_lmem_ready(struct xe_device *xe) 616 { 617 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 618 619 return !!val; 620 } 621 622 static int wait_for_lmem_ready(struct xe_device *xe) 623 { 624 unsigned long timeout, start; 625 626 if (!IS_DGFX(xe)) 627 return 0; 628 629 if (IS_SRIOV_VF(xe)) 630 return 0; 631 632 if (verify_lmem_ready(xe)) 633 return 0; 634 635 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 636 637 start = jiffies; 638 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 639 640 do { 641 if (signal_pending(current)) 642 return -EINTR; 643 644 /* 645 * The boot firmware initializes local memory and 646 * assesses its health. If memory training fails, 647 * the punit will have been instructed to keep the GT powered 648 * down.we won't be able to communicate with it 649 * 650 * If the status check is done before punit updates the register, 651 * it can lead to the system being unusable. 652 * use a timeout and defer the probe to prevent this. 653 */ 654 if (time_after(jiffies, timeout)) { 655 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 656 return -EPROBE_DEFER; 657 } 658 659 msleep(20); 660 661 } while (!verify_lmem_ready(xe)); 662 663 drm_dbg(&xe->drm, "lmem ready after %ums", 664 jiffies_to_msecs(jiffies - start)); 665 666 return 0; 667 } 668 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 669 670 static void update_device_info(struct xe_device *xe) 671 { 672 /* disable features that are not available/applicable to VFs */ 673 if (IS_SRIOV_VF(xe)) { 674 xe->info.probe_display = 0; 675 xe->info.has_heci_gscfi = 0; 676 xe->info.skip_guc_pc = 1; 677 xe->info.skip_pcode = 1; 678 } 679 } 680 681 /** 682 * xe_device_probe_early: Device early probe 683 * @xe: xe device instance 684 * 685 * Initialize MMIO resources that don't require any 686 * knowledge about tile count. Also initialize pcode and 687 * check vram initialization on root tile. 688 * 689 * Return: 0 on success, error code on failure 690 */ 691 int xe_device_probe_early(struct xe_device *xe) 692 { 693 int err; 694 695 err = xe_mmio_probe_early(xe); 696 if (err) 697 return err; 698 699 xe_sriov_probe_early(xe); 700 701 update_device_info(xe); 702 703 err = xe_pcode_probe_early(xe); 704 if (err) { 705 if (xe_survivability_mode_required(xe)) 706 xe_survivability_mode_init(xe); 707 708 return err; 709 } 710 711 err = wait_for_lmem_ready(xe); 712 if (err) 713 return err; 714 715 xe->wedged.mode = xe_modparam.wedged_mode; 716 717 return 0; 718 } 719 720 static int probe_has_flat_ccs(struct xe_device *xe) 721 { 722 struct xe_gt *gt; 723 unsigned int fw_ref; 724 u32 reg; 725 726 /* Always enabled/disabled, no runtime check to do */ 727 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 728 return 0; 729 730 gt = xe_root_mmio_gt(xe); 731 732 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 733 if (!fw_ref) 734 return -ETIMEDOUT; 735 736 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 737 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 738 739 if (!xe->info.has_flat_ccs) 740 drm_dbg(&xe->drm, 741 "Flat CCS has been disabled in bios, May lead to performance impact"); 742 743 xe_force_wake_put(gt_to_fw(gt), fw_ref); 744 745 return 0; 746 } 747 748 int xe_device_probe(struct xe_device *xe) 749 { 750 struct xe_tile *tile; 751 struct xe_gt *gt; 752 int err; 753 u8 id; 754 755 xe->probing = true; 756 INIT_LIST_HEAD(&xe->remove_action_list); 757 758 xe_pat_init_early(xe); 759 760 err = xe_sriov_init(xe); 761 if (err) 762 return err; 763 764 xe->info.mem_region_mask = 1; 765 err = xe_set_dma_info(xe); 766 if (err) 767 return err; 768 769 err = xe_mmio_probe_tiles(xe); 770 if (err) 771 return err; 772 773 xe_ttm_sys_mgr_init(xe); 774 775 for_each_gt(gt, xe, id) { 776 err = xe_gt_init_early(gt); 777 if (err) 778 return err; 779 780 /* 781 * Only after this point can GT-specific MMIO operations 782 * (including things like communication with the GuC) 783 * be performed. 784 */ 785 xe_gt_mmio_init(gt); 786 } 787 788 for_each_tile(tile, xe, id) { 789 if (IS_SRIOV_VF(xe)) { 790 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 791 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 792 if (err) 793 return err; 794 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 795 if (err) 796 return err; 797 } 798 err = xe_ggtt_init_early(tile->mem.ggtt); 799 if (err) 800 return err; 801 err = xe_memirq_init(&tile->memirq); 802 if (err) 803 return err; 804 } 805 806 for_each_gt(gt, xe, id) { 807 err = xe_gt_init_hwconfig(gt); 808 if (err) 809 return err; 810 } 811 812 err = xe_devcoredump_init(xe); 813 if (err) 814 return err; 815 816 /* 817 * From here on, if a step fails, make sure a Driver-FLR is triggereed 818 */ 819 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 820 if (err) 821 return err; 822 823 err = probe_has_flat_ccs(xe); 824 if (err) 825 return err; 826 827 err = xe_vram_probe(xe); 828 if (err) 829 return err; 830 831 for_each_tile(tile, xe, id) { 832 err = xe_tile_init_noalloc(tile); 833 if (err) 834 return err; 835 } 836 837 /* Allocate and map stolen after potential VRAM resize */ 838 err = xe_ttm_stolen_mgr_init(xe); 839 if (err) 840 return err; 841 842 /* 843 * Now that GT is initialized (TTM in particular), 844 * we can try to init display, and inherit the initial fb. 845 * This is the reason the first allocation needs to be done 846 * inside display. 847 */ 848 err = xe_display_init_early(xe); 849 if (err) 850 return err; 851 852 for_each_tile(tile, xe, id) { 853 err = xe_tile_init(tile); 854 if (err) 855 return err; 856 } 857 858 err = xe_irq_install(xe); 859 if (err) 860 return err; 861 862 for_each_gt(gt, xe, id) { 863 err = xe_gt_init(gt); 864 if (err) 865 return err; 866 } 867 868 xe_heci_gsc_init(xe); 869 870 err = xe_oa_init(xe); 871 if (err) 872 return err; 873 874 err = xe_display_init(xe); 875 if (err) 876 return err; 877 878 err = xe_pxp_init(xe); 879 if (err) 880 goto err_remove_display; 881 882 err = drm_dev_register(&xe->drm, 0); 883 if (err) 884 goto err_remove_display; 885 886 xe_display_register(xe); 887 888 err = xe_oa_register(xe); 889 if (err) 890 goto err_unregister_display; 891 892 err = xe_pmu_register(&xe->pmu); 893 if (err) 894 goto err_unregister_display; 895 896 xe_debugfs_register(xe); 897 898 err = xe_hwmon_register(xe); 899 if (err) 900 goto err_unregister_display; 901 902 for_each_gt(gt, xe, id) 903 xe_gt_sanitize_freq(gt); 904 905 xe_vsec_init(xe); 906 907 xe->probing = false; 908 909 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 910 911 err_unregister_display: 912 xe_display_unregister(xe); 913 err_remove_display: 914 xe_display_driver_remove(xe); 915 916 return err; 917 } 918 919 /** 920 * xe_device_call_remove_actions - Call the remove actions 921 * @xe: xe device instance 922 * 923 * This is only to be used by xe_pci and xe_device to call the remove actions 924 * while removing the driver or handling probe failures. 925 */ 926 void xe_device_call_remove_actions(struct xe_device *xe) 927 { 928 struct xe_device_remove_action *ra, *tmp; 929 930 list_for_each_entry_safe(ra, tmp, &xe->remove_action_list, node) { 931 ra->action(ra->data); 932 list_del(&ra->node); 933 kfree(ra); 934 } 935 936 xe->probing = false; 937 } 938 939 /** 940 * xe_device_add_action_or_reset - Add an action to run on driver removal 941 * @xe: xe device instance 942 * @action: Function that should be called on device remove 943 * @data: Pointer to data passed to @action implementation 944 * 945 * This adds a custom action to the list of remove callbacks executed on device 946 * remove, before any dev or drm managed resources are removed. This is only 947 * needed if the action leads to component_del()/component_master_del() since 948 * that is not compatible with devres cleanup. 949 * 950 * Returns: 0 on success or a negative error code on failure, in which case 951 * @action is already called. 952 */ 953 int xe_device_add_action_or_reset(struct xe_device *xe, 954 void (*action)(void *), void *data) 955 { 956 struct xe_device_remove_action *ra; 957 958 drm_WARN_ON(&xe->drm, !xe->probing); 959 960 ra = kmalloc(sizeof(*ra), GFP_KERNEL); 961 if (!ra) { 962 action(data); 963 return -ENOMEM; 964 } 965 966 INIT_LIST_HEAD(&ra->node); 967 ra->action = action; 968 ra->data = data; 969 list_add(&ra->node, &xe->remove_action_list); 970 971 return 0; 972 } 973 974 void xe_device_remove(struct xe_device *xe) 975 { 976 xe_display_unregister(xe); 977 978 drm_dev_unplug(&xe->drm); 979 980 xe_display_driver_remove(xe); 981 982 xe_heci_gsc_fini(xe); 983 984 xe_device_call_remove_actions(xe); 985 } 986 987 void xe_device_shutdown(struct xe_device *xe) 988 { 989 struct xe_gt *gt; 990 u8 id; 991 992 drm_dbg(&xe->drm, "Shutting down device\n"); 993 994 if (xe_driver_flr_disabled(xe)) { 995 xe_display_pm_shutdown(xe); 996 997 xe_irq_suspend(xe); 998 999 for_each_gt(gt, xe, id) 1000 xe_gt_shutdown(gt); 1001 1002 xe_display_pm_shutdown_late(xe); 1003 } else { 1004 /* BOOM! */ 1005 __xe_driver_flr(xe); 1006 } 1007 } 1008 1009 /** 1010 * xe_device_wmb() - Device specific write memory barrier 1011 * @xe: the &xe_device 1012 * 1013 * While wmb() is sufficient for a barrier if we use system memory, on discrete 1014 * platforms with device memory we additionally need to issue a register write. 1015 * Since it doesn't matter which register we write to, use the read-only VF_CAP 1016 * register that is also marked as accessible by the VFs. 1017 */ 1018 void xe_device_wmb(struct xe_device *xe) 1019 { 1020 wmb(); 1021 if (IS_DGFX(xe)) 1022 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 1023 } 1024 1025 /** 1026 * xe_device_td_flush() - Flush transient L3 cache entries 1027 * @xe: The device 1028 * 1029 * Display engine has direct access to memory and is never coherent with L3/L4 1030 * caches (or CPU caches), however KMD is responsible for specifically flushing 1031 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 1032 * can happen from such a surface without seeing corruption. 1033 * 1034 * Display surfaces can be tagged as transient by mapping it using one of the 1035 * various L3:XD PAT index modes on Xe2. 1036 * 1037 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1038 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1039 * Media is not coherent with L3 and we want to support render-vs-media 1040 * usescases. For other engines like copy/blt the HW internally forces uncached 1041 * behaviour, hence why we can skip the TDF on such platforms. 1042 */ 1043 void xe_device_td_flush(struct xe_device *xe) 1044 { 1045 struct xe_gt *gt; 1046 unsigned int fw_ref; 1047 u8 id; 1048 1049 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1050 return; 1051 1052 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1053 xe_device_l2_flush(xe); 1054 return; 1055 } 1056 1057 for_each_gt(gt, xe, id) { 1058 if (xe_gt_is_media_type(gt)) 1059 continue; 1060 1061 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1062 if (!fw_ref) 1063 return; 1064 1065 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1066 /* 1067 * FIXME: We can likely do better here with our choice of 1068 * timeout. Currently we just assume the worst case, i.e. 150us, 1069 * which is believed to be sufficient to cover the worst case 1070 * scenario on current platforms if all cache entries are 1071 * transient and need to be flushed.. 1072 */ 1073 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1074 150, NULL, false)) 1075 xe_gt_err_once(gt, "TD flush timeout\n"); 1076 1077 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1078 } 1079 } 1080 1081 void xe_device_l2_flush(struct xe_device *xe) 1082 { 1083 struct xe_gt *gt; 1084 unsigned int fw_ref; 1085 1086 gt = xe_root_mmio_gt(xe); 1087 1088 if (!XE_WA(gt, 16023588340)) 1089 return; 1090 1091 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1092 if (!fw_ref) 1093 return; 1094 1095 spin_lock(>->global_invl_lock); 1096 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1097 1098 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1099 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1100 spin_unlock(>->global_invl_lock); 1101 1102 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1103 } 1104 1105 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1106 { 1107 return xe_device_has_flat_ccs(xe) ? 1108 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1109 } 1110 1111 /** 1112 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1113 * @xe: xe device instance 1114 * 1115 * To be used before any kind of memory access. It will splat a debug warning 1116 * if the device is currently sleeping. But it doesn't guarantee in any way 1117 * that the device is going to remain awake. Xe PM runtime get and put 1118 * functions might be added to the outer bound of the memory access, while 1119 * this check is intended for inner usage to splat some warning if the worst 1120 * case has just happened. 1121 */ 1122 void xe_device_assert_mem_access(struct xe_device *xe) 1123 { 1124 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1125 } 1126 1127 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1128 { 1129 struct xe_gt *gt; 1130 u8 id; 1131 1132 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1133 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1134 1135 for_each_gt(gt, xe, id) { 1136 drm_printf(p, "GT id: %u\n", id); 1137 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1138 drm_printf(p, "\tType: %s\n", 1139 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1140 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1141 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1142 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1143 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1144 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1145 } 1146 } 1147 1148 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1149 { 1150 return sign_extend64(address, xe->info.va_bits - 1); 1151 } 1152 1153 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1154 { 1155 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1156 } 1157 1158 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1159 { 1160 struct xe_device *xe = arg; 1161 1162 xe_pm_runtime_put(xe); 1163 } 1164 1165 /** 1166 * xe_device_declare_wedged - Declare device wedged 1167 * @xe: xe device instance 1168 * 1169 * This is a final state that can only be cleared with a module 1170 * re-probe (unbind + bind). 1171 * In this state every IOCTL will be blocked so the GT cannot be used. 1172 * In general it will be called upon any critical error such as gt reset 1173 * failure or guc loading failure. 1174 * If xe.wedged module parameter is set to 2, this function will be called 1175 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1176 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1177 * the issue is preserved for further debugging. 1178 */ 1179 void xe_device_declare_wedged(struct xe_device *xe) 1180 { 1181 struct xe_gt *gt; 1182 u8 id; 1183 1184 if (xe->wedged.mode == 0) { 1185 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1186 return; 1187 } 1188 1189 xe_pm_runtime_get_noresume(xe); 1190 1191 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1192 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1193 return; 1194 } 1195 1196 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1197 xe->needs_flr_on_fini = true; 1198 drm_err(&xe->drm, 1199 "CRITICAL: Xe has declared device %s as wedged.\n" 1200 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1201 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1202 dev_name(xe->drm.dev)); 1203 } 1204 1205 for_each_gt(gt, xe, id) 1206 xe_gt_declare_wedged(gt); 1207 } 1208