xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision a4871e6201c46c8e1d04308265b4b4c5753c8209)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_dma_buf.h"
30 #include "xe_drm_client.h"
31 #include "xe_drv.h"
32 #include "xe_exec.h"
33 #include "xe_exec_queue.h"
34 #include "xe_force_wake.h"
35 #include "xe_ggtt.h"
36 #include "xe_gsc_proxy.h"
37 #include "xe_gt.h"
38 #include "xe_gt_mcr.h"
39 #include "xe_gt_printk.h"
40 #include "xe_gt_sriov_vf.h"
41 #include "xe_guc.h"
42 #include "xe_hw_engine_group.h"
43 #include "xe_hwmon.h"
44 #include "xe_irq.h"
45 #include "xe_memirq.h"
46 #include "xe_mmio.h"
47 #include "xe_module.h"
48 #include "xe_oa.h"
49 #include "xe_observation.h"
50 #include "xe_pat.h"
51 #include "xe_pcode.h"
52 #include "xe_pm.h"
53 #include "xe_pmu.h"
54 #include "xe_pxp.h"
55 #include "xe_query.h"
56 #include "xe_shrinker.h"
57 #include "xe_survivability_mode.h"
58 #include "xe_sriov.h"
59 #include "xe_tile.h"
60 #include "xe_ttm_stolen_mgr.h"
61 #include "xe_ttm_sys_mgr.h"
62 #include "xe_vm.h"
63 #include "xe_vram.h"
64 #include "xe_vsec.h"
65 #include "xe_wait_user_fence.h"
66 #include "xe_wa.h"
67 
68 #include <generated/xe_wa_oob.h>
69 
70 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
71 {
72 	struct xe_device *xe = to_xe_device(dev);
73 	struct xe_drm_client *client;
74 	struct xe_file *xef;
75 	int ret = -ENOMEM;
76 	struct task_struct *task = NULL;
77 
78 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
79 	if (!xef)
80 		return ret;
81 
82 	client = xe_drm_client_alloc();
83 	if (!client) {
84 		kfree(xef);
85 		return ret;
86 	}
87 
88 	xef->drm = file;
89 	xef->client = client;
90 	xef->xe = xe;
91 
92 	mutex_init(&xef->vm.lock);
93 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
94 
95 	mutex_init(&xef->exec_queue.lock);
96 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
97 
98 	file->driver_priv = xef;
99 	kref_init(&xef->refcount);
100 
101 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
102 	if (task) {
103 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
104 		xef->pid = task->pid;
105 		put_task_struct(task);
106 	}
107 
108 	return 0;
109 }
110 
111 static void xe_file_destroy(struct kref *ref)
112 {
113 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
114 
115 	xa_destroy(&xef->exec_queue.xa);
116 	mutex_destroy(&xef->exec_queue.lock);
117 	xa_destroy(&xef->vm.xa);
118 	mutex_destroy(&xef->vm.lock);
119 
120 	xe_drm_client_put(xef->client);
121 	kfree(xef->process_name);
122 	kfree(xef);
123 }
124 
125 /**
126  * xe_file_get() - Take a reference to the xe file object
127  * @xef: Pointer to the xe file
128  *
129  * Anyone with a pointer to xef must take a reference to the xe file
130  * object using this call.
131  *
132  * Return: xe file pointer
133  */
134 struct xe_file *xe_file_get(struct xe_file *xef)
135 {
136 	kref_get(&xef->refcount);
137 	return xef;
138 }
139 
140 /**
141  * xe_file_put() - Drop a reference to the xe file object
142  * @xef: Pointer to the xe file
143  *
144  * Used to drop reference to the xef object
145  */
146 void xe_file_put(struct xe_file *xef)
147 {
148 	kref_put(&xef->refcount, xe_file_destroy);
149 }
150 
151 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
152 {
153 	struct xe_device *xe = to_xe_device(dev);
154 	struct xe_file *xef = file->driver_priv;
155 	struct xe_vm *vm;
156 	struct xe_exec_queue *q;
157 	unsigned long idx;
158 
159 	xe_pm_runtime_get(xe);
160 
161 	/*
162 	 * No need for exec_queue.lock here as there is no contention for it
163 	 * when FD is closing as IOCTLs presumably can't be modifying the
164 	 * xarray. Taking exec_queue.lock here causes undue dependency on
165 	 * vm->lock taken during xe_exec_queue_kill().
166 	 */
167 	xa_for_each(&xef->exec_queue.xa, idx, q) {
168 		if (q->vm && q->hwe->hw_engine_group)
169 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
170 		xe_exec_queue_kill(q);
171 		xe_exec_queue_put(q);
172 	}
173 	xa_for_each(&xef->vm.xa, idx, vm)
174 		xe_vm_close_and_put(vm);
175 
176 	xe_file_put(xef);
177 
178 	xe_pm_runtime_put(xe);
179 }
180 
181 static const struct drm_ioctl_desc xe_ioctls[] = {
182 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
185 			  DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
191 			  DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
193 			  DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
197 			  DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
199 };
200 
201 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
202 {
203 	struct drm_file *file_priv = file->private_data;
204 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
205 	long ret;
206 
207 	if (xe_device_wedged(xe))
208 		return -ECANCELED;
209 
210 	ret = xe_pm_runtime_get_ioctl(xe);
211 	if (ret >= 0)
212 		ret = drm_ioctl(file, cmd, arg);
213 	xe_pm_runtime_put(xe);
214 
215 	return ret;
216 }
217 
218 #ifdef CONFIG_COMPAT
219 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
220 {
221 	struct drm_file *file_priv = file->private_data;
222 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
223 	long ret;
224 
225 	if (xe_device_wedged(xe))
226 		return -ECANCELED;
227 
228 	ret = xe_pm_runtime_get_ioctl(xe);
229 	if (ret >= 0)
230 		ret = drm_compat_ioctl(file, cmd, arg);
231 	xe_pm_runtime_put(xe);
232 
233 	return ret;
234 }
235 #else
236 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
237 #define xe_drm_compat_ioctl NULL
238 #endif
239 
240 static void barrier_open(struct vm_area_struct *vma)
241 {
242 	drm_dev_get(vma->vm_private_data);
243 }
244 
245 static void barrier_close(struct vm_area_struct *vma)
246 {
247 	drm_dev_put(vma->vm_private_data);
248 }
249 
250 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
251 {
252 	struct page *dummy_page = (struct page *)res;
253 
254 	__free_page(dummy_page);
255 }
256 
257 static vm_fault_t barrier_fault(struct vm_fault *vmf)
258 {
259 	struct drm_device *dev = vmf->vma->vm_private_data;
260 	struct vm_area_struct *vma = vmf->vma;
261 	vm_fault_t ret = VM_FAULT_NOPAGE;
262 	pgprot_t prot;
263 	int idx;
264 
265 	prot = vm_get_page_prot(vma->vm_flags);
266 
267 	if (drm_dev_enter(dev, &idx)) {
268 		unsigned long pfn;
269 
270 #define LAST_DB_PAGE_OFFSET 0x7ff001
271 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
272 				LAST_DB_PAGE_OFFSET);
273 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
274 					  pgprot_noncached(prot));
275 		drm_dev_exit(idx);
276 	} else {
277 		struct page *page;
278 
279 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
280 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
281 		if (!page)
282 			return VM_FAULT_OOM;
283 
284 		/* Set the page to be freed using drmm release action */
285 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
286 			return VM_FAULT_OOM;
287 
288 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
289 					  prot);
290 	}
291 
292 	return ret;
293 }
294 
295 static const struct vm_operations_struct vm_ops_barrier = {
296 	.open = barrier_open,
297 	.close = barrier_close,
298 	.fault = barrier_fault,
299 };
300 
301 static int xe_pci_barrier_mmap(struct file *filp,
302 			       struct vm_area_struct *vma)
303 {
304 	struct drm_file *priv = filp->private_data;
305 	struct drm_device *dev = priv->minor->dev;
306 	struct xe_device *xe = to_xe_device(dev);
307 
308 	if (!IS_DGFX(xe))
309 		return -EINVAL;
310 
311 	if (vma->vm_end - vma->vm_start > SZ_4K)
312 		return -EINVAL;
313 
314 	if (is_cow_mapping(vma->vm_flags))
315 		return -EINVAL;
316 
317 	if (vma->vm_flags & (VM_READ | VM_EXEC))
318 		return -EINVAL;
319 
320 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
321 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
322 	vma->vm_ops = &vm_ops_barrier;
323 	vma->vm_private_data = dev;
324 	drm_dev_get(vma->vm_private_data);
325 
326 	return 0;
327 }
328 
329 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
330 {
331 	struct drm_file *priv = filp->private_data;
332 	struct drm_device *dev = priv->minor->dev;
333 
334 	if (drm_dev_is_unplugged(dev))
335 		return -ENODEV;
336 
337 	switch (vma->vm_pgoff) {
338 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
339 		return xe_pci_barrier_mmap(filp, vma);
340 	}
341 
342 	return drm_gem_mmap(filp, vma);
343 }
344 
345 static const struct file_operations xe_driver_fops = {
346 	.owner = THIS_MODULE,
347 	.open = drm_open,
348 	.release = drm_release_noglobal,
349 	.unlocked_ioctl = xe_drm_ioctl,
350 	.mmap = xe_mmap,
351 	.poll = drm_poll,
352 	.read = drm_read,
353 	.compat_ioctl = xe_drm_compat_ioctl,
354 	.llseek = noop_llseek,
355 #ifdef CONFIG_PROC_FS
356 	.show_fdinfo = drm_show_fdinfo,
357 #endif
358 	.fop_flags = FOP_UNSIGNED_OFFSET,
359 };
360 
361 static struct drm_driver driver = {
362 	/* Don't use MTRRs here; the Xserver or userspace app should
363 	 * deal with them for Intel hardware.
364 	 */
365 	.driver_features =
366 	    DRIVER_GEM |
367 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
368 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
369 	.open = xe_file_open,
370 	.postclose = xe_file_close,
371 
372 	.gem_prime_import = xe_gem_prime_import,
373 
374 	.dumb_create = xe_bo_dumb_create,
375 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
376 #ifdef CONFIG_PROC_FS
377 	.show_fdinfo = xe_drm_client_fdinfo,
378 #endif
379 	.ioctls = xe_ioctls,
380 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
381 	.fops = &xe_driver_fops,
382 	.name = DRIVER_NAME,
383 	.desc = DRIVER_DESC,
384 	.major = DRIVER_MAJOR,
385 	.minor = DRIVER_MINOR,
386 	.patchlevel = DRIVER_PATCHLEVEL,
387 };
388 
389 static void xe_device_destroy(struct drm_device *dev, void *dummy)
390 {
391 	struct xe_device *xe = to_xe_device(dev);
392 
393 	xe_bo_dev_fini(&xe->bo_device);
394 
395 	if (xe->preempt_fence_wq)
396 		destroy_workqueue(xe->preempt_fence_wq);
397 
398 	if (xe->ordered_wq)
399 		destroy_workqueue(xe->ordered_wq);
400 
401 	if (xe->unordered_wq)
402 		destroy_workqueue(xe->unordered_wq);
403 
404 	if (!IS_ERR_OR_NULL(xe->mem.shrinker))
405 		xe_shrinker_destroy(xe->mem.shrinker);
406 
407 	if (xe->destroy_wq)
408 		destroy_workqueue(xe->destroy_wq);
409 
410 	ttm_device_fini(&xe->ttm);
411 }
412 
413 struct xe_device *xe_device_create(struct pci_dev *pdev,
414 				   const struct pci_device_id *ent)
415 {
416 	struct xe_device *xe;
417 	int err;
418 
419 	xe_display_driver_set_hooks(&driver);
420 
421 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
422 	if (err)
423 		return ERR_PTR(err);
424 
425 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
426 	if (IS_ERR(xe))
427 		return xe;
428 
429 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
430 			      xe->drm.anon_inode->i_mapping,
431 			      xe->drm.vma_offset_manager, false, false);
432 	if (WARN_ON(err))
433 		goto err;
434 
435 	xe_bo_dev_init(&xe->bo_device);
436 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
437 	if (err)
438 		goto err;
439 
440 	xe->mem.shrinker = xe_shrinker_create(xe);
441 	if (IS_ERR(xe->mem.shrinker))
442 		return ERR_CAST(xe->mem.shrinker);
443 
444 	xe->info.devid = pdev->device;
445 	xe->info.revid = pdev->revision;
446 	xe->info.force_execlist = xe_modparam.force_execlist;
447 
448 	err = xe_irq_init(xe);
449 	if (err)
450 		goto err;
451 
452 	init_waitqueue_head(&xe->ufence_wq);
453 
454 	init_rwsem(&xe->usm.lock);
455 
456 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
457 
458 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
459 		/* Trigger a large asid and an early asid wrap. */
460 		u32 asid;
461 
462 		BUILD_BUG_ON(XE_MAX_ASID < 2);
463 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
464 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
465 				      &xe->usm.next_asid, GFP_KERNEL);
466 		drm_WARN_ON(&xe->drm, err);
467 		if (err >= 0)
468 			xa_erase(&xe->usm.asid_to_vm, asid);
469 	}
470 
471 	err = xe_bo_pinned_init(xe);
472 	if (err)
473 		goto err;
474 
475 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
476 						       WQ_MEM_RECLAIM);
477 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
478 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
479 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
480 	if (!xe->ordered_wq || !xe->unordered_wq ||
481 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
482 		/*
483 		 * Cleanup done in xe_device_destroy via
484 		 * drmm_add_action_or_reset register above
485 		 */
486 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
487 		err = -ENOMEM;
488 		goto err;
489 	}
490 
491 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
492 	if (err)
493 		goto err;
494 
495 	err = xe_display_create(xe);
496 	if (WARN_ON(err))
497 		goto err;
498 
499 	return xe;
500 
501 err:
502 	return ERR_PTR(err);
503 }
504 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
505 
506 static bool xe_driver_flr_disabled(struct xe_device *xe)
507 {
508 	if (IS_SRIOV_VF(xe))
509 		return true;
510 
511 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
512 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
513 		return true;
514 	}
515 
516 	return false;
517 }
518 
519 /*
520  * The driver-initiated FLR is the highest level of reset that we can trigger
521  * from within the driver. It is different from the PCI FLR in that it doesn't
522  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
523  * it doesn't require a re-enumeration of the PCI BARs. However, the
524  * driver-initiated FLR does still cause a reset of both GT and display and a
525  * memory wipe of local and stolen memory, so recovery would require a full HW
526  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
527  * perform the FLR as the very last action before releasing access to the HW
528  * during the driver release flow, we don't attempt recovery at all, because
529  * if/when a new instance of i915 is bound to the device it will do a full
530  * re-init anyway.
531  */
532 static void __xe_driver_flr(struct xe_device *xe)
533 {
534 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
535 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
536 	int ret;
537 
538 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
539 
540 	/*
541 	 * Make sure any pending FLR requests have cleared by waiting for the
542 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
543 	 * to make sure it's not still set from a prior attempt (it's a write to
544 	 * clear bit).
545 	 * Note that we should never be in a situation where a previous attempt
546 	 * is still pending (unless the HW is totally dead), but better to be
547 	 * safe in case something unexpected happens
548 	 */
549 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
550 	if (ret) {
551 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
552 		return;
553 	}
554 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
555 
556 	/* Trigger the actual Driver-FLR */
557 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
558 
559 	/* Wait for hardware teardown to complete */
560 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
561 	if (ret) {
562 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
563 		return;
564 	}
565 
566 	/* Wait for hardware/firmware re-init to complete */
567 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
568 			     flr_timeout, NULL, false);
569 	if (ret) {
570 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
571 		return;
572 	}
573 
574 	/* Clear sticky completion status */
575 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
576 }
577 
578 static void xe_driver_flr(struct xe_device *xe)
579 {
580 	if (xe_driver_flr_disabled(xe))
581 		return;
582 
583 	__xe_driver_flr(xe);
584 }
585 
586 static void xe_driver_flr_fini(void *arg)
587 {
588 	struct xe_device *xe = arg;
589 
590 	if (xe->needs_flr_on_fini)
591 		xe_driver_flr(xe);
592 }
593 
594 static void xe_device_sanitize(void *arg)
595 {
596 	struct xe_device *xe = arg;
597 	struct xe_gt *gt;
598 	u8 id;
599 
600 	for_each_gt(gt, xe, id)
601 		xe_gt_sanitize(gt);
602 }
603 
604 static int xe_set_dma_info(struct xe_device *xe)
605 {
606 	unsigned int mask_size = xe->info.dma_mask_size;
607 	int err;
608 
609 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
610 
611 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
612 	if (err)
613 		goto mask_err;
614 
615 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
616 	if (err)
617 		goto mask_err;
618 
619 	return 0;
620 
621 mask_err:
622 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
623 	return err;
624 }
625 
626 static bool verify_lmem_ready(struct xe_device *xe)
627 {
628 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
629 
630 	return !!val;
631 }
632 
633 static int wait_for_lmem_ready(struct xe_device *xe)
634 {
635 	unsigned long timeout, start;
636 
637 	if (!IS_DGFX(xe))
638 		return 0;
639 
640 	if (IS_SRIOV_VF(xe))
641 		return 0;
642 
643 	if (verify_lmem_ready(xe))
644 		return 0;
645 
646 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
647 
648 	start = jiffies;
649 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
650 
651 	do {
652 		if (signal_pending(current))
653 			return -EINTR;
654 
655 		/*
656 		 * The boot firmware initializes local memory and
657 		 * assesses its health. If memory training fails,
658 		 * the punit will have been instructed to keep the GT powered
659 		 * down.we won't be able to communicate with it
660 		 *
661 		 * If the status check is done before punit updates the register,
662 		 * it can lead to the system being unusable.
663 		 * use a timeout and defer the probe to prevent this.
664 		 */
665 		if (time_after(jiffies, timeout)) {
666 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
667 			return -EPROBE_DEFER;
668 		}
669 
670 		msleep(20);
671 
672 	} while (!verify_lmem_ready(xe));
673 
674 	drm_dbg(&xe->drm, "lmem ready after %ums",
675 		jiffies_to_msecs(jiffies - start));
676 
677 	return 0;
678 }
679 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
680 
681 static void sriov_update_device_info(struct xe_device *xe)
682 {
683 	/* disable features that are not available/applicable to VFs */
684 	if (IS_SRIOV_VF(xe)) {
685 		xe->info.probe_display = 0;
686 		xe->info.has_heci_gscfi = 0;
687 		xe->info.skip_guc_pc = 1;
688 		xe->info.skip_pcode = 1;
689 	}
690 }
691 
692 /**
693  * xe_device_probe_early: Device early probe
694  * @xe: xe device instance
695  *
696  * Initialize MMIO resources that don't require any
697  * knowledge about tile count. Also initialize pcode and
698  * check vram initialization on root tile.
699  *
700  * Return: 0 on success, error code on failure
701  */
702 int xe_device_probe_early(struct xe_device *xe)
703 {
704 	int err;
705 
706 	err = xe_mmio_probe_early(xe);
707 	if (err)
708 		return err;
709 
710 	xe_sriov_probe_early(xe);
711 
712 	sriov_update_device_info(xe);
713 
714 	err = xe_pcode_probe_early(xe);
715 	if (err || xe_survivability_mode_is_requested(xe)) {
716 		int save_err = err;
717 
718 		/*
719 		 * Try to leave device in survivability mode if device is
720 		 * possible, but still return the previous error for error
721 		 * propagation
722 		 */
723 		err = xe_survivability_mode_enable(xe);
724 		if (err)
725 			return err;
726 
727 		return save_err;
728 	}
729 
730 	err = wait_for_lmem_ready(xe);
731 	if (err)
732 		return err;
733 
734 	xe->wedged.mode = xe_modparam.wedged_mode;
735 
736 	return 0;
737 }
738 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
739 
740 static int probe_has_flat_ccs(struct xe_device *xe)
741 {
742 	struct xe_gt *gt;
743 	unsigned int fw_ref;
744 	u32 reg;
745 
746 	/* Always enabled/disabled, no runtime check to do */
747 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
748 		return 0;
749 
750 	gt = xe_root_mmio_gt(xe);
751 
752 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
753 	if (!fw_ref)
754 		return -ETIMEDOUT;
755 
756 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
757 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
758 
759 	if (!xe->info.has_flat_ccs)
760 		drm_dbg(&xe->drm,
761 			"Flat CCS has been disabled in bios, May lead to performance impact");
762 
763 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
764 
765 	return 0;
766 }
767 
768 int xe_device_probe(struct xe_device *xe)
769 {
770 	struct xe_tile *tile;
771 	struct xe_gt *gt;
772 	int err;
773 	u8 id;
774 
775 	xe_pat_init_early(xe);
776 
777 	err = xe_sriov_init(xe);
778 	if (err)
779 		return err;
780 
781 	xe->info.mem_region_mask = 1;
782 
783 	err = xe_set_dma_info(xe);
784 	if (err)
785 		return err;
786 
787 	err = xe_mmio_probe_tiles(xe);
788 	if (err)
789 		return err;
790 
791 	err = xe_ttm_sys_mgr_init(xe);
792 	if (err)
793 		return err;
794 
795 	for_each_gt(gt, xe, id) {
796 		err = xe_gt_init_early(gt);
797 		if (err)
798 			return err;
799 
800 		/*
801 		 * Only after this point can GT-specific MMIO operations
802 		 * (including things like communication with the GuC)
803 		 * be performed.
804 		 */
805 		xe_gt_mmio_init(gt);
806 	}
807 
808 	for_each_tile(tile, xe, id) {
809 		if (IS_SRIOV_VF(xe)) {
810 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
811 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
812 			if (err)
813 				return err;
814 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
815 			if (err)
816 				return err;
817 		}
818 		err = xe_ggtt_init_early(tile->mem.ggtt);
819 		if (err)
820 			return err;
821 		err = xe_memirq_init(&tile->memirq);
822 		if (err)
823 			return err;
824 	}
825 
826 	for_each_gt(gt, xe, id) {
827 		err = xe_gt_init_hwconfig(gt);
828 		if (err)
829 			return err;
830 	}
831 
832 	err = xe_devcoredump_init(xe);
833 	if (err)
834 		return err;
835 
836 	/*
837 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
838 	 */
839 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
840 	if (err)
841 		return err;
842 
843 	err = probe_has_flat_ccs(xe);
844 	if (err)
845 		return err;
846 
847 	err = xe_vram_probe(xe);
848 	if (err)
849 		return err;
850 
851 	for_each_tile(tile, xe, id) {
852 		err = xe_tile_init_noalloc(tile);
853 		if (err)
854 			return err;
855 	}
856 
857 	/* Allocate and map stolen after potential VRAM resize */
858 	err = xe_ttm_stolen_mgr_init(xe);
859 	if (err)
860 		return err;
861 
862 	/*
863 	 * Now that GT is initialized (TTM in particular),
864 	 * we can try to init display, and inherit the initial fb.
865 	 * This is the reason the first allocation needs to be done
866 	 * inside display.
867 	 */
868 	err = xe_display_init_early(xe);
869 	if (err)
870 		return err;
871 
872 	for_each_tile(tile, xe, id) {
873 		err = xe_tile_init(tile);
874 		if (err)
875 			return err;
876 	}
877 
878 	err = xe_irq_install(xe);
879 	if (err)
880 		return err;
881 
882 	for_each_gt(gt, xe, id) {
883 		err = xe_gt_init(gt);
884 		if (err)
885 			return err;
886 	}
887 
888 	err = xe_heci_gsc_init(xe);
889 	if (err)
890 		return err;
891 
892 	err = xe_oa_init(xe);
893 	if (err)
894 		return err;
895 
896 	err = xe_display_init(xe);
897 	if (err)
898 		return err;
899 
900 	err = xe_pxp_init(xe);
901 	if (err)
902 		return err;
903 
904 	err = drm_dev_register(&xe->drm, 0);
905 	if (err)
906 		return err;
907 
908 	xe_display_register(xe);
909 
910 	err = xe_oa_register(xe);
911 	if (err)
912 		goto err_unregister_display;
913 
914 	err = xe_pmu_register(&xe->pmu);
915 	if (err)
916 		goto err_unregister_display;
917 
918 	xe_debugfs_register(xe);
919 
920 	err = xe_hwmon_register(xe);
921 	if (err)
922 		goto err_unregister_display;
923 
924 	for_each_gt(gt, xe, id)
925 		xe_gt_sanitize_freq(gt);
926 
927 	xe_vsec_init(xe);
928 
929 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
930 
931 err_unregister_display:
932 	xe_display_unregister(xe);
933 
934 	return err;
935 }
936 
937 void xe_device_remove(struct xe_device *xe)
938 {
939 	xe_display_unregister(xe);
940 
941 	drm_dev_unplug(&xe->drm);
942 
943 	xe_bo_pci_dev_remove_all(xe);
944 }
945 
946 void xe_device_shutdown(struct xe_device *xe)
947 {
948 	struct xe_gt *gt;
949 	u8 id;
950 
951 	drm_dbg(&xe->drm, "Shutting down device\n");
952 
953 	if (xe_driver_flr_disabled(xe)) {
954 		xe_display_pm_shutdown(xe);
955 
956 		xe_irq_suspend(xe);
957 
958 		for_each_gt(gt, xe, id)
959 			xe_gt_shutdown(gt);
960 
961 		xe_display_pm_shutdown_late(xe);
962 	} else {
963 		/* BOOM! */
964 		__xe_driver_flr(xe);
965 	}
966 }
967 
968 /**
969  * xe_device_wmb() - Device specific write memory barrier
970  * @xe: the &xe_device
971  *
972  * While wmb() is sufficient for a barrier if we use system memory, on discrete
973  * platforms with device memory we additionally need to issue a register write.
974  * Since it doesn't matter which register we write to, use the read-only VF_CAP
975  * register that is also marked as accessible by the VFs.
976  */
977 void xe_device_wmb(struct xe_device *xe)
978 {
979 	wmb();
980 	if (IS_DGFX(xe))
981 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
982 }
983 
984 /**
985  * xe_device_td_flush() - Flush transient L3 cache entries
986  * @xe: The device
987  *
988  * Display engine has direct access to memory and is never coherent with L3/L4
989  * caches (or CPU caches), however KMD is responsible for specifically flushing
990  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
991  * can happen from such a surface without seeing corruption.
992  *
993  * Display surfaces can be tagged as transient by mapping it using one of the
994  * various L3:XD PAT index modes on Xe2.
995  *
996  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
997  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
998  * Media is not coherent with L3 and we want to support render-vs-media
999  * usescases. For other engines like copy/blt the HW internally forces uncached
1000  * behaviour, hence why we can skip the TDF on such platforms.
1001  */
1002 void xe_device_td_flush(struct xe_device *xe)
1003 {
1004 	struct xe_gt *gt;
1005 	unsigned int fw_ref;
1006 	u8 id;
1007 
1008 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1009 		return;
1010 
1011 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
1012 		xe_device_l2_flush(xe);
1013 		return;
1014 	}
1015 
1016 	for_each_gt(gt, xe, id) {
1017 		if (xe_gt_is_media_type(gt))
1018 			continue;
1019 
1020 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1021 		if (!fw_ref)
1022 			return;
1023 
1024 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1025 		/*
1026 		 * FIXME: We can likely do better here with our choice of
1027 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1028 		 * which is believed to be sufficient to cover the worst case
1029 		 * scenario on current platforms if all cache entries are
1030 		 * transient and need to be flushed..
1031 		 */
1032 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1033 				   150, NULL, false))
1034 			xe_gt_err_once(gt, "TD flush timeout\n");
1035 
1036 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1037 	}
1038 }
1039 
1040 void xe_device_l2_flush(struct xe_device *xe)
1041 {
1042 	struct xe_gt *gt;
1043 	unsigned int fw_ref;
1044 
1045 	gt = xe_root_mmio_gt(xe);
1046 
1047 	if (!XE_WA(gt, 16023588340))
1048 		return;
1049 
1050 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1051 	if (!fw_ref)
1052 		return;
1053 
1054 	spin_lock(&gt->global_invl_lock);
1055 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1056 
1057 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1058 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1059 	spin_unlock(&gt->global_invl_lock);
1060 
1061 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1062 }
1063 
1064 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1065 {
1066 	return xe_device_has_flat_ccs(xe) ?
1067 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1068 }
1069 
1070 /**
1071  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1072  * @xe: xe device instance
1073  *
1074  * To be used before any kind of memory access. It will splat a debug warning
1075  * if the device is currently sleeping. But it doesn't guarantee in any way
1076  * that the device is going to remain awake. Xe PM runtime get and put
1077  * functions might be added to the outer bound of the memory access, while
1078  * this check is intended for inner usage to splat some warning if the worst
1079  * case has just happened.
1080  */
1081 void xe_device_assert_mem_access(struct xe_device *xe)
1082 {
1083 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1084 }
1085 
1086 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1087 {
1088 	struct xe_gt *gt;
1089 	u8 id;
1090 
1091 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1092 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1093 
1094 	for_each_gt(gt, xe, id) {
1095 		drm_printf(p, "GT id: %u\n", id);
1096 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1097 		drm_printf(p, "\tType: %s\n",
1098 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1099 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1100 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1101 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1102 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1103 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1104 	}
1105 }
1106 
1107 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1108 {
1109 	return sign_extend64(address, xe->info.va_bits - 1);
1110 }
1111 
1112 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1113 {
1114 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1115 }
1116 
1117 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1118 {
1119 	struct xe_device *xe = arg;
1120 
1121 	xe_pm_runtime_put(xe);
1122 }
1123 
1124 /**
1125  * xe_device_declare_wedged - Declare device wedged
1126  * @xe: xe device instance
1127  *
1128  * This is a final state that can only be cleared with a module
1129  * re-probe (unbind + bind).
1130  * In this state every IOCTL will be blocked so the GT cannot be used.
1131  * In general it will be called upon any critical error such as gt reset
1132  * failure or guc loading failure. Userspace will be notified of this state
1133  * through device wedged uevent.
1134  * If xe.wedged module parameter is set to 2, this function will be called
1135  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1136  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1137  * the issue is preserved for further debugging.
1138  */
1139 void xe_device_declare_wedged(struct xe_device *xe)
1140 {
1141 	struct xe_gt *gt;
1142 	u8 id;
1143 
1144 	if (xe->wedged.mode == 0) {
1145 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1146 		return;
1147 	}
1148 
1149 	xe_pm_runtime_get_noresume(xe);
1150 
1151 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1152 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1153 		return;
1154 	}
1155 
1156 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1157 		xe->needs_flr_on_fini = true;
1158 		drm_err(&xe->drm,
1159 			"CRITICAL: Xe has declared device %s as wedged.\n"
1160 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1161 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1162 			dev_name(xe->drm.dev));
1163 
1164 		/* Notify userspace of wedged device */
1165 		drm_dev_wedged_event(&xe->drm,
1166 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1167 	}
1168 
1169 	for_each_gt(gt, xe, id)
1170 		xe_gt_declare_wedged(gt);
1171 }
1172