xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_observation.h"
48 #include "xe_pat.h"
49 #include "xe_pcode.h"
50 #include "xe_pm.h"
51 #include "xe_query.h"
52 #include "xe_sriov.h"
53 #include "xe_tile.h"
54 #include "xe_ttm_stolen_mgr.h"
55 #include "xe_ttm_sys_mgr.h"
56 #include "xe_vm.h"
57 #include "xe_vram.h"
58 #include "xe_wait_user_fence.h"
59 #include "xe_wa.h"
60 
61 #include <generated/xe_wa_oob.h>
62 
63 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
64 {
65 	struct xe_device *xe = to_xe_device(dev);
66 	struct xe_drm_client *client;
67 	struct xe_file *xef;
68 	int ret = -ENOMEM;
69 	struct task_struct *task = NULL;
70 
71 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
72 	if (!xef)
73 		return ret;
74 
75 	client = xe_drm_client_alloc();
76 	if (!client) {
77 		kfree(xef);
78 		return ret;
79 	}
80 
81 	xef->drm = file;
82 	xef->client = client;
83 	xef->xe = xe;
84 
85 	mutex_init(&xef->vm.lock);
86 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
87 
88 	mutex_init(&xef->exec_queue.lock);
89 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
90 
91 	file->driver_priv = xef;
92 	kref_init(&xef->refcount);
93 
94 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
95 	if (task) {
96 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
97 		xef->pid = task->pid;
98 		put_task_struct(task);
99 	}
100 
101 	return 0;
102 }
103 
104 static void xe_file_destroy(struct kref *ref)
105 {
106 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
107 
108 	xa_destroy(&xef->exec_queue.xa);
109 	mutex_destroy(&xef->exec_queue.lock);
110 	xa_destroy(&xef->vm.xa);
111 	mutex_destroy(&xef->vm.lock);
112 
113 	xe_drm_client_put(xef->client);
114 	kfree(xef->process_name);
115 	kfree(xef);
116 }
117 
118 /**
119  * xe_file_get() - Take a reference to the xe file object
120  * @xef: Pointer to the xe file
121  *
122  * Anyone with a pointer to xef must take a reference to the xe file
123  * object using this call.
124  *
125  * Return: xe file pointer
126  */
127 struct xe_file *xe_file_get(struct xe_file *xef)
128 {
129 	kref_get(&xef->refcount);
130 	return xef;
131 }
132 
133 /**
134  * xe_file_put() - Drop a reference to the xe file object
135  * @xef: Pointer to the xe file
136  *
137  * Used to drop reference to the xef object
138  */
139 void xe_file_put(struct xe_file *xef)
140 {
141 	kref_put(&xef->refcount, xe_file_destroy);
142 }
143 
144 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
145 {
146 	struct xe_device *xe = to_xe_device(dev);
147 	struct xe_file *xef = file->driver_priv;
148 	struct xe_vm *vm;
149 	struct xe_exec_queue *q;
150 	unsigned long idx;
151 
152 	xe_pm_runtime_get(xe);
153 
154 	/*
155 	 * No need for exec_queue.lock here as there is no contention for it
156 	 * when FD is closing as IOCTLs presumably can't be modifying the
157 	 * xarray. Taking exec_queue.lock here causes undue dependency on
158 	 * vm->lock taken during xe_exec_queue_kill().
159 	 */
160 	xa_for_each(&xef->exec_queue.xa, idx, q) {
161 		if (q->vm && q->hwe->hw_engine_group)
162 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
163 		xe_exec_queue_kill(q);
164 		xe_exec_queue_put(q);
165 	}
166 	xa_for_each(&xef->vm.xa, idx, vm)
167 		xe_vm_close_and_put(vm);
168 
169 	xe_file_put(xef);
170 
171 	xe_pm_runtime_put(xe);
172 }
173 
174 static const struct drm_ioctl_desc xe_ioctls[] = {
175 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
176 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
177 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
178 			  DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
184 			  DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
186 			  DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
192 };
193 
194 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
195 {
196 	struct drm_file *file_priv = file->private_data;
197 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
198 	long ret;
199 
200 	if (xe_device_wedged(xe))
201 		return -ECANCELED;
202 
203 	ret = xe_pm_runtime_get_ioctl(xe);
204 	if (ret >= 0)
205 		ret = drm_ioctl(file, cmd, arg);
206 	xe_pm_runtime_put(xe);
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_COMPAT
212 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
213 {
214 	struct drm_file *file_priv = file->private_data;
215 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
216 	long ret;
217 
218 	if (xe_device_wedged(xe))
219 		return -ECANCELED;
220 
221 	ret = xe_pm_runtime_get_ioctl(xe);
222 	if (ret >= 0)
223 		ret = drm_compat_ioctl(file, cmd, arg);
224 	xe_pm_runtime_put(xe);
225 
226 	return ret;
227 }
228 #else
229 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
230 #define xe_drm_compat_ioctl NULL
231 #endif
232 
233 static const struct file_operations xe_driver_fops = {
234 	.owner = THIS_MODULE,
235 	.open = drm_open,
236 	.release = drm_release_noglobal,
237 	.unlocked_ioctl = xe_drm_ioctl,
238 	.mmap = drm_gem_mmap,
239 	.poll = drm_poll,
240 	.read = drm_read,
241 	.compat_ioctl = xe_drm_compat_ioctl,
242 	.llseek = noop_llseek,
243 #ifdef CONFIG_PROC_FS
244 	.show_fdinfo = drm_show_fdinfo,
245 #endif
246 	.fop_flags = FOP_UNSIGNED_OFFSET,
247 };
248 
249 static struct drm_driver driver = {
250 	/* Don't use MTRRs here; the Xserver or userspace app should
251 	 * deal with them for Intel hardware.
252 	 */
253 	.driver_features =
254 	    DRIVER_GEM |
255 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
256 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
257 	.open = xe_file_open,
258 	.postclose = xe_file_close,
259 
260 	.gem_prime_import = xe_gem_prime_import,
261 
262 	.dumb_create = xe_bo_dumb_create,
263 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
264 #ifdef CONFIG_PROC_FS
265 	.show_fdinfo = xe_drm_client_fdinfo,
266 #endif
267 	.ioctls = xe_ioctls,
268 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
269 	.fops = &xe_driver_fops,
270 	.name = DRIVER_NAME,
271 	.desc = DRIVER_DESC,
272 	.date = DRIVER_DATE,
273 	.major = DRIVER_MAJOR,
274 	.minor = DRIVER_MINOR,
275 	.patchlevel = DRIVER_PATCHLEVEL,
276 };
277 
278 static void xe_device_destroy(struct drm_device *dev, void *dummy)
279 {
280 	struct xe_device *xe = to_xe_device(dev);
281 
282 	if (xe->preempt_fence_wq)
283 		destroy_workqueue(xe->preempt_fence_wq);
284 
285 	if (xe->ordered_wq)
286 		destroy_workqueue(xe->ordered_wq);
287 
288 	if (xe->unordered_wq)
289 		destroy_workqueue(xe->unordered_wq);
290 
291 	if (xe->destroy_wq)
292 		destroy_workqueue(xe->destroy_wq);
293 
294 	ttm_device_fini(&xe->ttm);
295 }
296 
297 struct xe_device *xe_device_create(struct pci_dev *pdev,
298 				   const struct pci_device_id *ent)
299 {
300 	struct xe_device *xe;
301 	int err;
302 
303 	xe_display_driver_set_hooks(&driver);
304 
305 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
306 	if (err)
307 		return ERR_PTR(err);
308 
309 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
310 	if (IS_ERR(xe))
311 		return xe;
312 
313 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
314 			      xe->drm.anon_inode->i_mapping,
315 			      xe->drm.vma_offset_manager, false, false);
316 	if (WARN_ON(err))
317 		goto err;
318 
319 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
320 	if (err)
321 		goto err;
322 
323 	xe->info.devid = pdev->device;
324 	xe->info.revid = pdev->revision;
325 	xe->info.force_execlist = xe_modparam.force_execlist;
326 
327 	spin_lock_init(&xe->irq.lock);
328 
329 	init_waitqueue_head(&xe->ufence_wq);
330 
331 	init_rwsem(&xe->usm.lock);
332 
333 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
334 
335 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
336 		/* Trigger a large asid and an early asid wrap. */
337 		u32 asid;
338 
339 		BUILD_BUG_ON(XE_MAX_ASID < 2);
340 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
341 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
342 				      &xe->usm.next_asid, GFP_KERNEL);
343 		drm_WARN_ON(&xe->drm, err);
344 		if (err >= 0)
345 			xa_erase(&xe->usm.asid_to_vm, asid);
346 	}
347 
348 	spin_lock_init(&xe->pinned.lock);
349 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
350 	INIT_LIST_HEAD(&xe->pinned.external_vram);
351 	INIT_LIST_HEAD(&xe->pinned.evicted);
352 
353 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
354 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
355 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
356 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
357 	if (!xe->ordered_wq || !xe->unordered_wq ||
358 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
359 		/*
360 		 * Cleanup done in xe_device_destroy via
361 		 * drmm_add_action_or_reset register above
362 		 */
363 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
364 		err = -ENOMEM;
365 		goto err;
366 	}
367 
368 	err = xe_display_create(xe);
369 	if (WARN_ON(err))
370 		goto err;
371 
372 	return xe;
373 
374 err:
375 	return ERR_PTR(err);
376 }
377 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
378 
379 static bool xe_driver_flr_disabled(struct xe_device *xe)
380 {
381 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
382 }
383 
384 /*
385  * The driver-initiated FLR is the highest level of reset that we can trigger
386  * from within the driver. It is different from the PCI FLR in that it doesn't
387  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
388  * it doesn't require a re-enumeration of the PCI BARs. However, the
389  * driver-initiated FLR does still cause a reset of both GT and display and a
390  * memory wipe of local and stolen memory, so recovery would require a full HW
391  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
392  * perform the FLR as the very last action before releasing access to the HW
393  * during the driver release flow, we don't attempt recovery at all, because
394  * if/when a new instance of i915 is bound to the device it will do a full
395  * re-init anyway.
396  */
397 static void __xe_driver_flr(struct xe_device *xe)
398 {
399 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
400 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
401 	int ret;
402 
403 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
404 
405 	/*
406 	 * Make sure any pending FLR requests have cleared by waiting for the
407 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
408 	 * to make sure it's not still set from a prior attempt (it's a write to
409 	 * clear bit).
410 	 * Note that we should never be in a situation where a previous attempt
411 	 * is still pending (unless the HW is totally dead), but better to be
412 	 * safe in case something unexpected happens
413 	 */
414 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
415 	if (ret) {
416 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
417 		return;
418 	}
419 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
420 
421 	/* Trigger the actual Driver-FLR */
422 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
423 
424 	/* Wait for hardware teardown to complete */
425 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
426 	if (ret) {
427 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
428 		return;
429 	}
430 
431 	/* Wait for hardware/firmware re-init to complete */
432 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
433 			     flr_timeout, NULL, false);
434 	if (ret) {
435 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
436 		return;
437 	}
438 
439 	/* Clear sticky completion status */
440 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
441 }
442 
443 static void xe_driver_flr(struct xe_device *xe)
444 {
445 	if (xe_driver_flr_disabled(xe)) {
446 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
447 		return;
448 	}
449 
450 	__xe_driver_flr(xe);
451 }
452 
453 static void xe_driver_flr_fini(void *arg)
454 {
455 	struct xe_device *xe = arg;
456 
457 	if (xe->needs_flr_on_fini)
458 		xe_driver_flr(xe);
459 }
460 
461 static void xe_device_sanitize(void *arg)
462 {
463 	struct xe_device *xe = arg;
464 	struct xe_gt *gt;
465 	u8 id;
466 
467 	for_each_gt(gt, xe, id)
468 		xe_gt_sanitize(gt);
469 }
470 
471 static int xe_set_dma_info(struct xe_device *xe)
472 {
473 	unsigned int mask_size = xe->info.dma_mask_size;
474 	int err;
475 
476 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
477 
478 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
479 	if (err)
480 		goto mask_err;
481 
482 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
483 	if (err)
484 		goto mask_err;
485 
486 	return 0;
487 
488 mask_err:
489 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
490 	return err;
491 }
492 
493 static bool verify_lmem_ready(struct xe_device *xe)
494 {
495 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
496 
497 	return !!val;
498 }
499 
500 static int wait_for_lmem_ready(struct xe_device *xe)
501 {
502 	unsigned long timeout, start;
503 
504 	if (!IS_DGFX(xe))
505 		return 0;
506 
507 	if (IS_SRIOV_VF(xe))
508 		return 0;
509 
510 	if (verify_lmem_ready(xe))
511 		return 0;
512 
513 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
514 
515 	start = jiffies;
516 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
517 
518 	do {
519 		if (signal_pending(current))
520 			return -EINTR;
521 
522 		/*
523 		 * The boot firmware initializes local memory and
524 		 * assesses its health. If memory training fails,
525 		 * the punit will have been instructed to keep the GT powered
526 		 * down.we won't be able to communicate with it
527 		 *
528 		 * If the status check is done before punit updates the register,
529 		 * it can lead to the system being unusable.
530 		 * use a timeout and defer the probe to prevent this.
531 		 */
532 		if (time_after(jiffies, timeout)) {
533 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
534 			return -EPROBE_DEFER;
535 		}
536 
537 		msleep(20);
538 
539 	} while (!verify_lmem_ready(xe));
540 
541 	drm_dbg(&xe->drm, "lmem ready after %ums",
542 		jiffies_to_msecs(jiffies - start));
543 
544 	return 0;
545 }
546 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
547 
548 static void update_device_info(struct xe_device *xe)
549 {
550 	/* disable features that are not available/applicable to VFs */
551 	if (IS_SRIOV_VF(xe)) {
552 		xe->info.probe_display = 0;
553 		xe->info.has_heci_gscfi = 0;
554 		xe->info.skip_guc_pc = 1;
555 		xe->info.skip_pcode = 1;
556 	}
557 }
558 
559 /**
560  * xe_device_probe_early: Device early probe
561  * @xe: xe device instance
562  *
563  * Initialize MMIO resources that don't require any
564  * knowledge about tile count. Also initialize pcode and
565  * check vram initialization on root tile.
566  *
567  * Return: 0 on success, error code on failure
568  */
569 int xe_device_probe_early(struct xe_device *xe)
570 {
571 	int err;
572 
573 	err = xe_mmio_init(xe);
574 	if (err)
575 		return err;
576 
577 	xe_sriov_probe_early(xe);
578 
579 	update_device_info(xe);
580 
581 	err = xe_pcode_probe_early(xe);
582 	if (err)
583 		return err;
584 
585 	err = wait_for_lmem_ready(xe);
586 	if (err)
587 		return err;
588 
589 	xe->wedged.mode = xe_modparam.wedged_mode;
590 
591 	return 0;
592 }
593 
594 static int probe_has_flat_ccs(struct xe_device *xe)
595 {
596 	struct xe_gt *gt;
597 	unsigned int fw_ref;
598 	u32 reg;
599 
600 	/* Always enabled/disabled, no runtime check to do */
601 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
602 		return 0;
603 
604 	gt = xe_root_mmio_gt(xe);
605 
606 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
607 	if (!fw_ref)
608 		return -ETIMEDOUT;
609 
610 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
611 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
612 
613 	if (!xe->info.has_flat_ccs)
614 		drm_dbg(&xe->drm,
615 			"Flat CCS has been disabled in bios, May lead to performance impact");
616 
617 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
618 	return 0;
619 }
620 
621 int xe_device_probe(struct xe_device *xe)
622 {
623 	struct xe_tile *tile;
624 	struct xe_gt *gt;
625 	int err;
626 	u8 last_gt;
627 	u8 id;
628 
629 	xe_pat_init_early(xe);
630 
631 	err = xe_sriov_init(xe);
632 	if (err)
633 		return err;
634 
635 	xe->info.mem_region_mask = 1;
636 	err = xe_display_init_nommio(xe);
637 	if (err)
638 		return err;
639 
640 	err = xe_set_dma_info(xe);
641 	if (err)
642 		return err;
643 
644 	err = xe_mmio_probe_tiles(xe);
645 	if (err)
646 		return err;
647 
648 	xe_ttm_sys_mgr_init(xe);
649 
650 	for_each_gt(gt, xe, id) {
651 		err = xe_gt_init_early(gt);
652 		if (err)
653 			return err;
654 
655 		/*
656 		 * Only after this point can GT-specific MMIO operations
657 		 * (including things like communication with the GuC)
658 		 * be performed.
659 		 */
660 		xe_gt_mmio_init(gt);
661 	}
662 
663 	for_each_tile(tile, xe, id) {
664 		if (IS_SRIOV_VF(xe)) {
665 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
666 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
667 			if (err)
668 				return err;
669 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
670 			if (err)
671 				return err;
672 		}
673 		err = xe_ggtt_init_early(tile->mem.ggtt);
674 		if (err)
675 			return err;
676 		err = xe_memirq_init(&tile->memirq);
677 		if (err)
678 			return err;
679 	}
680 
681 	for_each_gt(gt, xe, id) {
682 		err = xe_gt_init_hwconfig(gt);
683 		if (err)
684 			return err;
685 	}
686 
687 	err = xe_devcoredump_init(xe);
688 	if (err)
689 		return err;
690 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
691 	if (err)
692 		return err;
693 
694 	err = xe_display_init_noirq(xe);
695 	if (err)
696 		return err;
697 
698 	err = xe_irq_install(xe);
699 	if (err)
700 		goto err;
701 
702 	err = probe_has_flat_ccs(xe);
703 	if (err)
704 		goto err;
705 
706 	err = xe_vram_probe(xe);
707 	if (err)
708 		goto err;
709 
710 	for_each_tile(tile, xe, id) {
711 		err = xe_tile_init_noalloc(tile);
712 		if (err)
713 			goto err;
714 	}
715 
716 	/* Allocate and map stolen after potential VRAM resize */
717 	xe_ttm_stolen_mgr_init(xe);
718 
719 	/*
720 	 * Now that GT is initialized (TTM in particular),
721 	 * we can try to init display, and inherit the initial fb.
722 	 * This is the reason the first allocation needs to be done
723 	 * inside display.
724 	 */
725 	err = xe_display_init_noaccel(xe);
726 	if (err)
727 		goto err;
728 
729 	for_each_gt(gt, xe, id) {
730 		last_gt = id;
731 
732 		err = xe_gt_init(gt);
733 		if (err)
734 			goto err_fini_gt;
735 	}
736 
737 	xe_heci_gsc_init(xe);
738 
739 	err = xe_oa_init(xe);
740 	if (err)
741 		goto err_fini_gt;
742 
743 	err = xe_display_init(xe);
744 	if (err)
745 		goto err_fini_oa;
746 
747 	err = drm_dev_register(&xe->drm, 0);
748 	if (err)
749 		goto err_fini_display;
750 
751 	xe_display_register(xe);
752 
753 	xe_oa_register(xe);
754 
755 	xe_debugfs_register(xe);
756 
757 	xe_hwmon_register(xe);
758 
759 	for_each_gt(gt, xe, id)
760 		xe_gt_sanitize_freq(gt);
761 
762 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
763 
764 err_fini_display:
765 	xe_display_driver_remove(xe);
766 
767 err_fini_oa:
768 	xe_oa_fini(xe);
769 
770 err_fini_gt:
771 	for_each_gt(gt, xe, id) {
772 		if (id < last_gt)
773 			xe_gt_remove(gt);
774 		else
775 			break;
776 	}
777 
778 err:
779 	xe_display_fini(xe);
780 	return err;
781 }
782 
783 static void xe_device_remove_display(struct xe_device *xe)
784 {
785 	xe_display_unregister(xe);
786 
787 	drm_dev_unplug(&xe->drm);
788 	xe_display_driver_remove(xe);
789 }
790 
791 void xe_device_remove(struct xe_device *xe)
792 {
793 	struct xe_gt *gt;
794 	u8 id;
795 
796 	xe_oa_unregister(xe);
797 
798 	xe_device_remove_display(xe);
799 
800 	xe_display_fini(xe);
801 
802 	xe_oa_fini(xe);
803 
804 	xe_heci_gsc_fini(xe);
805 
806 	for_each_gt(gt, xe, id)
807 		xe_gt_remove(gt);
808 }
809 
810 void xe_device_shutdown(struct xe_device *xe)
811 {
812 	struct xe_gt *gt;
813 	u8 id;
814 
815 	drm_dbg(&xe->drm, "Shutting down device\n");
816 
817 	if (xe_driver_flr_disabled(xe)) {
818 		xe_display_pm_shutdown(xe);
819 
820 		xe_irq_suspend(xe);
821 
822 		for_each_gt(gt, xe, id)
823 			xe_gt_shutdown(gt);
824 
825 		xe_display_pm_shutdown_late(xe);
826 	} else {
827 		/* BOOM! */
828 		__xe_driver_flr(xe);
829 	}
830 }
831 
832 /**
833  * xe_device_wmb() - Device specific write memory barrier
834  * @xe: the &xe_device
835  *
836  * While wmb() is sufficient for a barrier if we use system memory, on discrete
837  * platforms with device memory we additionally need to issue a register write.
838  * Since it doesn't matter which register we write to, use the read-only VF_CAP
839  * register that is also marked as accessible by the VFs.
840  */
841 void xe_device_wmb(struct xe_device *xe)
842 {
843 	wmb();
844 	if (IS_DGFX(xe))
845 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
846 }
847 
848 /**
849  * xe_device_td_flush() - Flush transient L3 cache entries
850  * @xe: The device
851  *
852  * Display engine has direct access to memory and is never coherent with L3/L4
853  * caches (or CPU caches), however KMD is responsible for specifically flushing
854  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
855  * can happen from such a surface without seeing corruption.
856  *
857  * Display surfaces can be tagged as transient by mapping it using one of the
858  * various L3:XD PAT index modes on Xe2.
859  *
860  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
861  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
862  * Media is not coherent with L3 and we want to support render-vs-media
863  * usescases. For other engines like copy/blt the HW internally forces uncached
864  * behaviour, hence why we can skip the TDF on such platforms.
865  */
866 void xe_device_td_flush(struct xe_device *xe)
867 {
868 	struct xe_gt *gt;
869 	unsigned int fw_ref;
870 	u8 id;
871 
872 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
873 		return;
874 
875 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
876 		xe_device_l2_flush(xe);
877 		return;
878 	}
879 
880 	for_each_gt(gt, xe, id) {
881 		if (xe_gt_is_media_type(gt))
882 			continue;
883 
884 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
885 		if (!fw_ref)
886 			return;
887 
888 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
889 		/*
890 		 * FIXME: We can likely do better here with our choice of
891 		 * timeout. Currently we just assume the worst case, i.e. 150us,
892 		 * which is believed to be sufficient to cover the worst case
893 		 * scenario on current platforms if all cache entries are
894 		 * transient and need to be flushed..
895 		 */
896 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
897 				   150, NULL, false))
898 			xe_gt_err_once(gt, "TD flush timeout\n");
899 
900 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
901 	}
902 }
903 
904 void xe_device_l2_flush(struct xe_device *xe)
905 {
906 	struct xe_gt *gt;
907 	unsigned int fw_ref;
908 
909 	gt = xe_root_mmio_gt(xe);
910 
911 	if (!XE_WA(gt, 16023588340))
912 		return;
913 
914 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
915 	if (!fw_ref)
916 		return;
917 
918 	spin_lock(&gt->global_invl_lock);
919 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
920 
921 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
922 		xe_gt_err_once(gt, "Global invalidation timeout\n");
923 	spin_unlock(&gt->global_invl_lock);
924 
925 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
926 }
927 
928 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
929 {
930 	return xe_device_has_flat_ccs(xe) ?
931 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
932 }
933 
934 /**
935  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
936  * @xe: xe device instance
937  *
938  * To be used before any kind of memory access. It will splat a debug warning
939  * if the device is currently sleeping. But it doesn't guarantee in any way
940  * that the device is going to remain awake. Xe PM runtime get and put
941  * functions might be added to the outer bound of the memory access, while
942  * this check is intended for inner usage to splat some warning if the worst
943  * case has just happened.
944  */
945 void xe_device_assert_mem_access(struct xe_device *xe)
946 {
947 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
948 }
949 
950 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
951 {
952 	struct xe_gt *gt;
953 	u8 id;
954 
955 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
956 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
957 
958 	for_each_gt(gt, xe, id) {
959 		drm_printf(p, "GT id: %u\n", id);
960 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
961 		drm_printf(p, "\tType: %s\n",
962 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
963 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
964 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
965 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
966 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
967 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
968 	}
969 }
970 
971 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
972 {
973 	return sign_extend64(address, xe->info.va_bits - 1);
974 }
975 
976 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
977 {
978 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
979 }
980 
981 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
982 {
983 	struct xe_device *xe = arg;
984 
985 	xe_pm_runtime_put(xe);
986 }
987 
988 /**
989  * xe_device_declare_wedged - Declare device wedged
990  * @xe: xe device instance
991  *
992  * This is a final state that can only be cleared with a mudule
993  * re-probe (unbind + bind).
994  * In this state every IOCTL will be blocked so the GT cannot be used.
995  * In general it will be called upon any critical error such as gt reset
996  * failure or guc loading failure.
997  * If xe.wedged module parameter is set to 2, this function will be called
998  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
999  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1000  * the issue is preserved for further debugging.
1001  */
1002 void xe_device_declare_wedged(struct xe_device *xe)
1003 {
1004 	struct xe_gt *gt;
1005 	u8 id;
1006 
1007 	if (xe->wedged.mode == 0) {
1008 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1009 		return;
1010 	}
1011 
1012 	xe_pm_runtime_get_noresume(xe);
1013 
1014 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1015 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1016 		return;
1017 	}
1018 
1019 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1020 		xe->needs_flr_on_fini = true;
1021 		drm_err(&xe->drm,
1022 			"CRITICAL: Xe has declared device %s as wedged.\n"
1023 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1024 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1025 			dev_name(xe->drm.dev));
1026 	}
1027 
1028 	for_each_gt(gt, xe, id)
1029 		xe_gt_declare_wedged(gt);
1030 }
1031