1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_bo_evict.h" 27 #include "xe_debugfs.h" 28 #include "xe_devcoredump.h" 29 #include "xe_device_sysfs.h" 30 #include "xe_dma_buf.h" 31 #include "xe_drm_client.h" 32 #include "xe_drv.h" 33 #include "xe_exec.h" 34 #include "xe_exec_queue.h" 35 #include "xe_force_wake.h" 36 #include "xe_ggtt.h" 37 #include "xe_gsc_proxy.h" 38 #include "xe_gt.h" 39 #include "xe_gt_mcr.h" 40 #include "xe_gt_printk.h" 41 #include "xe_gt_sriov_vf.h" 42 #include "xe_guc.h" 43 #include "xe_guc_pc.h" 44 #include "xe_hw_engine_group.h" 45 #include "xe_hwmon.h" 46 #include "xe_irq.h" 47 #include "xe_memirq.h" 48 #include "xe_mmio.h" 49 #include "xe_module.h" 50 #include "xe_oa.h" 51 #include "xe_observation.h" 52 #include "xe_pat.h" 53 #include "xe_pcode.h" 54 #include "xe_pm.h" 55 #include "xe_pmu.h" 56 #include "xe_pxp.h" 57 #include "xe_query.h" 58 #include "xe_shrinker.h" 59 #include "xe_survivability_mode.h" 60 #include "xe_sriov.h" 61 #include "xe_tile.h" 62 #include "xe_ttm_stolen_mgr.h" 63 #include "xe_ttm_sys_mgr.h" 64 #include "xe_vm.h" 65 #include "xe_vram.h" 66 #include "xe_vsec.h" 67 #include "xe_wait_user_fence.h" 68 #include "xe_wa.h" 69 70 #include <generated/xe_wa_oob.h> 71 72 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 73 { 74 struct xe_device *xe = to_xe_device(dev); 75 struct xe_drm_client *client; 76 struct xe_file *xef; 77 int ret = -ENOMEM; 78 struct task_struct *task = NULL; 79 80 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 81 if (!xef) 82 return ret; 83 84 client = xe_drm_client_alloc(); 85 if (!client) { 86 kfree(xef); 87 return ret; 88 } 89 90 xef->drm = file; 91 xef->client = client; 92 xef->xe = xe; 93 94 mutex_init(&xef->vm.lock); 95 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 96 97 mutex_init(&xef->exec_queue.lock); 98 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 99 100 file->driver_priv = xef; 101 kref_init(&xef->refcount); 102 103 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 104 if (task) { 105 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 106 xef->pid = task->pid; 107 put_task_struct(task); 108 } 109 110 return 0; 111 } 112 113 static void xe_file_destroy(struct kref *ref) 114 { 115 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 116 117 xa_destroy(&xef->exec_queue.xa); 118 mutex_destroy(&xef->exec_queue.lock); 119 xa_destroy(&xef->vm.xa); 120 mutex_destroy(&xef->vm.lock); 121 122 xe_drm_client_put(xef->client); 123 kfree(xef->process_name); 124 kfree(xef); 125 } 126 127 /** 128 * xe_file_get() - Take a reference to the xe file object 129 * @xef: Pointer to the xe file 130 * 131 * Anyone with a pointer to xef must take a reference to the xe file 132 * object using this call. 133 * 134 * Return: xe file pointer 135 */ 136 struct xe_file *xe_file_get(struct xe_file *xef) 137 { 138 kref_get(&xef->refcount); 139 return xef; 140 } 141 142 /** 143 * xe_file_put() - Drop a reference to the xe file object 144 * @xef: Pointer to the xe file 145 * 146 * Used to drop reference to the xef object 147 */ 148 void xe_file_put(struct xe_file *xef) 149 { 150 kref_put(&xef->refcount, xe_file_destroy); 151 } 152 153 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 154 { 155 struct xe_device *xe = to_xe_device(dev); 156 struct xe_file *xef = file->driver_priv; 157 struct xe_vm *vm; 158 struct xe_exec_queue *q; 159 unsigned long idx; 160 161 xe_pm_runtime_get(xe); 162 163 /* 164 * No need for exec_queue.lock here as there is no contention for it 165 * when FD is closing as IOCTLs presumably can't be modifying the 166 * xarray. Taking exec_queue.lock here causes undue dependency on 167 * vm->lock taken during xe_exec_queue_kill(). 168 */ 169 xa_for_each(&xef->exec_queue.xa, idx, q) { 170 if (q->vm && q->hwe->hw_engine_group) 171 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 172 xe_exec_queue_kill(q); 173 xe_exec_queue_put(q); 174 } 175 xa_for_each(&xef->vm.xa, idx, vm) 176 xe_vm_close_and_put(vm); 177 178 xe_file_put(xef); 179 180 xe_pm_runtime_put(xe); 181 } 182 183 static const struct drm_ioctl_desc xe_ioctls[] = { 184 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 187 DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 193 DRM_RENDER_ALLOW), 194 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 195 DRM_RENDER_ALLOW), 196 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 197 DRM_RENDER_ALLOW), 198 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 199 DRM_RENDER_ALLOW), 200 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 201 }; 202 203 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 204 { 205 struct drm_file *file_priv = file->private_data; 206 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 207 long ret; 208 209 if (xe_device_wedged(xe)) 210 return -ECANCELED; 211 212 ret = xe_pm_runtime_get_ioctl(xe); 213 if (ret >= 0) 214 ret = drm_ioctl(file, cmd, arg); 215 xe_pm_runtime_put(xe); 216 217 return ret; 218 } 219 220 #ifdef CONFIG_COMPAT 221 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 222 { 223 struct drm_file *file_priv = file->private_data; 224 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 225 long ret; 226 227 if (xe_device_wedged(xe)) 228 return -ECANCELED; 229 230 ret = xe_pm_runtime_get_ioctl(xe); 231 if (ret >= 0) 232 ret = drm_compat_ioctl(file, cmd, arg); 233 xe_pm_runtime_put(xe); 234 235 return ret; 236 } 237 #else 238 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 239 #define xe_drm_compat_ioctl NULL 240 #endif 241 242 static void barrier_open(struct vm_area_struct *vma) 243 { 244 drm_dev_get(vma->vm_private_data); 245 } 246 247 static void barrier_close(struct vm_area_struct *vma) 248 { 249 drm_dev_put(vma->vm_private_data); 250 } 251 252 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 253 { 254 struct page *dummy_page = (struct page *)res; 255 256 __free_page(dummy_page); 257 } 258 259 static vm_fault_t barrier_fault(struct vm_fault *vmf) 260 { 261 struct drm_device *dev = vmf->vma->vm_private_data; 262 struct vm_area_struct *vma = vmf->vma; 263 vm_fault_t ret = VM_FAULT_NOPAGE; 264 pgprot_t prot; 265 int idx; 266 267 prot = vm_get_page_prot(vma->vm_flags); 268 269 if (drm_dev_enter(dev, &idx)) { 270 unsigned long pfn; 271 272 #define LAST_DB_PAGE_OFFSET 0x7ff001 273 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 274 LAST_DB_PAGE_OFFSET); 275 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 276 pgprot_noncached(prot)); 277 drm_dev_exit(idx); 278 } else { 279 struct page *page; 280 281 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 282 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 283 if (!page) 284 return VM_FAULT_OOM; 285 286 /* Set the page to be freed using drmm release action */ 287 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 288 return VM_FAULT_OOM; 289 290 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 291 prot); 292 } 293 294 return ret; 295 } 296 297 static const struct vm_operations_struct vm_ops_barrier = { 298 .open = barrier_open, 299 .close = barrier_close, 300 .fault = barrier_fault, 301 }; 302 303 static int xe_pci_barrier_mmap(struct file *filp, 304 struct vm_area_struct *vma) 305 { 306 struct drm_file *priv = filp->private_data; 307 struct drm_device *dev = priv->minor->dev; 308 struct xe_device *xe = to_xe_device(dev); 309 310 if (!IS_DGFX(xe)) 311 return -EINVAL; 312 313 if (vma->vm_end - vma->vm_start > SZ_4K) 314 return -EINVAL; 315 316 if (is_cow_mapping(vma->vm_flags)) 317 return -EINVAL; 318 319 if (vma->vm_flags & (VM_READ | VM_EXEC)) 320 return -EINVAL; 321 322 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 323 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 324 vma->vm_ops = &vm_ops_barrier; 325 vma->vm_private_data = dev; 326 drm_dev_get(vma->vm_private_data); 327 328 return 0; 329 } 330 331 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 332 { 333 struct drm_file *priv = filp->private_data; 334 struct drm_device *dev = priv->minor->dev; 335 336 if (drm_dev_is_unplugged(dev)) 337 return -ENODEV; 338 339 switch (vma->vm_pgoff) { 340 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 341 return xe_pci_barrier_mmap(filp, vma); 342 } 343 344 return drm_gem_mmap(filp, vma); 345 } 346 347 static const struct file_operations xe_driver_fops = { 348 .owner = THIS_MODULE, 349 .open = drm_open, 350 .release = drm_release_noglobal, 351 .unlocked_ioctl = xe_drm_ioctl, 352 .mmap = xe_mmap, 353 .poll = drm_poll, 354 .read = drm_read, 355 .compat_ioctl = xe_drm_compat_ioctl, 356 .llseek = noop_llseek, 357 #ifdef CONFIG_PROC_FS 358 .show_fdinfo = drm_show_fdinfo, 359 #endif 360 .fop_flags = FOP_UNSIGNED_OFFSET, 361 }; 362 363 static struct drm_driver driver = { 364 /* Don't use MTRRs here; the Xserver or userspace app should 365 * deal with them for Intel hardware. 366 */ 367 .driver_features = 368 DRIVER_GEM | 369 DRIVER_RENDER | DRIVER_SYNCOBJ | 370 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 371 .open = xe_file_open, 372 .postclose = xe_file_close, 373 374 .gem_prime_import = xe_gem_prime_import, 375 376 .dumb_create = xe_bo_dumb_create, 377 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 378 #ifdef CONFIG_PROC_FS 379 .show_fdinfo = xe_drm_client_fdinfo, 380 #endif 381 .ioctls = xe_ioctls, 382 .num_ioctls = ARRAY_SIZE(xe_ioctls), 383 .fops = &xe_driver_fops, 384 .name = DRIVER_NAME, 385 .desc = DRIVER_DESC, 386 .major = DRIVER_MAJOR, 387 .minor = DRIVER_MINOR, 388 .patchlevel = DRIVER_PATCHLEVEL, 389 }; 390 391 static void xe_device_destroy(struct drm_device *dev, void *dummy) 392 { 393 struct xe_device *xe = to_xe_device(dev); 394 395 xe_bo_dev_fini(&xe->bo_device); 396 397 if (xe->preempt_fence_wq) 398 destroy_workqueue(xe->preempt_fence_wq); 399 400 if (xe->ordered_wq) 401 destroy_workqueue(xe->ordered_wq); 402 403 if (xe->unordered_wq) 404 destroy_workqueue(xe->unordered_wq); 405 406 if (!IS_ERR_OR_NULL(xe->mem.shrinker)) 407 xe_shrinker_destroy(xe->mem.shrinker); 408 409 if (xe->destroy_wq) 410 destroy_workqueue(xe->destroy_wq); 411 412 ttm_device_fini(&xe->ttm); 413 } 414 415 struct xe_device *xe_device_create(struct pci_dev *pdev, 416 const struct pci_device_id *ent) 417 { 418 struct xe_device *xe; 419 int err; 420 421 xe_display_driver_set_hooks(&driver); 422 423 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 424 if (err) 425 return ERR_PTR(err); 426 427 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 428 if (IS_ERR(xe)) 429 return xe; 430 431 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 432 xe->drm.anon_inode->i_mapping, 433 xe->drm.vma_offset_manager, false, false); 434 if (WARN_ON(err)) 435 goto err; 436 437 xe_bo_dev_init(&xe->bo_device); 438 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 439 if (err) 440 goto err; 441 442 xe->mem.shrinker = xe_shrinker_create(xe); 443 if (IS_ERR(xe->mem.shrinker)) 444 return ERR_CAST(xe->mem.shrinker); 445 446 xe->info.devid = pdev->device; 447 xe->info.revid = pdev->revision; 448 xe->info.force_execlist = xe_modparam.force_execlist; 449 450 err = xe_irq_init(xe); 451 if (err) 452 goto err; 453 454 init_waitqueue_head(&xe->ufence_wq); 455 456 init_rwsem(&xe->usm.lock); 457 458 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 459 460 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 461 /* Trigger a large asid and an early asid wrap. */ 462 u32 asid; 463 464 BUILD_BUG_ON(XE_MAX_ASID < 2); 465 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 466 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 467 &xe->usm.next_asid, GFP_KERNEL); 468 drm_WARN_ON(&xe->drm, err); 469 if (err >= 0) 470 xa_erase(&xe->usm.asid_to_vm, asid); 471 } 472 473 err = xe_bo_pinned_init(xe); 474 if (err) 475 goto err; 476 477 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 478 WQ_MEM_RECLAIM); 479 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 480 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 481 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 482 if (!xe->ordered_wq || !xe->unordered_wq || 483 !xe->preempt_fence_wq || !xe->destroy_wq) { 484 /* 485 * Cleanup done in xe_device_destroy via 486 * drmm_add_action_or_reset register above 487 */ 488 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 489 err = -ENOMEM; 490 goto err; 491 } 492 493 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 494 if (err) 495 goto err; 496 497 err = xe_display_create(xe); 498 if (WARN_ON(err)) 499 goto err; 500 501 return xe; 502 503 err: 504 return ERR_PTR(err); 505 } 506 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 507 508 static bool xe_driver_flr_disabled(struct xe_device *xe) 509 { 510 if (IS_SRIOV_VF(xe)) 511 return true; 512 513 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 514 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 515 return true; 516 } 517 518 return false; 519 } 520 521 /* 522 * The driver-initiated FLR is the highest level of reset that we can trigger 523 * from within the driver. It is different from the PCI FLR in that it doesn't 524 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 525 * it doesn't require a re-enumeration of the PCI BARs. However, the 526 * driver-initiated FLR does still cause a reset of both GT and display and a 527 * memory wipe of local and stolen memory, so recovery would require a full HW 528 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 529 * perform the FLR as the very last action before releasing access to the HW 530 * during the driver release flow, we don't attempt recovery at all, because 531 * if/when a new instance of i915 is bound to the device it will do a full 532 * re-init anyway. 533 */ 534 static void __xe_driver_flr(struct xe_device *xe) 535 { 536 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 537 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 538 int ret; 539 540 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 541 542 /* 543 * Make sure any pending FLR requests have cleared by waiting for the 544 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 545 * to make sure it's not still set from a prior attempt (it's a write to 546 * clear bit). 547 * Note that we should never be in a situation where a previous attempt 548 * is still pending (unless the HW is totally dead), but better to be 549 * safe in case something unexpected happens 550 */ 551 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 552 if (ret) { 553 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 554 return; 555 } 556 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 557 558 /* Trigger the actual Driver-FLR */ 559 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 560 561 /* Wait for hardware teardown to complete */ 562 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 563 if (ret) { 564 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 565 return; 566 } 567 568 /* Wait for hardware/firmware re-init to complete */ 569 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 570 flr_timeout, NULL, false); 571 if (ret) { 572 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 573 return; 574 } 575 576 /* Clear sticky completion status */ 577 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 578 } 579 580 static void xe_driver_flr(struct xe_device *xe) 581 { 582 if (xe_driver_flr_disabled(xe)) 583 return; 584 585 __xe_driver_flr(xe); 586 } 587 588 static void xe_driver_flr_fini(void *arg) 589 { 590 struct xe_device *xe = arg; 591 592 if (xe->needs_flr_on_fini) 593 xe_driver_flr(xe); 594 } 595 596 static void xe_device_sanitize(void *arg) 597 { 598 struct xe_device *xe = arg; 599 struct xe_gt *gt; 600 u8 id; 601 602 for_each_gt(gt, xe, id) 603 xe_gt_sanitize(gt); 604 } 605 606 static int xe_set_dma_info(struct xe_device *xe) 607 { 608 unsigned int mask_size = xe->info.dma_mask_size; 609 int err; 610 611 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 612 613 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 614 if (err) 615 goto mask_err; 616 617 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 618 if (err) 619 goto mask_err; 620 621 return 0; 622 623 mask_err: 624 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 625 return err; 626 } 627 628 static bool verify_lmem_ready(struct xe_device *xe) 629 { 630 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 631 632 return !!val; 633 } 634 635 static int wait_for_lmem_ready(struct xe_device *xe) 636 { 637 unsigned long timeout, start; 638 639 if (!IS_DGFX(xe)) 640 return 0; 641 642 if (IS_SRIOV_VF(xe)) 643 return 0; 644 645 if (verify_lmem_ready(xe)) 646 return 0; 647 648 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 649 650 start = jiffies; 651 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 652 653 do { 654 if (signal_pending(current)) 655 return -EINTR; 656 657 /* 658 * The boot firmware initializes local memory and 659 * assesses its health. If memory training fails, 660 * the punit will have been instructed to keep the GT powered 661 * down.we won't be able to communicate with it 662 * 663 * If the status check is done before punit updates the register, 664 * it can lead to the system being unusable. 665 * use a timeout and defer the probe to prevent this. 666 */ 667 if (time_after(jiffies, timeout)) { 668 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 669 return -EPROBE_DEFER; 670 } 671 672 msleep(20); 673 674 } while (!verify_lmem_ready(xe)); 675 676 drm_dbg(&xe->drm, "lmem ready after %ums", 677 jiffies_to_msecs(jiffies - start)); 678 679 return 0; 680 } 681 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 682 683 static void sriov_update_device_info(struct xe_device *xe) 684 { 685 /* disable features that are not available/applicable to VFs */ 686 if (IS_SRIOV_VF(xe)) { 687 xe->info.probe_display = 0; 688 xe->info.has_heci_gscfi = 0; 689 xe->info.skip_guc_pc = 1; 690 xe->info.skip_pcode = 1; 691 } 692 } 693 694 /** 695 * xe_device_probe_early: Device early probe 696 * @xe: xe device instance 697 * 698 * Initialize MMIO resources that don't require any 699 * knowledge about tile count. Also initialize pcode and 700 * check vram initialization on root tile. 701 * 702 * Return: 0 on success, error code on failure 703 */ 704 int xe_device_probe_early(struct xe_device *xe) 705 { 706 int err; 707 708 err = xe_mmio_probe_early(xe); 709 if (err) 710 return err; 711 712 xe_sriov_probe_early(xe); 713 714 sriov_update_device_info(xe); 715 716 err = xe_pcode_probe_early(xe); 717 if (err || xe_survivability_mode_is_requested(xe)) { 718 int save_err = err; 719 720 /* 721 * Try to leave device in survivability mode if device is 722 * possible, but still return the previous error for error 723 * propagation 724 */ 725 err = xe_survivability_mode_enable(xe); 726 if (err) 727 return err; 728 729 return save_err; 730 } 731 732 err = wait_for_lmem_ready(xe); 733 if (err) 734 return err; 735 736 xe->wedged.mode = xe_modparam.wedged_mode; 737 738 return 0; 739 } 740 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 741 742 static int probe_has_flat_ccs(struct xe_device *xe) 743 { 744 struct xe_gt *gt; 745 unsigned int fw_ref; 746 u32 reg; 747 748 /* Always enabled/disabled, no runtime check to do */ 749 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 750 return 0; 751 752 gt = xe_root_mmio_gt(xe); 753 754 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 755 if (!fw_ref) 756 return -ETIMEDOUT; 757 758 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 759 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 760 761 if (!xe->info.has_flat_ccs) 762 drm_dbg(&xe->drm, 763 "Flat CCS has been disabled in bios, May lead to performance impact"); 764 765 xe_force_wake_put(gt_to_fw(gt), fw_ref); 766 767 return 0; 768 } 769 770 int xe_device_probe(struct xe_device *xe) 771 { 772 struct xe_tile *tile; 773 struct xe_gt *gt; 774 int err; 775 u8 id; 776 777 xe_pat_init_early(xe); 778 779 err = xe_sriov_init(xe); 780 if (err) 781 return err; 782 783 xe->info.mem_region_mask = 1; 784 785 err = xe_set_dma_info(xe); 786 if (err) 787 return err; 788 789 err = xe_mmio_probe_tiles(xe); 790 if (err) 791 return err; 792 793 err = xe_ttm_sys_mgr_init(xe); 794 if (err) 795 return err; 796 797 for_each_gt(gt, xe, id) { 798 err = xe_gt_init_early(gt); 799 if (err) 800 return err; 801 802 /* 803 * Only after this point can GT-specific MMIO operations 804 * (including things like communication with the GuC) 805 * be performed. 806 */ 807 xe_gt_mmio_init(gt); 808 } 809 810 for_each_tile(tile, xe, id) { 811 if (IS_SRIOV_VF(xe)) { 812 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 813 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 814 if (err) 815 return err; 816 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 817 if (err) 818 return err; 819 } 820 err = xe_ggtt_init_early(tile->mem.ggtt); 821 if (err) 822 return err; 823 err = xe_memirq_init(&tile->memirq); 824 if (err) 825 return err; 826 } 827 828 for_each_gt(gt, xe, id) { 829 err = xe_gt_init_hwconfig(gt); 830 if (err) 831 return err; 832 } 833 834 err = xe_devcoredump_init(xe); 835 if (err) 836 return err; 837 838 /* 839 * From here on, if a step fails, make sure a Driver-FLR is triggereed 840 */ 841 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 842 if (err) 843 return err; 844 845 err = probe_has_flat_ccs(xe); 846 if (err) 847 return err; 848 849 err = xe_vram_probe(xe); 850 if (err) 851 return err; 852 853 for_each_tile(tile, xe, id) { 854 err = xe_tile_init_noalloc(tile); 855 if (err) 856 return err; 857 } 858 859 /* Allocate and map stolen after potential VRAM resize */ 860 err = xe_ttm_stolen_mgr_init(xe); 861 if (err) 862 return err; 863 864 /* 865 * Now that GT is initialized (TTM in particular), 866 * we can try to init display, and inherit the initial fb. 867 * This is the reason the first allocation needs to be done 868 * inside display. 869 */ 870 err = xe_display_init_early(xe); 871 if (err) 872 return err; 873 874 for_each_tile(tile, xe, id) { 875 err = xe_tile_init(tile); 876 if (err) 877 return err; 878 } 879 880 err = xe_irq_install(xe); 881 if (err) 882 return err; 883 884 for_each_gt(gt, xe, id) { 885 err = xe_gt_init(gt); 886 if (err) 887 return err; 888 } 889 890 err = xe_heci_gsc_init(xe); 891 if (err) 892 return err; 893 894 err = xe_oa_init(xe); 895 if (err) 896 return err; 897 898 err = xe_display_init(xe); 899 if (err) 900 return err; 901 902 err = xe_pxp_init(xe); 903 if (err) 904 return err; 905 906 err = drm_dev_register(&xe->drm, 0); 907 if (err) 908 return err; 909 910 xe_display_register(xe); 911 912 err = xe_oa_register(xe); 913 if (err) 914 goto err_unregister_display; 915 916 err = xe_pmu_register(&xe->pmu); 917 if (err) 918 goto err_unregister_display; 919 920 err = xe_device_sysfs_init(xe); 921 if (err) 922 goto err_unregister_display; 923 924 xe_debugfs_register(xe); 925 926 err = xe_hwmon_register(xe); 927 if (err) 928 goto err_unregister_display; 929 930 for_each_gt(gt, xe, id) 931 xe_gt_sanitize_freq(gt); 932 933 xe_vsec_init(xe); 934 935 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 936 937 err_unregister_display: 938 xe_display_unregister(xe); 939 940 return err; 941 } 942 943 void xe_device_remove(struct xe_device *xe) 944 { 945 xe_display_unregister(xe); 946 947 drm_dev_unplug(&xe->drm); 948 949 xe_bo_pci_dev_remove_all(xe); 950 } 951 952 void xe_device_shutdown(struct xe_device *xe) 953 { 954 struct xe_gt *gt; 955 u8 id; 956 957 drm_dbg(&xe->drm, "Shutting down device\n"); 958 959 if (xe_driver_flr_disabled(xe)) { 960 xe_display_pm_shutdown(xe); 961 962 xe_irq_suspend(xe); 963 964 for_each_gt(gt, xe, id) 965 xe_gt_shutdown(gt); 966 967 xe_display_pm_shutdown_late(xe); 968 } else { 969 /* BOOM! */ 970 __xe_driver_flr(xe); 971 } 972 } 973 974 /** 975 * xe_device_wmb() - Device specific write memory barrier 976 * @xe: the &xe_device 977 * 978 * While wmb() is sufficient for a barrier if we use system memory, on discrete 979 * platforms with device memory we additionally need to issue a register write. 980 * Since it doesn't matter which register we write to, use the read-only VF_CAP 981 * register that is also marked as accessible by the VFs. 982 */ 983 void xe_device_wmb(struct xe_device *xe) 984 { 985 wmb(); 986 if (IS_DGFX(xe)) 987 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 988 } 989 990 /* 991 * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt. 992 */ 993 static void tdf_request_sync(struct xe_device *xe) 994 { 995 unsigned int fw_ref; 996 struct xe_gt *gt; 997 u8 id; 998 999 for_each_gt(gt, xe, id) { 1000 if (xe_gt_is_media_type(gt)) 1001 continue; 1002 1003 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1004 if (!fw_ref) 1005 return; 1006 1007 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1008 1009 /* 1010 * FIXME: We can likely do better here with our choice of 1011 * timeout. Currently we just assume the worst case, i.e. 150us, 1012 * which is believed to be sufficient to cover the worst case 1013 * scenario on current platforms if all cache entries are 1014 * transient and need to be flushed.. 1015 */ 1016 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1017 150, NULL, false)) 1018 xe_gt_err_once(gt, "TD flush timeout\n"); 1019 1020 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1021 } 1022 } 1023 1024 void xe_device_l2_flush(struct xe_device *xe) 1025 { 1026 struct xe_gt *gt; 1027 unsigned int fw_ref; 1028 1029 gt = xe_root_mmio_gt(xe); 1030 1031 if (!XE_WA(gt, 16023588340)) 1032 return; 1033 1034 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1035 if (!fw_ref) 1036 return; 1037 1038 spin_lock(>->global_invl_lock); 1039 1040 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1041 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1042 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1043 1044 spin_unlock(>->global_invl_lock); 1045 1046 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1047 } 1048 1049 /** 1050 * xe_device_td_flush() - Flush transient L3 cache entries 1051 * @xe: The device 1052 * 1053 * Display engine has direct access to memory and is never coherent with L3/L4 1054 * caches (or CPU caches), however KMD is responsible for specifically flushing 1055 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 1056 * can happen from such a surface without seeing corruption. 1057 * 1058 * Display surfaces can be tagged as transient by mapping it using one of the 1059 * various L3:XD PAT index modes on Xe2. 1060 * 1061 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1062 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1063 * Media is not coherent with L3 and we want to support render-vs-media 1064 * usescases. For other engines like copy/blt the HW internally forces uncached 1065 * behaviour, hence why we can skip the TDF on such platforms. 1066 */ 1067 void xe_device_td_flush(struct xe_device *xe) 1068 { 1069 struct xe_gt *root_gt; 1070 1071 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1072 return; 1073 1074 root_gt = xe_root_mmio_gt(xe); 1075 if (XE_WA(root_gt, 16023588340)) { 1076 /* A transient flush is not sufficient: flush the L2 */ 1077 xe_device_l2_flush(xe); 1078 } else { 1079 xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc); 1080 tdf_request_sync(xe); 1081 xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc); 1082 } 1083 } 1084 1085 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1086 { 1087 return xe_device_has_flat_ccs(xe) ? 1088 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1089 } 1090 1091 /** 1092 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1093 * @xe: xe device instance 1094 * 1095 * To be used before any kind of memory access. It will splat a debug warning 1096 * if the device is currently sleeping. But it doesn't guarantee in any way 1097 * that the device is going to remain awake. Xe PM runtime get and put 1098 * functions might be added to the outer bound of the memory access, while 1099 * this check is intended for inner usage to splat some warning if the worst 1100 * case has just happened. 1101 */ 1102 void xe_device_assert_mem_access(struct xe_device *xe) 1103 { 1104 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1105 } 1106 1107 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1108 { 1109 struct xe_gt *gt; 1110 u8 id; 1111 1112 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1113 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1114 1115 for_each_gt(gt, xe, id) { 1116 drm_printf(p, "GT id: %u\n", id); 1117 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1118 drm_printf(p, "\tType: %s\n", 1119 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1120 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1121 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1122 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1123 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1124 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1125 } 1126 } 1127 1128 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1129 { 1130 return sign_extend64(address, xe->info.va_bits - 1); 1131 } 1132 1133 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1134 { 1135 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1136 } 1137 1138 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1139 { 1140 struct xe_device *xe = arg; 1141 1142 xe_pm_runtime_put(xe); 1143 } 1144 1145 /** 1146 * xe_device_declare_wedged - Declare device wedged 1147 * @xe: xe device instance 1148 * 1149 * This is a final state that can only be cleared with a module 1150 * re-probe (unbind + bind). 1151 * In this state every IOCTL will be blocked so the GT cannot be used. 1152 * In general it will be called upon any critical error such as gt reset 1153 * failure or guc loading failure. Userspace will be notified of this state 1154 * through device wedged uevent. 1155 * If xe.wedged module parameter is set to 2, this function will be called 1156 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1157 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1158 * the issue is preserved for further debugging. 1159 */ 1160 void xe_device_declare_wedged(struct xe_device *xe) 1161 { 1162 struct xe_gt *gt; 1163 u8 id; 1164 1165 if (xe->wedged.mode == 0) { 1166 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1167 return; 1168 } 1169 1170 xe_pm_runtime_get_noresume(xe); 1171 1172 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1173 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1174 return; 1175 } 1176 1177 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1178 xe->needs_flr_on_fini = true; 1179 drm_err(&xe->drm, 1180 "CRITICAL: Xe has declared device %s as wedged.\n" 1181 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1182 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1183 dev_name(xe->drm.dev)); 1184 1185 /* Notify userspace of wedged device */ 1186 drm_dev_wedged_event(&xe->drm, 1187 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET); 1188 } 1189 1190 for_each_gt(gt, xe, id) 1191 xe_gt_declare_wedged(gt); 1192 } 1193