xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision af53f0fd99c3bbb3afd29f1612c9e88c5a92cc01)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_hw_engine_group.h"
44 #include "xe_hwmon.h"
45 #include "xe_irq.h"
46 #include "xe_memirq.h"
47 #include "xe_mmio.h"
48 #include "xe_module.h"
49 #include "xe_oa.h"
50 #include "xe_observation.h"
51 #include "xe_pat.h"
52 #include "xe_pcode.h"
53 #include "xe_pm.h"
54 #include "xe_pmu.h"
55 #include "xe_pxp.h"
56 #include "xe_query.h"
57 #include "xe_shrinker.h"
58 #include "xe_survivability_mode.h"
59 #include "xe_sriov.h"
60 #include "xe_tile.h"
61 #include "xe_ttm_stolen_mgr.h"
62 #include "xe_ttm_sys_mgr.h"
63 #include "xe_vm.h"
64 #include "xe_vram.h"
65 #include "xe_vsec.h"
66 #include "xe_wait_user_fence.h"
67 #include "xe_wa.h"
68 
69 #include <generated/xe_wa_oob.h>
70 
71 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
72 {
73 	struct xe_device *xe = to_xe_device(dev);
74 	struct xe_drm_client *client;
75 	struct xe_file *xef;
76 	int ret = -ENOMEM;
77 	struct task_struct *task = NULL;
78 
79 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
80 	if (!xef)
81 		return ret;
82 
83 	client = xe_drm_client_alloc();
84 	if (!client) {
85 		kfree(xef);
86 		return ret;
87 	}
88 
89 	xef->drm = file;
90 	xef->client = client;
91 	xef->xe = xe;
92 
93 	mutex_init(&xef->vm.lock);
94 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
95 
96 	mutex_init(&xef->exec_queue.lock);
97 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
98 
99 	file->driver_priv = xef;
100 	kref_init(&xef->refcount);
101 
102 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
103 	if (task) {
104 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
105 		xef->pid = task->pid;
106 		put_task_struct(task);
107 	}
108 
109 	return 0;
110 }
111 
112 static void xe_file_destroy(struct kref *ref)
113 {
114 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
115 
116 	xa_destroy(&xef->exec_queue.xa);
117 	mutex_destroy(&xef->exec_queue.lock);
118 	xa_destroy(&xef->vm.xa);
119 	mutex_destroy(&xef->vm.lock);
120 
121 	xe_drm_client_put(xef->client);
122 	kfree(xef->process_name);
123 	kfree(xef);
124 }
125 
126 /**
127  * xe_file_get() - Take a reference to the xe file object
128  * @xef: Pointer to the xe file
129  *
130  * Anyone with a pointer to xef must take a reference to the xe file
131  * object using this call.
132  *
133  * Return: xe file pointer
134  */
135 struct xe_file *xe_file_get(struct xe_file *xef)
136 {
137 	kref_get(&xef->refcount);
138 	return xef;
139 }
140 
141 /**
142  * xe_file_put() - Drop a reference to the xe file object
143  * @xef: Pointer to the xe file
144  *
145  * Used to drop reference to the xef object
146  */
147 void xe_file_put(struct xe_file *xef)
148 {
149 	kref_put(&xef->refcount, xe_file_destroy);
150 }
151 
152 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
153 {
154 	struct xe_device *xe = to_xe_device(dev);
155 	struct xe_file *xef = file->driver_priv;
156 	struct xe_vm *vm;
157 	struct xe_exec_queue *q;
158 	unsigned long idx;
159 
160 	xe_pm_runtime_get(xe);
161 
162 	/*
163 	 * No need for exec_queue.lock here as there is no contention for it
164 	 * when FD is closing as IOCTLs presumably can't be modifying the
165 	 * xarray. Taking exec_queue.lock here causes undue dependency on
166 	 * vm->lock taken during xe_exec_queue_kill().
167 	 */
168 	xa_for_each(&xef->exec_queue.xa, idx, q) {
169 		if (q->vm && q->hwe->hw_engine_group)
170 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
171 		xe_exec_queue_kill(q);
172 		xe_exec_queue_put(q);
173 	}
174 	xa_for_each(&xef->vm.xa, idx, vm)
175 		xe_vm_close_and_put(vm);
176 
177 	xe_file_put(xef);
178 
179 	xe_pm_runtime_put(xe);
180 }
181 
182 static const struct drm_ioctl_desc xe_ioctls[] = {
183 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
186 			  DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
192 			  DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
194 			  DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
196 			  DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
200 };
201 
202 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
203 {
204 	struct drm_file *file_priv = file->private_data;
205 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
206 	long ret;
207 
208 	if (xe_device_wedged(xe))
209 		return -ECANCELED;
210 
211 	ret = xe_pm_runtime_get_ioctl(xe);
212 	if (ret >= 0)
213 		ret = drm_ioctl(file, cmd, arg);
214 	xe_pm_runtime_put(xe);
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_COMPAT
220 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
221 {
222 	struct drm_file *file_priv = file->private_data;
223 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
224 	long ret;
225 
226 	if (xe_device_wedged(xe))
227 		return -ECANCELED;
228 
229 	ret = xe_pm_runtime_get_ioctl(xe);
230 	if (ret >= 0)
231 		ret = drm_compat_ioctl(file, cmd, arg);
232 	xe_pm_runtime_put(xe);
233 
234 	return ret;
235 }
236 #else
237 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
238 #define xe_drm_compat_ioctl NULL
239 #endif
240 
241 static void barrier_open(struct vm_area_struct *vma)
242 {
243 	drm_dev_get(vma->vm_private_data);
244 }
245 
246 static void barrier_close(struct vm_area_struct *vma)
247 {
248 	drm_dev_put(vma->vm_private_data);
249 }
250 
251 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
252 {
253 	struct page *dummy_page = (struct page *)res;
254 
255 	__free_page(dummy_page);
256 }
257 
258 static vm_fault_t barrier_fault(struct vm_fault *vmf)
259 {
260 	struct drm_device *dev = vmf->vma->vm_private_data;
261 	struct vm_area_struct *vma = vmf->vma;
262 	vm_fault_t ret = VM_FAULT_NOPAGE;
263 	pgprot_t prot;
264 	int idx;
265 
266 	prot = vm_get_page_prot(vma->vm_flags);
267 
268 	if (drm_dev_enter(dev, &idx)) {
269 		unsigned long pfn;
270 
271 #define LAST_DB_PAGE_OFFSET 0x7ff001
272 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
273 				LAST_DB_PAGE_OFFSET);
274 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
275 					  pgprot_noncached(prot));
276 		drm_dev_exit(idx);
277 	} else {
278 		struct page *page;
279 
280 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
281 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282 		if (!page)
283 			return VM_FAULT_OOM;
284 
285 		/* Set the page to be freed using drmm release action */
286 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
287 			return VM_FAULT_OOM;
288 
289 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
290 					  prot);
291 	}
292 
293 	return ret;
294 }
295 
296 static const struct vm_operations_struct vm_ops_barrier = {
297 	.open = barrier_open,
298 	.close = barrier_close,
299 	.fault = barrier_fault,
300 };
301 
302 static int xe_pci_barrier_mmap(struct file *filp,
303 			       struct vm_area_struct *vma)
304 {
305 	struct drm_file *priv = filp->private_data;
306 	struct drm_device *dev = priv->minor->dev;
307 	struct xe_device *xe = to_xe_device(dev);
308 
309 	if (!IS_DGFX(xe))
310 		return -EINVAL;
311 
312 	if (vma->vm_end - vma->vm_start > SZ_4K)
313 		return -EINVAL;
314 
315 	if (is_cow_mapping(vma->vm_flags))
316 		return -EINVAL;
317 
318 	if (vma->vm_flags & (VM_READ | VM_EXEC))
319 		return -EINVAL;
320 
321 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
322 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
323 	vma->vm_ops = &vm_ops_barrier;
324 	vma->vm_private_data = dev;
325 	drm_dev_get(vma->vm_private_data);
326 
327 	return 0;
328 }
329 
330 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
331 {
332 	struct drm_file *priv = filp->private_data;
333 	struct drm_device *dev = priv->minor->dev;
334 
335 	if (drm_dev_is_unplugged(dev))
336 		return -ENODEV;
337 
338 	switch (vma->vm_pgoff) {
339 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
340 		return xe_pci_barrier_mmap(filp, vma);
341 	}
342 
343 	return drm_gem_mmap(filp, vma);
344 }
345 
346 static const struct file_operations xe_driver_fops = {
347 	.owner = THIS_MODULE,
348 	.open = drm_open,
349 	.release = drm_release_noglobal,
350 	.unlocked_ioctl = xe_drm_ioctl,
351 	.mmap = xe_mmap,
352 	.poll = drm_poll,
353 	.read = drm_read,
354 	.compat_ioctl = xe_drm_compat_ioctl,
355 	.llseek = noop_llseek,
356 #ifdef CONFIG_PROC_FS
357 	.show_fdinfo = drm_show_fdinfo,
358 #endif
359 	.fop_flags = FOP_UNSIGNED_OFFSET,
360 };
361 
362 static struct drm_driver driver = {
363 	/* Don't use MTRRs here; the Xserver or userspace app should
364 	 * deal with them for Intel hardware.
365 	 */
366 	.driver_features =
367 	    DRIVER_GEM |
368 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
369 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
370 	.open = xe_file_open,
371 	.postclose = xe_file_close,
372 
373 	.gem_prime_import = xe_gem_prime_import,
374 
375 	.dumb_create = xe_bo_dumb_create,
376 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
377 #ifdef CONFIG_PROC_FS
378 	.show_fdinfo = xe_drm_client_fdinfo,
379 #endif
380 	.ioctls = xe_ioctls,
381 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
382 	.fops = &xe_driver_fops,
383 	.name = DRIVER_NAME,
384 	.desc = DRIVER_DESC,
385 	.major = DRIVER_MAJOR,
386 	.minor = DRIVER_MINOR,
387 	.patchlevel = DRIVER_PATCHLEVEL,
388 };
389 
390 static void xe_device_destroy(struct drm_device *dev, void *dummy)
391 {
392 	struct xe_device *xe = to_xe_device(dev);
393 
394 	xe_bo_dev_fini(&xe->bo_device);
395 
396 	if (xe->preempt_fence_wq)
397 		destroy_workqueue(xe->preempt_fence_wq);
398 
399 	if (xe->ordered_wq)
400 		destroy_workqueue(xe->ordered_wq);
401 
402 	if (xe->unordered_wq)
403 		destroy_workqueue(xe->unordered_wq);
404 
405 	if (xe->destroy_wq)
406 		destroy_workqueue(xe->destroy_wq);
407 
408 	ttm_device_fini(&xe->ttm);
409 }
410 
411 struct xe_device *xe_device_create(struct pci_dev *pdev,
412 				   const struct pci_device_id *ent)
413 {
414 	struct xe_device *xe;
415 	int err;
416 
417 	xe_display_driver_set_hooks(&driver);
418 
419 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
420 	if (err)
421 		return ERR_PTR(err);
422 
423 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
424 	if (IS_ERR(xe))
425 		return xe;
426 
427 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
428 			      xe->drm.anon_inode->i_mapping,
429 			      xe->drm.vma_offset_manager, false, false);
430 	if (WARN_ON(err))
431 		goto err;
432 
433 	xe_bo_dev_init(&xe->bo_device);
434 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
435 	if (err)
436 		goto err;
437 
438 	err = xe_shrinker_create(xe);
439 	if (err)
440 		goto err;
441 
442 	xe->info.devid = pdev->device;
443 	xe->info.revid = pdev->revision;
444 	xe->info.force_execlist = xe_modparam.force_execlist;
445 	xe->atomic_svm_timeslice_ms = 5;
446 
447 	err = xe_irq_init(xe);
448 	if (err)
449 		goto err;
450 
451 	init_waitqueue_head(&xe->ufence_wq);
452 
453 	init_rwsem(&xe->usm.lock);
454 
455 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
456 
457 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
458 		/* Trigger a large asid and an early asid wrap. */
459 		u32 asid;
460 
461 		BUILD_BUG_ON(XE_MAX_ASID < 2);
462 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
463 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
464 				      &xe->usm.next_asid, GFP_KERNEL);
465 		drm_WARN_ON(&xe->drm, err);
466 		if (err >= 0)
467 			xa_erase(&xe->usm.asid_to_vm, asid);
468 	}
469 
470 	err = xe_bo_pinned_init(xe);
471 	if (err)
472 		goto err;
473 
474 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
475 						       WQ_MEM_RECLAIM);
476 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
477 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
478 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
479 	if (!xe->ordered_wq || !xe->unordered_wq ||
480 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
481 		/*
482 		 * Cleanup done in xe_device_destroy via
483 		 * drmm_add_action_or_reset register above
484 		 */
485 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
486 		err = -ENOMEM;
487 		goto err;
488 	}
489 
490 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
491 	if (err)
492 		goto err;
493 
494 	err = xe_display_create(xe);
495 	if (WARN_ON(err))
496 		goto err;
497 
498 	return xe;
499 
500 err:
501 	return ERR_PTR(err);
502 }
503 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
504 
505 static bool xe_driver_flr_disabled(struct xe_device *xe)
506 {
507 	if (IS_SRIOV_VF(xe))
508 		return true;
509 
510 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
511 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
512 		return true;
513 	}
514 
515 	return false;
516 }
517 
518 /*
519  * The driver-initiated FLR is the highest level of reset that we can trigger
520  * from within the driver. It is different from the PCI FLR in that it doesn't
521  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
522  * it doesn't require a re-enumeration of the PCI BARs. However, the
523  * driver-initiated FLR does still cause a reset of both GT and display and a
524  * memory wipe of local and stolen memory, so recovery would require a full HW
525  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
526  * perform the FLR as the very last action before releasing access to the HW
527  * during the driver release flow, we don't attempt recovery at all, because
528  * if/when a new instance of i915 is bound to the device it will do a full
529  * re-init anyway.
530  */
531 static void __xe_driver_flr(struct xe_device *xe)
532 {
533 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
534 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
535 	int ret;
536 
537 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
538 
539 	/*
540 	 * Make sure any pending FLR requests have cleared by waiting for the
541 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
542 	 * to make sure it's not still set from a prior attempt (it's a write to
543 	 * clear bit).
544 	 * Note that we should never be in a situation where a previous attempt
545 	 * is still pending (unless the HW is totally dead), but better to be
546 	 * safe in case something unexpected happens
547 	 */
548 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
549 	if (ret) {
550 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
551 		return;
552 	}
553 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
554 
555 	/* Trigger the actual Driver-FLR */
556 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
557 
558 	/* Wait for hardware teardown to complete */
559 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
560 	if (ret) {
561 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
562 		return;
563 	}
564 
565 	/* Wait for hardware/firmware re-init to complete */
566 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
567 			     flr_timeout, NULL, false);
568 	if (ret) {
569 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
570 		return;
571 	}
572 
573 	/* Clear sticky completion status */
574 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
575 }
576 
577 static void xe_driver_flr(struct xe_device *xe)
578 {
579 	if (xe_driver_flr_disabled(xe))
580 		return;
581 
582 	__xe_driver_flr(xe);
583 }
584 
585 static void xe_driver_flr_fini(void *arg)
586 {
587 	struct xe_device *xe = arg;
588 
589 	if (xe->needs_flr_on_fini)
590 		xe_driver_flr(xe);
591 }
592 
593 static void xe_device_sanitize(void *arg)
594 {
595 	struct xe_device *xe = arg;
596 	struct xe_gt *gt;
597 	u8 id;
598 
599 	for_each_gt(gt, xe, id)
600 		xe_gt_sanitize(gt);
601 }
602 
603 static int xe_set_dma_info(struct xe_device *xe)
604 {
605 	unsigned int mask_size = xe->info.dma_mask_size;
606 	int err;
607 
608 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
609 
610 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
611 	if (err)
612 		goto mask_err;
613 
614 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
615 	if (err)
616 		goto mask_err;
617 
618 	return 0;
619 
620 mask_err:
621 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
622 	return err;
623 }
624 
625 static bool verify_lmem_ready(struct xe_device *xe)
626 {
627 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
628 
629 	return !!val;
630 }
631 
632 static int wait_for_lmem_ready(struct xe_device *xe)
633 {
634 	unsigned long timeout, start;
635 
636 	if (!IS_DGFX(xe))
637 		return 0;
638 
639 	if (IS_SRIOV_VF(xe))
640 		return 0;
641 
642 	if (verify_lmem_ready(xe))
643 		return 0;
644 
645 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
646 
647 	start = jiffies;
648 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
649 
650 	do {
651 		if (signal_pending(current))
652 			return -EINTR;
653 
654 		/*
655 		 * The boot firmware initializes local memory and
656 		 * assesses its health. If memory training fails,
657 		 * the punit will have been instructed to keep the GT powered
658 		 * down.we won't be able to communicate with it
659 		 *
660 		 * If the status check is done before punit updates the register,
661 		 * it can lead to the system being unusable.
662 		 * use a timeout and defer the probe to prevent this.
663 		 */
664 		if (time_after(jiffies, timeout)) {
665 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
666 			return -EPROBE_DEFER;
667 		}
668 
669 		msleep(20);
670 
671 	} while (!verify_lmem_ready(xe));
672 
673 	drm_dbg(&xe->drm, "lmem ready after %ums",
674 		jiffies_to_msecs(jiffies - start));
675 
676 	return 0;
677 }
678 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
679 
680 static void sriov_update_device_info(struct xe_device *xe)
681 {
682 	/* disable features that are not available/applicable to VFs */
683 	if (IS_SRIOV_VF(xe)) {
684 		xe->info.probe_display = 0;
685 		xe->info.has_heci_gscfi = 0;
686 		xe->info.skip_guc_pc = 1;
687 		xe->info.skip_pcode = 1;
688 	}
689 }
690 
691 /**
692  * xe_device_probe_early: Device early probe
693  * @xe: xe device instance
694  *
695  * Initialize MMIO resources that don't require any
696  * knowledge about tile count. Also initialize pcode and
697  * check vram initialization on root tile.
698  *
699  * Return: 0 on success, error code on failure
700  */
701 int xe_device_probe_early(struct xe_device *xe)
702 {
703 	int err;
704 
705 	err = xe_mmio_probe_early(xe);
706 	if (err)
707 		return err;
708 
709 	xe_sriov_probe_early(xe);
710 
711 	sriov_update_device_info(xe);
712 
713 	err = xe_pcode_probe_early(xe);
714 	if (err || xe_survivability_mode_is_requested(xe)) {
715 		int save_err = err;
716 
717 		/*
718 		 * Try to leave device in survivability mode if device is
719 		 * possible, but still return the previous error for error
720 		 * propagation
721 		 */
722 		err = xe_survivability_mode_enable(xe);
723 		if (err)
724 			return err;
725 
726 		return save_err;
727 	}
728 
729 	err = wait_for_lmem_ready(xe);
730 	if (err)
731 		return err;
732 
733 	xe->wedged.mode = xe_modparam.wedged_mode;
734 
735 	return 0;
736 }
737 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
738 
739 static int probe_has_flat_ccs(struct xe_device *xe)
740 {
741 	struct xe_gt *gt;
742 	unsigned int fw_ref;
743 	u32 reg;
744 
745 	/* Always enabled/disabled, no runtime check to do */
746 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
747 		return 0;
748 
749 	gt = xe_root_mmio_gt(xe);
750 
751 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
752 	if (!fw_ref)
753 		return -ETIMEDOUT;
754 
755 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
756 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
757 
758 	if (!xe->info.has_flat_ccs)
759 		drm_dbg(&xe->drm,
760 			"Flat CCS has been disabled in bios, May lead to performance impact");
761 
762 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
763 
764 	return 0;
765 }
766 
767 int xe_device_probe(struct xe_device *xe)
768 {
769 	struct xe_tile *tile;
770 	struct xe_gt *gt;
771 	int err;
772 	u8 id;
773 
774 	xe_pat_init_early(xe);
775 
776 	err = xe_sriov_init(xe);
777 	if (err)
778 		return err;
779 
780 	xe->info.mem_region_mask = 1;
781 
782 	err = xe_set_dma_info(xe);
783 	if (err)
784 		return err;
785 
786 	err = xe_mmio_probe_tiles(xe);
787 	if (err)
788 		return err;
789 
790 	err = xe_ttm_sys_mgr_init(xe);
791 	if (err)
792 		return err;
793 
794 	for_each_gt(gt, xe, id) {
795 		err = xe_gt_init_early(gt);
796 		if (err)
797 			return err;
798 
799 		/*
800 		 * Only after this point can GT-specific MMIO operations
801 		 * (including things like communication with the GuC)
802 		 * be performed.
803 		 */
804 		xe_gt_mmio_init(gt);
805 	}
806 
807 	for_each_tile(tile, xe, id) {
808 		if (IS_SRIOV_VF(xe)) {
809 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
810 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
811 			if (err)
812 				return err;
813 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
814 			if (err)
815 				return err;
816 		}
817 		err = xe_ggtt_init_early(tile->mem.ggtt);
818 		if (err)
819 			return err;
820 		err = xe_memirq_init(&tile->memirq);
821 		if (err)
822 			return err;
823 	}
824 
825 	for_each_gt(gt, xe, id) {
826 		err = xe_gt_init_hwconfig(gt);
827 		if (err)
828 			return err;
829 	}
830 
831 	err = xe_devcoredump_init(xe);
832 	if (err)
833 		return err;
834 
835 	/*
836 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
837 	 */
838 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
839 	if (err)
840 		return err;
841 
842 	err = probe_has_flat_ccs(xe);
843 	if (err)
844 		return err;
845 
846 	err = xe_vram_probe(xe);
847 	if (err)
848 		return err;
849 
850 	for_each_tile(tile, xe, id) {
851 		err = xe_tile_init_noalloc(tile);
852 		if (err)
853 			return err;
854 	}
855 
856 	/* Allocate and map stolen after potential VRAM resize */
857 	err = xe_ttm_stolen_mgr_init(xe);
858 	if (err)
859 		return err;
860 
861 	/*
862 	 * Now that GT is initialized (TTM in particular),
863 	 * we can try to init display, and inherit the initial fb.
864 	 * This is the reason the first allocation needs to be done
865 	 * inside display.
866 	 */
867 	err = xe_display_init_early(xe);
868 	if (err)
869 		return err;
870 
871 	for_each_tile(tile, xe, id) {
872 		err = xe_tile_init(tile);
873 		if (err)
874 			return err;
875 	}
876 
877 	err = xe_irq_install(xe);
878 	if (err)
879 		return err;
880 
881 	for_each_gt(gt, xe, id) {
882 		err = xe_gt_init(gt);
883 		if (err)
884 			return err;
885 	}
886 
887 	err = xe_heci_gsc_init(xe);
888 	if (err)
889 		return err;
890 
891 	err = xe_oa_init(xe);
892 	if (err)
893 		return err;
894 
895 	err = xe_display_init(xe);
896 	if (err)
897 		return err;
898 
899 	err = xe_pxp_init(xe);
900 	if (err)
901 		return err;
902 
903 	err = drm_dev_register(&xe->drm, 0);
904 	if (err)
905 		return err;
906 
907 	xe_display_register(xe);
908 
909 	err = xe_oa_register(xe);
910 	if (err)
911 		goto err_unregister_display;
912 
913 	err = xe_pmu_register(&xe->pmu);
914 	if (err)
915 		goto err_unregister_display;
916 
917 	err = xe_device_sysfs_init(xe);
918 	if (err)
919 		goto err_unregister_display;
920 
921 	xe_debugfs_register(xe);
922 
923 	err = xe_hwmon_register(xe);
924 	if (err)
925 		goto err_unregister_display;
926 
927 	for_each_gt(gt, xe, id)
928 		xe_gt_sanitize_freq(gt);
929 
930 	xe_vsec_init(xe);
931 
932 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
933 
934 err_unregister_display:
935 	xe_display_unregister(xe);
936 
937 	return err;
938 }
939 
940 void xe_device_remove(struct xe_device *xe)
941 {
942 	xe_display_unregister(xe);
943 
944 	drm_dev_unplug(&xe->drm);
945 
946 	xe_bo_pci_dev_remove_all(xe);
947 }
948 
949 void xe_device_shutdown(struct xe_device *xe)
950 {
951 	struct xe_gt *gt;
952 	u8 id;
953 
954 	drm_dbg(&xe->drm, "Shutting down device\n");
955 
956 	if (xe_driver_flr_disabled(xe)) {
957 		xe_display_pm_shutdown(xe);
958 
959 		xe_irq_suspend(xe);
960 
961 		for_each_gt(gt, xe, id)
962 			xe_gt_shutdown(gt);
963 
964 		xe_display_pm_shutdown_late(xe);
965 	} else {
966 		/* BOOM! */
967 		__xe_driver_flr(xe);
968 	}
969 }
970 
971 /**
972  * xe_device_wmb() - Device specific write memory barrier
973  * @xe: the &xe_device
974  *
975  * While wmb() is sufficient for a barrier if we use system memory, on discrete
976  * platforms with device memory we additionally need to issue a register write.
977  * Since it doesn't matter which register we write to, use the read-only VF_CAP
978  * register that is also marked as accessible by the VFs.
979  */
980 void xe_device_wmb(struct xe_device *xe)
981 {
982 	wmb();
983 	if (IS_DGFX(xe))
984 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
985 }
986 
987 /**
988  * xe_device_td_flush() - Flush transient L3 cache entries
989  * @xe: The device
990  *
991  * Display engine has direct access to memory and is never coherent with L3/L4
992  * caches (or CPU caches), however KMD is responsible for specifically flushing
993  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
994  * can happen from such a surface without seeing corruption.
995  *
996  * Display surfaces can be tagged as transient by mapping it using one of the
997  * various L3:XD PAT index modes on Xe2.
998  *
999  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1000  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1001  * Media is not coherent with L3 and we want to support render-vs-media
1002  * usescases. For other engines like copy/blt the HW internally forces uncached
1003  * behaviour, hence why we can skip the TDF on such platforms.
1004  */
1005 void xe_device_td_flush(struct xe_device *xe)
1006 {
1007 	struct xe_gt *gt;
1008 	unsigned int fw_ref;
1009 	u8 id;
1010 
1011 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1012 		return;
1013 
1014 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
1015 		xe_device_l2_flush(xe);
1016 		return;
1017 	}
1018 
1019 	for_each_gt(gt, xe, id) {
1020 		if (xe_gt_is_media_type(gt))
1021 			continue;
1022 
1023 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1024 		if (!fw_ref)
1025 			return;
1026 
1027 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1028 		/*
1029 		 * FIXME: We can likely do better here with our choice of
1030 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1031 		 * which is believed to be sufficient to cover the worst case
1032 		 * scenario on current platforms if all cache entries are
1033 		 * transient and need to be flushed..
1034 		 */
1035 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1036 				   150, NULL, false))
1037 			xe_gt_err_once(gt, "TD flush timeout\n");
1038 
1039 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1040 	}
1041 }
1042 
1043 void xe_device_l2_flush(struct xe_device *xe)
1044 {
1045 	struct xe_gt *gt;
1046 	unsigned int fw_ref;
1047 
1048 	gt = xe_root_mmio_gt(xe);
1049 
1050 	if (!XE_WA(gt, 16023588340))
1051 		return;
1052 
1053 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1054 	if (!fw_ref)
1055 		return;
1056 
1057 	spin_lock(&gt->global_invl_lock);
1058 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1059 
1060 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1061 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1062 	spin_unlock(&gt->global_invl_lock);
1063 
1064 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1065 }
1066 
1067 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1068 {
1069 	return xe_device_has_flat_ccs(xe) ?
1070 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1071 }
1072 
1073 /**
1074  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1075  * @xe: xe device instance
1076  *
1077  * To be used before any kind of memory access. It will splat a debug warning
1078  * if the device is currently sleeping. But it doesn't guarantee in any way
1079  * that the device is going to remain awake. Xe PM runtime get and put
1080  * functions might be added to the outer bound of the memory access, while
1081  * this check is intended for inner usage to splat some warning if the worst
1082  * case has just happened.
1083  */
1084 void xe_device_assert_mem_access(struct xe_device *xe)
1085 {
1086 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1087 }
1088 
1089 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1090 {
1091 	struct xe_gt *gt;
1092 	u8 id;
1093 
1094 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1095 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1096 
1097 	for_each_gt(gt, xe, id) {
1098 		drm_printf(p, "GT id: %u\n", id);
1099 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1100 		drm_printf(p, "\tType: %s\n",
1101 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1102 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1103 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1104 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1105 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1106 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1107 	}
1108 }
1109 
1110 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1111 {
1112 	return sign_extend64(address, xe->info.va_bits - 1);
1113 }
1114 
1115 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1116 {
1117 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1118 }
1119 
1120 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1121 {
1122 	struct xe_device *xe = arg;
1123 
1124 	xe_pm_runtime_put(xe);
1125 }
1126 
1127 /**
1128  * xe_device_declare_wedged - Declare device wedged
1129  * @xe: xe device instance
1130  *
1131  * This is a final state that can only be cleared with a module
1132  * re-probe (unbind + bind).
1133  * In this state every IOCTL will be blocked so the GT cannot be used.
1134  * In general it will be called upon any critical error such as gt reset
1135  * failure or guc loading failure. Userspace will be notified of this state
1136  * through device wedged uevent.
1137  * If xe.wedged module parameter is set to 2, this function will be called
1138  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1139  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1140  * the issue is preserved for further debugging.
1141  */
1142 void xe_device_declare_wedged(struct xe_device *xe)
1143 {
1144 	struct xe_gt *gt;
1145 	u8 id;
1146 
1147 	if (xe->wedged.mode == 0) {
1148 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1149 		return;
1150 	}
1151 
1152 	xe_pm_runtime_get_noresume(xe);
1153 
1154 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1155 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1156 		return;
1157 	}
1158 
1159 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1160 		xe->needs_flr_on_fini = true;
1161 		drm_err(&xe->drm,
1162 			"CRITICAL: Xe has declared device %s as wedged.\n"
1163 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1164 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1165 			dev_name(xe->drm.dev));
1166 
1167 		/* Notify userspace of wedged device */
1168 		drm_dev_wedged_event(&xe->drm,
1169 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1170 	}
1171 
1172 	for_each_gt(gt, xe, id)
1173 		xe_gt_declare_wedged(gt);
1174 }
1175