1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_query.h" 53 #include "xe_sriov.h" 54 #include "xe_tile.h" 55 #include "xe_ttm_stolen_mgr.h" 56 #include "xe_ttm_sys_mgr.h" 57 #include "xe_vm.h" 58 #include "xe_vram.h" 59 #include "xe_wait_user_fence.h" 60 #include "xe_wa.h" 61 62 #include <generated/xe_wa_oob.h> 63 64 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 65 { 66 struct xe_device *xe = to_xe_device(dev); 67 struct xe_drm_client *client; 68 struct xe_file *xef; 69 int ret = -ENOMEM; 70 struct task_struct *task = NULL; 71 72 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 73 if (!xef) 74 return ret; 75 76 client = xe_drm_client_alloc(); 77 if (!client) { 78 kfree(xef); 79 return ret; 80 } 81 82 xef->drm = file; 83 xef->client = client; 84 xef->xe = xe; 85 86 mutex_init(&xef->vm.lock); 87 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 88 89 mutex_init(&xef->exec_queue.lock); 90 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 91 92 file->driver_priv = xef; 93 kref_init(&xef->refcount); 94 95 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 96 if (task) { 97 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 98 xef->pid = task->pid; 99 put_task_struct(task); 100 } 101 102 return 0; 103 } 104 105 static void xe_file_destroy(struct kref *ref) 106 { 107 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 108 109 xa_destroy(&xef->exec_queue.xa); 110 mutex_destroy(&xef->exec_queue.lock); 111 xa_destroy(&xef->vm.xa); 112 mutex_destroy(&xef->vm.lock); 113 114 xe_drm_client_put(xef->client); 115 kfree(xef->process_name); 116 kfree(xef); 117 } 118 119 /** 120 * xe_file_get() - Take a reference to the xe file object 121 * @xef: Pointer to the xe file 122 * 123 * Anyone with a pointer to xef must take a reference to the xe file 124 * object using this call. 125 * 126 * Return: xe file pointer 127 */ 128 struct xe_file *xe_file_get(struct xe_file *xef) 129 { 130 kref_get(&xef->refcount); 131 return xef; 132 } 133 134 /** 135 * xe_file_put() - Drop a reference to the xe file object 136 * @xef: Pointer to the xe file 137 * 138 * Used to drop reference to the xef object 139 */ 140 void xe_file_put(struct xe_file *xef) 141 { 142 kref_put(&xef->refcount, xe_file_destroy); 143 } 144 145 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 146 { 147 struct xe_device *xe = to_xe_device(dev); 148 struct xe_file *xef = file->driver_priv; 149 struct xe_vm *vm; 150 struct xe_exec_queue *q; 151 unsigned long idx; 152 153 xe_pm_runtime_get(xe); 154 155 /* 156 * No need for exec_queue.lock here as there is no contention for it 157 * when FD is closing as IOCTLs presumably can't be modifying the 158 * xarray. Taking exec_queue.lock here causes undue dependency on 159 * vm->lock taken during xe_exec_queue_kill(). 160 */ 161 xa_for_each(&xef->exec_queue.xa, idx, q) { 162 if (q->vm && q->hwe->hw_engine_group) 163 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 164 xe_exec_queue_kill(q); 165 xe_exec_queue_put(q); 166 } 167 xa_for_each(&xef->vm.xa, idx, vm) 168 xe_vm_close_and_put(vm); 169 170 xe_file_put(xef); 171 172 xe_pm_runtime_put(xe); 173 } 174 175 static const struct drm_ioctl_desc xe_ioctls[] = { 176 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 177 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 178 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 179 DRM_RENDER_ALLOW), 180 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 181 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 183 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 185 DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 187 DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 189 DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 191 DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 193 }; 194 195 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 196 { 197 struct drm_file *file_priv = file->private_data; 198 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 199 long ret; 200 201 if (xe_device_wedged(xe)) 202 return -ECANCELED; 203 204 ret = xe_pm_runtime_get_ioctl(xe); 205 if (ret >= 0) 206 ret = drm_ioctl(file, cmd, arg); 207 xe_pm_runtime_put(xe); 208 209 return ret; 210 } 211 212 #ifdef CONFIG_COMPAT 213 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 214 { 215 struct drm_file *file_priv = file->private_data; 216 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 217 long ret; 218 219 if (xe_device_wedged(xe)) 220 return -ECANCELED; 221 222 ret = xe_pm_runtime_get_ioctl(xe); 223 if (ret >= 0) 224 ret = drm_compat_ioctl(file, cmd, arg); 225 xe_pm_runtime_put(xe); 226 227 return ret; 228 } 229 #else 230 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 231 #define xe_drm_compat_ioctl NULL 232 #endif 233 234 static const struct file_operations xe_driver_fops = { 235 .owner = THIS_MODULE, 236 .open = drm_open, 237 .release = drm_release_noglobal, 238 .unlocked_ioctl = xe_drm_ioctl, 239 .mmap = drm_gem_mmap, 240 .poll = drm_poll, 241 .read = drm_read, 242 .compat_ioctl = xe_drm_compat_ioctl, 243 .llseek = noop_llseek, 244 #ifdef CONFIG_PROC_FS 245 .show_fdinfo = drm_show_fdinfo, 246 #endif 247 .fop_flags = FOP_UNSIGNED_OFFSET, 248 }; 249 250 static struct drm_driver driver = { 251 /* Don't use MTRRs here; the Xserver or userspace app should 252 * deal with them for Intel hardware. 253 */ 254 .driver_features = 255 DRIVER_GEM | 256 DRIVER_RENDER | DRIVER_SYNCOBJ | 257 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 258 .open = xe_file_open, 259 .postclose = xe_file_close, 260 261 .gem_prime_import = xe_gem_prime_import, 262 263 .dumb_create = xe_bo_dumb_create, 264 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 265 #ifdef CONFIG_PROC_FS 266 .show_fdinfo = xe_drm_client_fdinfo, 267 #endif 268 .ioctls = xe_ioctls, 269 .num_ioctls = ARRAY_SIZE(xe_ioctls), 270 .fops = &xe_driver_fops, 271 .name = DRIVER_NAME, 272 .desc = DRIVER_DESC, 273 .date = DRIVER_DATE, 274 .major = DRIVER_MAJOR, 275 .minor = DRIVER_MINOR, 276 .patchlevel = DRIVER_PATCHLEVEL, 277 }; 278 279 static void xe_device_destroy(struct drm_device *dev, void *dummy) 280 { 281 struct xe_device *xe = to_xe_device(dev); 282 283 if (xe->preempt_fence_wq) 284 destroy_workqueue(xe->preempt_fence_wq); 285 286 if (xe->ordered_wq) 287 destroy_workqueue(xe->ordered_wq); 288 289 if (xe->unordered_wq) 290 destroy_workqueue(xe->unordered_wq); 291 292 if (xe->destroy_wq) 293 destroy_workqueue(xe->destroy_wq); 294 295 ttm_device_fini(&xe->ttm); 296 } 297 298 struct xe_device *xe_device_create(struct pci_dev *pdev, 299 const struct pci_device_id *ent) 300 { 301 struct xe_device *xe; 302 int err; 303 304 xe_display_driver_set_hooks(&driver); 305 306 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 307 if (err) 308 return ERR_PTR(err); 309 310 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 311 if (IS_ERR(xe)) 312 return xe; 313 314 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 315 xe->drm.anon_inode->i_mapping, 316 xe->drm.vma_offset_manager, false, false); 317 if (WARN_ON(err)) 318 goto err; 319 320 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 321 if (err) 322 goto err; 323 324 xe->info.devid = pdev->device; 325 xe->info.revid = pdev->revision; 326 xe->info.force_execlist = xe_modparam.force_execlist; 327 328 spin_lock_init(&xe->irq.lock); 329 330 init_waitqueue_head(&xe->ufence_wq); 331 332 init_rwsem(&xe->usm.lock); 333 334 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 335 336 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 337 /* Trigger a large asid and an early asid wrap. */ 338 u32 asid; 339 340 BUILD_BUG_ON(XE_MAX_ASID < 2); 341 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 342 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 343 &xe->usm.next_asid, GFP_KERNEL); 344 drm_WARN_ON(&xe->drm, err); 345 if (err >= 0) 346 xa_erase(&xe->usm.asid_to_vm, asid); 347 } 348 349 spin_lock_init(&xe->pinned.lock); 350 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 351 INIT_LIST_HEAD(&xe->pinned.external_vram); 352 INIT_LIST_HEAD(&xe->pinned.evicted); 353 354 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 355 WQ_MEM_RECLAIM); 356 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 357 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 358 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 359 if (!xe->ordered_wq || !xe->unordered_wq || 360 !xe->preempt_fence_wq || !xe->destroy_wq) { 361 /* 362 * Cleanup done in xe_device_destroy via 363 * drmm_add_action_or_reset register above 364 */ 365 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 366 err = -ENOMEM; 367 goto err; 368 } 369 370 err = xe_display_create(xe); 371 if (WARN_ON(err)) 372 goto err; 373 374 return xe; 375 376 err: 377 return ERR_PTR(err); 378 } 379 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 380 381 static bool xe_driver_flr_disabled(struct xe_device *xe) 382 { 383 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 384 } 385 386 /* 387 * The driver-initiated FLR is the highest level of reset that we can trigger 388 * from within the driver. It is different from the PCI FLR in that it doesn't 389 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 390 * it doesn't require a re-enumeration of the PCI BARs. However, the 391 * driver-initiated FLR does still cause a reset of both GT and display and a 392 * memory wipe of local and stolen memory, so recovery would require a full HW 393 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 394 * perform the FLR as the very last action before releasing access to the HW 395 * during the driver release flow, we don't attempt recovery at all, because 396 * if/when a new instance of i915 is bound to the device it will do a full 397 * re-init anyway. 398 */ 399 static void __xe_driver_flr(struct xe_device *xe) 400 { 401 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 402 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 403 int ret; 404 405 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 406 407 /* 408 * Make sure any pending FLR requests have cleared by waiting for the 409 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 410 * to make sure it's not still set from a prior attempt (it's a write to 411 * clear bit). 412 * Note that we should never be in a situation where a previous attempt 413 * is still pending (unless the HW is totally dead), but better to be 414 * safe in case something unexpected happens 415 */ 416 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 417 if (ret) { 418 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 419 return; 420 } 421 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 422 423 /* Trigger the actual Driver-FLR */ 424 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 425 426 /* Wait for hardware teardown to complete */ 427 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 428 if (ret) { 429 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 430 return; 431 } 432 433 /* Wait for hardware/firmware re-init to complete */ 434 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 435 flr_timeout, NULL, false); 436 if (ret) { 437 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 438 return; 439 } 440 441 /* Clear sticky completion status */ 442 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 443 } 444 445 static void xe_driver_flr(struct xe_device *xe) 446 { 447 if (xe_driver_flr_disabled(xe)) { 448 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 449 return; 450 } 451 452 __xe_driver_flr(xe); 453 } 454 455 static void xe_driver_flr_fini(void *arg) 456 { 457 struct xe_device *xe = arg; 458 459 if (xe->needs_flr_on_fini) 460 xe_driver_flr(xe); 461 } 462 463 static void xe_device_sanitize(void *arg) 464 { 465 struct xe_device *xe = arg; 466 struct xe_gt *gt; 467 u8 id; 468 469 for_each_gt(gt, xe, id) 470 xe_gt_sanitize(gt); 471 } 472 473 static int xe_set_dma_info(struct xe_device *xe) 474 { 475 unsigned int mask_size = xe->info.dma_mask_size; 476 int err; 477 478 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 479 480 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 481 if (err) 482 goto mask_err; 483 484 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 485 if (err) 486 goto mask_err; 487 488 return 0; 489 490 mask_err: 491 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 492 return err; 493 } 494 495 static bool verify_lmem_ready(struct xe_device *xe) 496 { 497 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 498 499 return !!val; 500 } 501 502 static int wait_for_lmem_ready(struct xe_device *xe) 503 { 504 unsigned long timeout, start; 505 506 if (!IS_DGFX(xe)) 507 return 0; 508 509 if (IS_SRIOV_VF(xe)) 510 return 0; 511 512 if (verify_lmem_ready(xe)) 513 return 0; 514 515 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 516 517 start = jiffies; 518 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 519 520 do { 521 if (signal_pending(current)) 522 return -EINTR; 523 524 /* 525 * The boot firmware initializes local memory and 526 * assesses its health. If memory training fails, 527 * the punit will have been instructed to keep the GT powered 528 * down.we won't be able to communicate with it 529 * 530 * If the status check is done before punit updates the register, 531 * it can lead to the system being unusable. 532 * use a timeout and defer the probe to prevent this. 533 */ 534 if (time_after(jiffies, timeout)) { 535 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 536 return -EPROBE_DEFER; 537 } 538 539 msleep(20); 540 541 } while (!verify_lmem_ready(xe)); 542 543 drm_dbg(&xe->drm, "lmem ready after %ums", 544 jiffies_to_msecs(jiffies - start)); 545 546 return 0; 547 } 548 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 549 550 static void update_device_info(struct xe_device *xe) 551 { 552 /* disable features that are not available/applicable to VFs */ 553 if (IS_SRIOV_VF(xe)) { 554 xe->info.probe_display = 0; 555 xe->info.has_heci_gscfi = 0; 556 xe->info.skip_guc_pc = 1; 557 xe->info.skip_pcode = 1; 558 } 559 } 560 561 /** 562 * xe_device_probe_early: Device early probe 563 * @xe: xe device instance 564 * 565 * Initialize MMIO resources that don't require any 566 * knowledge about tile count. Also initialize pcode and 567 * check vram initialization on root tile. 568 * 569 * Return: 0 on success, error code on failure 570 */ 571 int xe_device_probe_early(struct xe_device *xe) 572 { 573 int err; 574 575 err = xe_mmio_init(xe); 576 if (err) 577 return err; 578 579 xe_sriov_probe_early(xe); 580 581 update_device_info(xe); 582 583 err = xe_pcode_probe_early(xe); 584 if (err) 585 return err; 586 587 err = wait_for_lmem_ready(xe); 588 if (err) 589 return err; 590 591 xe->wedged.mode = xe_modparam.wedged_mode; 592 593 return 0; 594 } 595 596 static int probe_has_flat_ccs(struct xe_device *xe) 597 { 598 struct xe_gt *gt; 599 unsigned int fw_ref; 600 u32 reg; 601 602 /* Always enabled/disabled, no runtime check to do */ 603 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) 604 return 0; 605 606 gt = xe_root_mmio_gt(xe); 607 608 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 609 if (!fw_ref) 610 return -ETIMEDOUT; 611 612 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 613 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 614 615 if (!xe->info.has_flat_ccs) 616 drm_dbg(&xe->drm, 617 "Flat CCS has been disabled in bios, May lead to performance impact"); 618 619 xe_force_wake_put(gt_to_fw(gt), fw_ref); 620 return 0; 621 } 622 623 int xe_device_probe(struct xe_device *xe) 624 { 625 struct xe_tile *tile; 626 struct xe_gt *gt; 627 int err; 628 u8 last_gt; 629 u8 id; 630 631 xe_pat_init_early(xe); 632 633 err = xe_sriov_init(xe); 634 if (err) 635 return err; 636 637 xe->info.mem_region_mask = 1; 638 err = xe_display_init_nommio(xe); 639 if (err) 640 return err; 641 642 err = xe_set_dma_info(xe); 643 if (err) 644 return err; 645 646 err = xe_mmio_probe_tiles(xe); 647 if (err) 648 return err; 649 650 xe_ttm_sys_mgr_init(xe); 651 652 for_each_gt(gt, xe, id) { 653 err = xe_gt_init_early(gt); 654 if (err) 655 return err; 656 657 /* 658 * Only after this point can GT-specific MMIO operations 659 * (including things like communication with the GuC) 660 * be performed. 661 */ 662 xe_gt_mmio_init(gt); 663 } 664 665 for_each_tile(tile, xe, id) { 666 if (IS_SRIOV_VF(xe)) { 667 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 668 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 669 if (err) 670 return err; 671 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 672 if (err) 673 return err; 674 } 675 err = xe_ggtt_init_early(tile->mem.ggtt); 676 if (err) 677 return err; 678 err = xe_memirq_init(&tile->memirq); 679 if (err) 680 return err; 681 } 682 683 for_each_gt(gt, xe, id) { 684 err = xe_gt_init_hwconfig(gt); 685 if (err) 686 return err; 687 } 688 689 err = xe_devcoredump_init(xe); 690 if (err) 691 return err; 692 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 693 if (err) 694 return err; 695 696 err = xe_display_init_noirq(xe); 697 if (err) 698 return err; 699 700 err = xe_irq_install(xe); 701 if (err) 702 goto err; 703 704 err = probe_has_flat_ccs(xe); 705 if (err) 706 goto err; 707 708 err = xe_vram_probe(xe); 709 if (err) 710 goto err; 711 712 for_each_tile(tile, xe, id) { 713 err = xe_tile_init_noalloc(tile); 714 if (err) 715 goto err; 716 } 717 718 /* Allocate and map stolen after potential VRAM resize */ 719 xe_ttm_stolen_mgr_init(xe); 720 721 /* 722 * Now that GT is initialized (TTM in particular), 723 * we can try to init display, and inherit the initial fb. 724 * This is the reason the first allocation needs to be done 725 * inside display. 726 */ 727 err = xe_display_init_noaccel(xe); 728 if (err) 729 goto err; 730 731 for_each_gt(gt, xe, id) { 732 last_gt = id; 733 734 err = xe_gt_init(gt); 735 if (err) 736 goto err_fini_gt; 737 } 738 739 xe_heci_gsc_init(xe); 740 741 err = xe_oa_init(xe); 742 if (err) 743 goto err_fini_gt; 744 745 err = xe_display_init(xe); 746 if (err) 747 goto err_fini_oa; 748 749 err = drm_dev_register(&xe->drm, 0); 750 if (err) 751 goto err_fini_display; 752 753 xe_display_register(xe); 754 755 xe_oa_register(xe); 756 757 xe_debugfs_register(xe); 758 759 xe_hwmon_register(xe); 760 761 for_each_gt(gt, xe, id) 762 xe_gt_sanitize_freq(gt); 763 764 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 765 766 err_fini_display: 767 xe_display_driver_remove(xe); 768 769 err_fini_oa: 770 xe_oa_fini(xe); 771 772 err_fini_gt: 773 for_each_gt(gt, xe, id) { 774 if (id < last_gt) 775 xe_gt_remove(gt); 776 else 777 break; 778 } 779 780 err: 781 xe_display_fini(xe); 782 return err; 783 } 784 785 static void xe_device_remove_display(struct xe_device *xe) 786 { 787 xe_display_unregister(xe); 788 789 drm_dev_unplug(&xe->drm); 790 xe_display_driver_remove(xe); 791 } 792 793 void xe_device_remove(struct xe_device *xe) 794 { 795 struct xe_gt *gt; 796 u8 id; 797 798 xe_oa_unregister(xe); 799 800 xe_device_remove_display(xe); 801 802 xe_display_fini(xe); 803 804 xe_oa_fini(xe); 805 806 xe_heci_gsc_fini(xe); 807 808 for_each_gt(gt, xe, id) 809 xe_gt_remove(gt); 810 } 811 812 void xe_device_shutdown(struct xe_device *xe) 813 { 814 struct xe_gt *gt; 815 u8 id; 816 817 drm_dbg(&xe->drm, "Shutting down device\n"); 818 819 if (xe_driver_flr_disabled(xe)) { 820 xe_display_pm_shutdown(xe); 821 822 xe_irq_suspend(xe); 823 824 for_each_gt(gt, xe, id) 825 xe_gt_shutdown(gt); 826 827 xe_display_pm_shutdown_late(xe); 828 } else { 829 /* BOOM! */ 830 __xe_driver_flr(xe); 831 } 832 } 833 834 /** 835 * xe_device_wmb() - Device specific write memory barrier 836 * @xe: the &xe_device 837 * 838 * While wmb() is sufficient for a barrier if we use system memory, on discrete 839 * platforms with device memory we additionally need to issue a register write. 840 * Since it doesn't matter which register we write to, use the read-only VF_CAP 841 * register that is also marked as accessible by the VFs. 842 */ 843 void xe_device_wmb(struct xe_device *xe) 844 { 845 wmb(); 846 if (IS_DGFX(xe)) 847 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 848 } 849 850 /** 851 * xe_device_td_flush() - Flush transient L3 cache entries 852 * @xe: The device 853 * 854 * Display engine has direct access to memory and is never coherent with L3/L4 855 * caches (or CPU caches), however KMD is responsible for specifically flushing 856 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 857 * can happen from such a surface without seeing corruption. 858 * 859 * Display surfaces can be tagged as transient by mapping it using one of the 860 * various L3:XD PAT index modes on Xe2. 861 * 862 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 863 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 864 * Media is not coherent with L3 and we want to support render-vs-media 865 * usescases. For other engines like copy/blt the HW internally forces uncached 866 * behaviour, hence why we can skip the TDF on such platforms. 867 */ 868 void xe_device_td_flush(struct xe_device *xe) 869 { 870 struct xe_gt *gt; 871 unsigned int fw_ref; 872 u8 id; 873 874 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 875 return; 876 877 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 878 xe_device_l2_flush(xe); 879 return; 880 } 881 882 for_each_gt(gt, xe, id) { 883 if (xe_gt_is_media_type(gt)) 884 continue; 885 886 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 887 if (!fw_ref) 888 return; 889 890 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 891 /* 892 * FIXME: We can likely do better here with our choice of 893 * timeout. Currently we just assume the worst case, i.e. 150us, 894 * which is believed to be sufficient to cover the worst case 895 * scenario on current platforms if all cache entries are 896 * transient and need to be flushed.. 897 */ 898 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 899 150, NULL, false)) 900 xe_gt_err_once(gt, "TD flush timeout\n"); 901 902 xe_force_wake_put(gt_to_fw(gt), fw_ref); 903 } 904 } 905 906 void xe_device_l2_flush(struct xe_device *xe) 907 { 908 struct xe_gt *gt; 909 unsigned int fw_ref; 910 911 gt = xe_root_mmio_gt(xe); 912 913 if (!XE_WA(gt, 16023588340)) 914 return; 915 916 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 917 if (!fw_ref) 918 return; 919 920 spin_lock(>->global_invl_lock); 921 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 922 923 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 924 xe_gt_err_once(gt, "Global invalidation timeout\n"); 925 spin_unlock(>->global_invl_lock); 926 927 xe_force_wake_put(gt_to_fw(gt), fw_ref); 928 } 929 930 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 931 { 932 return xe_device_has_flat_ccs(xe) ? 933 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 934 } 935 936 /** 937 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 938 * @xe: xe device instance 939 * 940 * To be used before any kind of memory access. It will splat a debug warning 941 * if the device is currently sleeping. But it doesn't guarantee in any way 942 * that the device is going to remain awake. Xe PM runtime get and put 943 * functions might be added to the outer bound of the memory access, while 944 * this check is intended for inner usage to splat some warning if the worst 945 * case has just happened. 946 */ 947 void xe_device_assert_mem_access(struct xe_device *xe) 948 { 949 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 950 } 951 952 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 953 { 954 struct xe_gt *gt; 955 u8 id; 956 957 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 958 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 959 960 for_each_gt(gt, xe, id) { 961 drm_printf(p, "GT id: %u\n", id); 962 drm_printf(p, "\tTile: %u\n", gt->tile->id); 963 drm_printf(p, "\tType: %s\n", 964 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 965 drm_printf(p, "\tIP ver: %u.%u.%u\n", 966 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 967 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 968 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 969 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 970 } 971 } 972 973 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 974 { 975 return sign_extend64(address, xe->info.va_bits - 1); 976 } 977 978 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 979 { 980 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 981 } 982 983 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 984 { 985 struct xe_device *xe = arg; 986 987 xe_pm_runtime_put(xe); 988 } 989 990 /** 991 * xe_device_declare_wedged - Declare device wedged 992 * @xe: xe device instance 993 * 994 * This is a final state that can only be cleared with a mudule 995 * re-probe (unbind + bind). 996 * In this state every IOCTL will be blocked so the GT cannot be used. 997 * In general it will be called upon any critical error such as gt reset 998 * failure or guc loading failure. 999 * If xe.wedged module parameter is set to 2, this function will be called 1000 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1001 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1002 * the issue is preserved for further debugging. 1003 */ 1004 void xe_device_declare_wedged(struct xe_device *xe) 1005 { 1006 struct xe_gt *gt; 1007 u8 id; 1008 1009 if (xe->wedged.mode == 0) { 1010 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1011 return; 1012 } 1013 1014 xe_pm_runtime_get_noresume(xe); 1015 1016 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1017 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1018 return; 1019 } 1020 1021 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1022 xe->needs_flr_on_fini = true; 1023 drm_err(&xe->drm, 1024 "CRITICAL: Xe has declared device %s as wedged.\n" 1025 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1026 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1027 dev_name(xe->drm.dev)); 1028 } 1029 1030 for_each_gt(gt, xe, id) 1031 xe_gt_declare_wedged(gt); 1032 } 1033