xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision a7ffcea8631af91479cab10aa7fbfd0722f01d9a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_irq.h"
47 #include "xe_mmio.h"
48 #include "xe_module.h"
49 #include "xe_nvm.h"
50 #include "xe_oa.h"
51 #include "xe_observation.h"
52 #include "xe_pat.h"
53 #include "xe_pcode.h"
54 #include "xe_pm.h"
55 #include "xe_pmu.h"
56 #include "xe_pxp.h"
57 #include "xe_query.h"
58 #include "xe_shrinker.h"
59 #include "xe_survivability_mode.h"
60 #include "xe_sriov.h"
61 #include "xe_tile.h"
62 #include "xe_ttm_stolen_mgr.h"
63 #include "xe_ttm_sys_mgr.h"
64 #include "xe_vm.h"
65 #include "xe_vram.h"
66 #include "xe_vsec.h"
67 #include "xe_wait_user_fence.h"
68 #include "xe_wa.h"
69 
70 #include <generated/xe_wa_oob.h>
71 
72 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
73 {
74 	struct xe_device *xe = to_xe_device(dev);
75 	struct xe_drm_client *client;
76 	struct xe_file *xef;
77 	int ret = -ENOMEM;
78 	struct task_struct *task = NULL;
79 
80 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
81 	if (!xef)
82 		return ret;
83 
84 	client = xe_drm_client_alloc();
85 	if (!client) {
86 		kfree(xef);
87 		return ret;
88 	}
89 
90 	xef->drm = file;
91 	xef->client = client;
92 	xef->xe = xe;
93 
94 	mutex_init(&xef->vm.lock);
95 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
96 
97 	mutex_init(&xef->exec_queue.lock);
98 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
99 
100 	file->driver_priv = xef;
101 	kref_init(&xef->refcount);
102 
103 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
104 	if (task) {
105 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
106 		xef->pid = task->pid;
107 		put_task_struct(task);
108 	}
109 
110 	return 0;
111 }
112 
113 static void xe_file_destroy(struct kref *ref)
114 {
115 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
116 
117 	xa_destroy(&xef->exec_queue.xa);
118 	mutex_destroy(&xef->exec_queue.lock);
119 	xa_destroy(&xef->vm.xa);
120 	mutex_destroy(&xef->vm.lock);
121 
122 	xe_drm_client_put(xef->client);
123 	kfree(xef->process_name);
124 	kfree(xef);
125 }
126 
127 /**
128  * xe_file_get() - Take a reference to the xe file object
129  * @xef: Pointer to the xe file
130  *
131  * Anyone with a pointer to xef must take a reference to the xe file
132  * object using this call.
133  *
134  * Return: xe file pointer
135  */
136 struct xe_file *xe_file_get(struct xe_file *xef)
137 {
138 	kref_get(&xef->refcount);
139 	return xef;
140 }
141 
142 /**
143  * xe_file_put() - Drop a reference to the xe file object
144  * @xef: Pointer to the xe file
145  *
146  * Used to drop reference to the xef object
147  */
148 void xe_file_put(struct xe_file *xef)
149 {
150 	kref_put(&xef->refcount, xe_file_destroy);
151 }
152 
153 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
154 {
155 	struct xe_device *xe = to_xe_device(dev);
156 	struct xe_file *xef = file->driver_priv;
157 	struct xe_vm *vm;
158 	struct xe_exec_queue *q;
159 	unsigned long idx;
160 
161 	xe_pm_runtime_get(xe);
162 
163 	/*
164 	 * No need for exec_queue.lock here as there is no contention for it
165 	 * when FD is closing as IOCTLs presumably can't be modifying the
166 	 * xarray. Taking exec_queue.lock here causes undue dependency on
167 	 * vm->lock taken during xe_exec_queue_kill().
168 	 */
169 	xa_for_each(&xef->exec_queue.xa, idx, q) {
170 		if (q->vm && q->hwe->hw_engine_group)
171 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
172 		xe_exec_queue_kill(q);
173 		xe_exec_queue_put(q);
174 	}
175 	xa_for_each(&xef->vm.xa, idx, vm)
176 		xe_vm_close_and_put(vm);
177 
178 	xe_file_put(xef);
179 
180 	xe_pm_runtime_put(xe);
181 }
182 
183 static const struct drm_ioctl_desc xe_ioctls[] = {
184 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
187 			  DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
193 			  DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
197 			  DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
199 			  DRM_RENDER_ALLOW),
200 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
201 };
202 
203 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
204 {
205 	struct drm_file *file_priv = file->private_data;
206 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
207 	long ret;
208 
209 	if (xe_device_wedged(xe))
210 		return -ECANCELED;
211 
212 	ret = xe_pm_runtime_get_ioctl(xe);
213 	if (ret >= 0)
214 		ret = drm_ioctl(file, cmd, arg);
215 	xe_pm_runtime_put(xe);
216 
217 	return ret;
218 }
219 
220 #ifdef CONFIG_COMPAT
221 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
222 {
223 	struct drm_file *file_priv = file->private_data;
224 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
225 	long ret;
226 
227 	if (xe_device_wedged(xe))
228 		return -ECANCELED;
229 
230 	ret = xe_pm_runtime_get_ioctl(xe);
231 	if (ret >= 0)
232 		ret = drm_compat_ioctl(file, cmd, arg);
233 	xe_pm_runtime_put(xe);
234 
235 	return ret;
236 }
237 #else
238 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
239 #define xe_drm_compat_ioctl NULL
240 #endif
241 
242 static void barrier_open(struct vm_area_struct *vma)
243 {
244 	drm_dev_get(vma->vm_private_data);
245 }
246 
247 static void barrier_close(struct vm_area_struct *vma)
248 {
249 	drm_dev_put(vma->vm_private_data);
250 }
251 
252 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
253 {
254 	struct page *dummy_page = (struct page *)res;
255 
256 	__free_page(dummy_page);
257 }
258 
259 static vm_fault_t barrier_fault(struct vm_fault *vmf)
260 {
261 	struct drm_device *dev = vmf->vma->vm_private_data;
262 	struct vm_area_struct *vma = vmf->vma;
263 	vm_fault_t ret = VM_FAULT_NOPAGE;
264 	pgprot_t prot;
265 	int idx;
266 
267 	prot = vm_get_page_prot(vma->vm_flags);
268 
269 	if (drm_dev_enter(dev, &idx)) {
270 		unsigned long pfn;
271 
272 #define LAST_DB_PAGE_OFFSET 0x7ff001
273 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
274 				LAST_DB_PAGE_OFFSET);
275 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
276 					  pgprot_noncached(prot));
277 		drm_dev_exit(idx);
278 	} else {
279 		struct page *page;
280 
281 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
282 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
283 		if (!page)
284 			return VM_FAULT_OOM;
285 
286 		/* Set the page to be freed using drmm release action */
287 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
288 			return VM_FAULT_OOM;
289 
290 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
291 					  prot);
292 	}
293 
294 	return ret;
295 }
296 
297 static const struct vm_operations_struct vm_ops_barrier = {
298 	.open = barrier_open,
299 	.close = barrier_close,
300 	.fault = barrier_fault,
301 };
302 
303 static int xe_pci_barrier_mmap(struct file *filp,
304 			       struct vm_area_struct *vma)
305 {
306 	struct drm_file *priv = filp->private_data;
307 	struct drm_device *dev = priv->minor->dev;
308 	struct xe_device *xe = to_xe_device(dev);
309 
310 	if (!IS_DGFX(xe))
311 		return -EINVAL;
312 
313 	if (vma->vm_end - vma->vm_start > SZ_4K)
314 		return -EINVAL;
315 
316 	if (is_cow_mapping(vma->vm_flags))
317 		return -EINVAL;
318 
319 	if (vma->vm_flags & (VM_READ | VM_EXEC))
320 		return -EINVAL;
321 
322 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
323 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
324 	vma->vm_ops = &vm_ops_barrier;
325 	vma->vm_private_data = dev;
326 	drm_dev_get(vma->vm_private_data);
327 
328 	return 0;
329 }
330 
331 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
332 {
333 	struct drm_file *priv = filp->private_data;
334 	struct drm_device *dev = priv->minor->dev;
335 
336 	if (drm_dev_is_unplugged(dev))
337 		return -ENODEV;
338 
339 	switch (vma->vm_pgoff) {
340 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
341 		return xe_pci_barrier_mmap(filp, vma);
342 	}
343 
344 	return drm_gem_mmap(filp, vma);
345 }
346 
347 static const struct file_operations xe_driver_fops = {
348 	.owner = THIS_MODULE,
349 	.open = drm_open,
350 	.release = drm_release_noglobal,
351 	.unlocked_ioctl = xe_drm_ioctl,
352 	.mmap = xe_mmap,
353 	.poll = drm_poll,
354 	.read = drm_read,
355 	.compat_ioctl = xe_drm_compat_ioctl,
356 	.llseek = noop_llseek,
357 #ifdef CONFIG_PROC_FS
358 	.show_fdinfo = drm_show_fdinfo,
359 #endif
360 	.fop_flags = FOP_UNSIGNED_OFFSET,
361 };
362 
363 static struct drm_driver driver = {
364 	/* Don't use MTRRs here; the Xserver or userspace app should
365 	 * deal with them for Intel hardware.
366 	 */
367 	.driver_features =
368 	    DRIVER_GEM |
369 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
370 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
371 	.open = xe_file_open,
372 	.postclose = xe_file_close,
373 
374 	.gem_prime_import = xe_gem_prime_import,
375 
376 	.dumb_create = xe_bo_dumb_create,
377 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
378 #ifdef CONFIG_PROC_FS
379 	.show_fdinfo = xe_drm_client_fdinfo,
380 #endif
381 	.ioctls = xe_ioctls,
382 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
383 	.fops = &xe_driver_fops,
384 	.name = DRIVER_NAME,
385 	.desc = DRIVER_DESC,
386 	.major = DRIVER_MAJOR,
387 	.minor = DRIVER_MINOR,
388 	.patchlevel = DRIVER_PATCHLEVEL,
389 };
390 
391 static void xe_device_destroy(struct drm_device *dev, void *dummy)
392 {
393 	struct xe_device *xe = to_xe_device(dev);
394 
395 	xe_bo_dev_fini(&xe->bo_device);
396 
397 	if (xe->preempt_fence_wq)
398 		destroy_workqueue(xe->preempt_fence_wq);
399 
400 	if (xe->ordered_wq)
401 		destroy_workqueue(xe->ordered_wq);
402 
403 	if (xe->unordered_wq)
404 		destroy_workqueue(xe->unordered_wq);
405 
406 	if (xe->destroy_wq)
407 		destroy_workqueue(xe->destroy_wq);
408 
409 	ttm_device_fini(&xe->ttm);
410 }
411 
412 struct xe_device *xe_device_create(struct pci_dev *pdev,
413 				   const struct pci_device_id *ent)
414 {
415 	struct xe_device *xe;
416 	int err;
417 
418 	xe_display_driver_set_hooks(&driver);
419 
420 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
421 	if (err)
422 		return ERR_PTR(err);
423 
424 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
425 	if (IS_ERR(xe))
426 		return xe;
427 
428 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
429 			      xe->drm.anon_inode->i_mapping,
430 			      xe->drm.vma_offset_manager, false, false);
431 	if (WARN_ON(err))
432 		goto err;
433 
434 	xe_bo_dev_init(&xe->bo_device);
435 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
436 	if (err)
437 		goto err;
438 
439 	err = xe_shrinker_create(xe);
440 	if (err)
441 		goto err;
442 
443 	xe->info.devid = pdev->device;
444 	xe->info.revid = pdev->revision;
445 	xe->info.force_execlist = xe_modparam.force_execlist;
446 	xe->atomic_svm_timeslice_ms = 5;
447 
448 	err = xe_irq_init(xe);
449 	if (err)
450 		goto err;
451 
452 	init_waitqueue_head(&xe->ufence_wq);
453 
454 	init_rwsem(&xe->usm.lock);
455 
456 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
457 
458 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
459 		/* Trigger a large asid and an early asid wrap. */
460 		u32 asid;
461 
462 		BUILD_BUG_ON(XE_MAX_ASID < 2);
463 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
464 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
465 				      &xe->usm.next_asid, GFP_KERNEL);
466 		drm_WARN_ON(&xe->drm, err);
467 		if (err >= 0)
468 			xa_erase(&xe->usm.asid_to_vm, asid);
469 	}
470 
471 	err = xe_bo_pinned_init(xe);
472 	if (err)
473 		goto err;
474 
475 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
476 						       WQ_MEM_RECLAIM);
477 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
478 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
479 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
480 	if (!xe->ordered_wq || !xe->unordered_wq ||
481 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
482 		/*
483 		 * Cleanup done in xe_device_destroy via
484 		 * drmm_add_action_or_reset register above
485 		 */
486 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
487 		err = -ENOMEM;
488 		goto err;
489 	}
490 
491 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
492 	if (err)
493 		goto err;
494 
495 	return xe;
496 
497 err:
498 	return ERR_PTR(err);
499 }
500 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
501 
502 static bool xe_driver_flr_disabled(struct xe_device *xe)
503 {
504 	if (IS_SRIOV_VF(xe))
505 		return true;
506 
507 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
508 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
509 		return true;
510 	}
511 
512 	return false;
513 }
514 
515 /*
516  * The driver-initiated FLR is the highest level of reset that we can trigger
517  * from within the driver. It is different from the PCI FLR in that it doesn't
518  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
519  * it doesn't require a re-enumeration of the PCI BARs. However, the
520  * driver-initiated FLR does still cause a reset of both GT and display and a
521  * memory wipe of local and stolen memory, so recovery would require a full HW
522  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
523  * perform the FLR as the very last action before releasing access to the HW
524  * during the driver release flow, we don't attempt recovery at all, because
525  * if/when a new instance of i915 is bound to the device it will do a full
526  * re-init anyway.
527  */
528 static void __xe_driver_flr(struct xe_device *xe)
529 {
530 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
531 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
532 	int ret;
533 
534 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
535 
536 	/*
537 	 * Make sure any pending FLR requests have cleared by waiting for the
538 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
539 	 * to make sure it's not still set from a prior attempt (it's a write to
540 	 * clear bit).
541 	 * Note that we should never be in a situation where a previous attempt
542 	 * is still pending (unless the HW is totally dead), but better to be
543 	 * safe in case something unexpected happens
544 	 */
545 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
546 	if (ret) {
547 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
548 		return;
549 	}
550 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
551 
552 	/* Trigger the actual Driver-FLR */
553 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
554 
555 	/* Wait for hardware teardown to complete */
556 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
557 	if (ret) {
558 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
559 		return;
560 	}
561 
562 	/* Wait for hardware/firmware re-init to complete */
563 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
564 			     flr_timeout, NULL, false);
565 	if (ret) {
566 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
567 		return;
568 	}
569 
570 	/* Clear sticky completion status */
571 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
572 }
573 
574 static void xe_driver_flr(struct xe_device *xe)
575 {
576 	if (xe_driver_flr_disabled(xe))
577 		return;
578 
579 	__xe_driver_flr(xe);
580 }
581 
582 static void xe_driver_flr_fini(void *arg)
583 {
584 	struct xe_device *xe = arg;
585 
586 	if (xe->needs_flr_on_fini)
587 		xe_driver_flr(xe);
588 }
589 
590 static void xe_device_sanitize(void *arg)
591 {
592 	struct xe_device *xe = arg;
593 	struct xe_gt *gt;
594 	u8 id;
595 
596 	for_each_gt(gt, xe, id)
597 		xe_gt_sanitize(gt);
598 }
599 
600 static int xe_set_dma_info(struct xe_device *xe)
601 {
602 	unsigned int mask_size = xe->info.dma_mask_size;
603 	int err;
604 
605 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
606 
607 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
608 	if (err)
609 		goto mask_err;
610 
611 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
612 	if (err)
613 		goto mask_err;
614 
615 	return 0;
616 
617 mask_err:
618 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
619 	return err;
620 }
621 
622 static bool verify_lmem_ready(struct xe_device *xe)
623 {
624 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
625 
626 	return !!val;
627 }
628 
629 static int wait_for_lmem_ready(struct xe_device *xe)
630 {
631 	unsigned long timeout, start;
632 
633 	if (!IS_DGFX(xe))
634 		return 0;
635 
636 	if (IS_SRIOV_VF(xe))
637 		return 0;
638 
639 	if (verify_lmem_ready(xe))
640 		return 0;
641 
642 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
643 
644 	start = jiffies;
645 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
646 
647 	do {
648 		if (signal_pending(current))
649 			return -EINTR;
650 
651 		/*
652 		 * The boot firmware initializes local memory and
653 		 * assesses its health. If memory training fails,
654 		 * the punit will have been instructed to keep the GT powered
655 		 * down.we won't be able to communicate with it
656 		 *
657 		 * If the status check is done before punit updates the register,
658 		 * it can lead to the system being unusable.
659 		 * use a timeout and defer the probe to prevent this.
660 		 */
661 		if (time_after(jiffies, timeout)) {
662 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
663 			return -EPROBE_DEFER;
664 		}
665 
666 		msleep(20);
667 
668 	} while (!verify_lmem_ready(xe));
669 
670 	drm_dbg(&xe->drm, "lmem ready after %ums",
671 		jiffies_to_msecs(jiffies - start));
672 
673 	return 0;
674 }
675 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
676 
677 static void sriov_update_device_info(struct xe_device *xe)
678 {
679 	/* disable features that are not available/applicable to VFs */
680 	if (IS_SRIOV_VF(xe)) {
681 		xe->info.probe_display = 0;
682 		xe->info.has_heci_gscfi = 0;
683 		xe->info.skip_guc_pc = 1;
684 		xe->info.skip_pcode = 1;
685 	}
686 }
687 
688 /**
689  * xe_device_probe_early: Device early probe
690  * @xe: xe device instance
691  *
692  * Initialize MMIO resources that don't require any
693  * knowledge about tile count. Also initialize pcode and
694  * check vram initialization on root tile.
695  *
696  * Return: 0 on success, error code on failure
697  */
698 int xe_device_probe_early(struct xe_device *xe)
699 {
700 	int err;
701 
702 	err = xe_mmio_probe_early(xe);
703 	if (err)
704 		return err;
705 
706 	xe_sriov_probe_early(xe);
707 
708 	sriov_update_device_info(xe);
709 
710 	err = xe_pcode_probe_early(xe);
711 	if (err || xe_survivability_mode_is_requested(xe)) {
712 		int save_err = err;
713 
714 		/*
715 		 * Try to leave device in survivability mode if device is
716 		 * possible, but still return the previous error for error
717 		 * propagation
718 		 */
719 		err = xe_survivability_mode_enable(xe);
720 		if (err)
721 			return err;
722 
723 		return save_err;
724 	}
725 
726 	err = wait_for_lmem_ready(xe);
727 	if (err)
728 		return err;
729 
730 	xe->wedged.mode = xe_modparam.wedged_mode;
731 
732 	return 0;
733 }
734 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
735 
736 static int probe_has_flat_ccs(struct xe_device *xe)
737 {
738 	struct xe_gt *gt;
739 	unsigned int fw_ref;
740 	u32 reg;
741 
742 	/* Always enabled/disabled, no runtime check to do */
743 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
744 		return 0;
745 
746 	gt = xe_root_mmio_gt(xe);
747 
748 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
749 	if (!fw_ref)
750 		return -ETIMEDOUT;
751 
752 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
753 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
754 
755 	if (!xe->info.has_flat_ccs)
756 		drm_dbg(&xe->drm,
757 			"Flat CCS has been disabled in bios, May lead to performance impact");
758 
759 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
760 
761 	return 0;
762 }
763 
764 int xe_device_probe(struct xe_device *xe)
765 {
766 	struct xe_tile *tile;
767 	struct xe_gt *gt;
768 	int err;
769 	u8 id;
770 
771 	xe_pat_init_early(xe);
772 
773 	err = xe_sriov_init(xe);
774 	if (err)
775 		return err;
776 
777 	xe->info.mem_region_mask = 1;
778 
779 	err = xe_set_dma_info(xe);
780 	if (err)
781 		return err;
782 
783 	err = xe_mmio_probe_tiles(xe);
784 	if (err)
785 		return err;
786 
787 	for_each_gt(gt, xe, id) {
788 		err = xe_gt_init_early(gt);
789 		if (err)
790 			return err;
791 	}
792 
793 	for_each_tile(tile, xe, id) {
794 		err = xe_ggtt_init_early(tile->mem.ggtt);
795 		if (err)
796 			return err;
797 	}
798 
799 	err = xe_devcoredump_init(xe);
800 	if (err)
801 		return err;
802 
803 	/*
804 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
805 	 */
806 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
807 	if (err)
808 		return err;
809 
810 	err = probe_has_flat_ccs(xe);
811 	if (err)
812 		return err;
813 
814 	err = xe_vram_probe(xe);
815 	if (err)
816 		return err;
817 
818 	for_each_tile(tile, xe, id) {
819 		err = xe_tile_init_noalloc(tile);
820 		if (err)
821 			return err;
822 	}
823 
824 	/*
825 	 * Allow allocations only now to ensure xe_display_init_early()
826 	 * is the first to allocate, always.
827 	 */
828 	err = xe_ttm_sys_mgr_init(xe);
829 	if (err)
830 		return err;
831 
832 	/* Allocate and map stolen after potential VRAM resize */
833 	err = xe_ttm_stolen_mgr_init(xe);
834 	if (err)
835 		return err;
836 
837 	/*
838 	 * Now that GT is initialized (TTM in particular),
839 	 * we can try to init display, and inherit the initial fb.
840 	 * This is the reason the first allocation needs to be done
841 	 * inside display.
842 	 */
843 	err = xe_display_init_early(xe);
844 	if (err)
845 		return err;
846 
847 	for_each_tile(tile, xe, id) {
848 		err = xe_tile_init(tile);
849 		if (err)
850 			return err;
851 	}
852 
853 	err = xe_irq_install(xe);
854 	if (err)
855 		return err;
856 
857 	for_each_gt(gt, xe, id) {
858 		err = xe_gt_init(gt);
859 		if (err)
860 			return err;
861 	}
862 
863 	xe_nvm_init(xe);
864 
865 	err = xe_heci_gsc_init(xe);
866 	if (err)
867 		return err;
868 
869 	err = xe_oa_init(xe);
870 	if (err)
871 		return err;
872 
873 	err = xe_display_init(xe);
874 	if (err)
875 		return err;
876 
877 	err = xe_pxp_init(xe);
878 	if (err)
879 		return err;
880 
881 	err = drm_dev_register(&xe->drm, 0);
882 	if (err)
883 		return err;
884 
885 	xe_display_register(xe);
886 
887 	err = xe_oa_register(xe);
888 	if (err)
889 		goto err_unregister_display;
890 
891 	err = xe_pmu_register(&xe->pmu);
892 	if (err)
893 		goto err_unregister_display;
894 
895 	err = xe_device_sysfs_init(xe);
896 	if (err)
897 		goto err_unregister_display;
898 
899 	xe_debugfs_register(xe);
900 
901 	err = xe_hwmon_register(xe);
902 	if (err)
903 		goto err_unregister_display;
904 
905 	for_each_gt(gt, xe, id)
906 		xe_gt_sanitize_freq(gt);
907 
908 	xe_vsec_init(xe);
909 
910 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
911 
912 err_unregister_display:
913 	xe_display_unregister(xe);
914 
915 	return err;
916 }
917 
918 void xe_device_remove(struct xe_device *xe)
919 {
920 	xe_display_unregister(xe);
921 
922 	xe_nvm_fini(xe);
923 
924 	drm_dev_unplug(&xe->drm);
925 
926 	xe_bo_pci_dev_remove_all(xe);
927 }
928 
929 void xe_device_shutdown(struct xe_device *xe)
930 {
931 	struct xe_gt *gt;
932 	u8 id;
933 
934 	drm_dbg(&xe->drm, "Shutting down device\n");
935 
936 	if (xe_driver_flr_disabled(xe)) {
937 		xe_display_pm_shutdown(xe);
938 
939 		xe_irq_suspend(xe);
940 
941 		for_each_gt(gt, xe, id)
942 			xe_gt_shutdown(gt);
943 
944 		xe_display_pm_shutdown_late(xe);
945 	} else {
946 		/* BOOM! */
947 		__xe_driver_flr(xe);
948 	}
949 }
950 
951 /**
952  * xe_device_wmb() - Device specific write memory barrier
953  * @xe: the &xe_device
954  *
955  * While wmb() is sufficient for a barrier if we use system memory, on discrete
956  * platforms with device memory we additionally need to issue a register write.
957  * Since it doesn't matter which register we write to, use the read-only VF_CAP
958  * register that is also marked as accessible by the VFs.
959  */
960 void xe_device_wmb(struct xe_device *xe)
961 {
962 	wmb();
963 	if (IS_DGFX(xe))
964 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
965 }
966 
967 /*
968  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
969  */
970 static void tdf_request_sync(struct xe_device *xe)
971 {
972 	unsigned int fw_ref;
973 	struct xe_gt *gt;
974 	u8 id;
975 
976 	for_each_gt(gt, xe, id) {
977 		if (xe_gt_is_media_type(gt))
978 			continue;
979 
980 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
981 		if (!fw_ref)
982 			return;
983 
984 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
985 
986 		/*
987 		 * FIXME: We can likely do better here with our choice of
988 		 * timeout. Currently we just assume the worst case, i.e. 150us,
989 		 * which is believed to be sufficient to cover the worst case
990 		 * scenario on current platforms if all cache entries are
991 		 * transient and need to be flushed..
992 		 */
993 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
994 				   150, NULL, false))
995 			xe_gt_err_once(gt, "TD flush timeout\n");
996 
997 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
998 	}
999 }
1000 
1001 void xe_device_l2_flush(struct xe_device *xe)
1002 {
1003 	struct xe_gt *gt;
1004 	unsigned int fw_ref;
1005 
1006 	gt = xe_root_mmio_gt(xe);
1007 
1008 	if (!XE_WA(gt, 16023588340))
1009 		return;
1010 
1011 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1012 	if (!fw_ref)
1013 		return;
1014 
1015 	spin_lock(&gt->global_invl_lock);
1016 
1017 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1018 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1019 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1020 
1021 	spin_unlock(&gt->global_invl_lock);
1022 
1023 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1024 }
1025 
1026 /**
1027  * xe_device_td_flush() - Flush transient L3 cache entries
1028  * @xe: The device
1029  *
1030  * Display engine has direct access to memory and is never coherent with L3/L4
1031  * caches (or CPU caches), however KMD is responsible for specifically flushing
1032  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1033  * can happen from such a surface without seeing corruption.
1034  *
1035  * Display surfaces can be tagged as transient by mapping it using one of the
1036  * various L3:XD PAT index modes on Xe2.
1037  *
1038  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1039  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1040  * Media is not coherent with L3 and we want to support render-vs-media
1041  * usescases. For other engines like copy/blt the HW internally forces uncached
1042  * behaviour, hence why we can skip the TDF on such platforms.
1043  */
1044 void xe_device_td_flush(struct xe_device *xe)
1045 {
1046 	struct xe_gt *root_gt;
1047 
1048 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1049 		return;
1050 
1051 	root_gt = xe_root_mmio_gt(xe);
1052 	if (XE_WA(root_gt, 16023588340)) {
1053 		/* A transient flush is not sufficient: flush the L2 */
1054 		xe_device_l2_flush(xe);
1055 	} else {
1056 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1057 		tdf_request_sync(xe);
1058 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1059 	}
1060 }
1061 
1062 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1063 {
1064 	return xe_device_has_flat_ccs(xe) ?
1065 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1066 }
1067 
1068 /**
1069  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1070  * @xe: xe device instance
1071  *
1072  * To be used before any kind of memory access. It will splat a debug warning
1073  * if the device is currently sleeping. But it doesn't guarantee in any way
1074  * that the device is going to remain awake. Xe PM runtime get and put
1075  * functions might be added to the outer bound of the memory access, while
1076  * this check is intended for inner usage to splat some warning if the worst
1077  * case has just happened.
1078  */
1079 void xe_device_assert_mem_access(struct xe_device *xe)
1080 {
1081 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1082 }
1083 
1084 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1085 {
1086 	struct xe_gt *gt;
1087 	u8 id;
1088 
1089 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1090 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1091 
1092 	for_each_gt(gt, xe, id) {
1093 		drm_printf(p, "GT id: %u\n", id);
1094 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1095 		drm_printf(p, "\tType: %s\n",
1096 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1097 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1098 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1099 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1100 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1101 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1102 	}
1103 }
1104 
1105 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1106 {
1107 	return sign_extend64(address, xe->info.va_bits - 1);
1108 }
1109 
1110 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1111 {
1112 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1113 }
1114 
1115 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1116 {
1117 	struct xe_device *xe = arg;
1118 
1119 	xe_pm_runtime_put(xe);
1120 }
1121 
1122 /**
1123  * xe_device_declare_wedged - Declare device wedged
1124  * @xe: xe device instance
1125  *
1126  * This is a final state that can only be cleared with a module
1127  * re-probe (unbind + bind).
1128  * In this state every IOCTL will be blocked so the GT cannot be used.
1129  * In general it will be called upon any critical error such as gt reset
1130  * failure or guc loading failure. Userspace will be notified of this state
1131  * through device wedged uevent.
1132  * If xe.wedged module parameter is set to 2, this function will be called
1133  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1134  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1135  * the issue is preserved for further debugging.
1136  */
1137 void xe_device_declare_wedged(struct xe_device *xe)
1138 {
1139 	struct xe_gt *gt;
1140 	u8 id;
1141 
1142 	if (xe->wedged.mode == 0) {
1143 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1144 		return;
1145 	}
1146 
1147 	xe_pm_runtime_get_noresume(xe);
1148 
1149 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1150 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1151 		return;
1152 	}
1153 
1154 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1155 		xe->needs_flr_on_fini = true;
1156 		drm_err(&xe->drm,
1157 			"CRITICAL: Xe has declared device %s as wedged.\n"
1158 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1159 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1160 			dev_name(xe->drm.dev));
1161 
1162 		/* Notify userspace of wedged device */
1163 		drm_dev_wedged_event(&xe->drm,
1164 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET,
1165 				     NULL);
1166 	}
1167 
1168 	for_each_gt(gt, xe, id)
1169 		xe_gt_declare_wedged(gt);
1170 }
1171