1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_pmu.h" 53 #include "xe_pxp.h" 54 #include "xe_query.h" 55 #include "xe_shrinker.h" 56 #include "xe_survivability_mode.h" 57 #include "xe_sriov.h" 58 #include "xe_tile.h" 59 #include "xe_ttm_stolen_mgr.h" 60 #include "xe_ttm_sys_mgr.h" 61 #include "xe_vm.h" 62 #include "xe_vram.h" 63 #include "xe_vsec.h" 64 #include "xe_wait_user_fence.h" 65 #include "xe_wa.h" 66 67 #include <generated/xe_wa_oob.h> 68 69 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 70 { 71 struct xe_device *xe = to_xe_device(dev); 72 struct xe_drm_client *client; 73 struct xe_file *xef; 74 int ret = -ENOMEM; 75 struct task_struct *task = NULL; 76 77 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 78 if (!xef) 79 return ret; 80 81 client = xe_drm_client_alloc(); 82 if (!client) { 83 kfree(xef); 84 return ret; 85 } 86 87 xef->drm = file; 88 xef->client = client; 89 xef->xe = xe; 90 91 mutex_init(&xef->vm.lock); 92 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 93 94 mutex_init(&xef->exec_queue.lock); 95 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 96 97 file->driver_priv = xef; 98 kref_init(&xef->refcount); 99 100 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 101 if (task) { 102 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 103 xef->pid = task->pid; 104 put_task_struct(task); 105 } 106 107 return 0; 108 } 109 110 static void xe_file_destroy(struct kref *ref) 111 { 112 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 113 114 xa_destroy(&xef->exec_queue.xa); 115 mutex_destroy(&xef->exec_queue.lock); 116 xa_destroy(&xef->vm.xa); 117 mutex_destroy(&xef->vm.lock); 118 119 xe_drm_client_put(xef->client); 120 kfree(xef->process_name); 121 kfree(xef); 122 } 123 124 /** 125 * xe_file_get() - Take a reference to the xe file object 126 * @xef: Pointer to the xe file 127 * 128 * Anyone with a pointer to xef must take a reference to the xe file 129 * object using this call. 130 * 131 * Return: xe file pointer 132 */ 133 struct xe_file *xe_file_get(struct xe_file *xef) 134 { 135 kref_get(&xef->refcount); 136 return xef; 137 } 138 139 /** 140 * xe_file_put() - Drop a reference to the xe file object 141 * @xef: Pointer to the xe file 142 * 143 * Used to drop reference to the xef object 144 */ 145 void xe_file_put(struct xe_file *xef) 146 { 147 kref_put(&xef->refcount, xe_file_destroy); 148 } 149 150 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 151 { 152 struct xe_device *xe = to_xe_device(dev); 153 struct xe_file *xef = file->driver_priv; 154 struct xe_vm *vm; 155 struct xe_exec_queue *q; 156 unsigned long idx; 157 158 xe_pm_runtime_get(xe); 159 160 /* 161 * No need for exec_queue.lock here as there is no contention for it 162 * when FD is closing as IOCTLs presumably can't be modifying the 163 * xarray. Taking exec_queue.lock here causes undue dependency on 164 * vm->lock taken during xe_exec_queue_kill(). 165 */ 166 xa_for_each(&xef->exec_queue.xa, idx, q) { 167 if (q->vm && q->hwe->hw_engine_group) 168 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 169 xe_exec_queue_kill(q); 170 xe_exec_queue_put(q); 171 } 172 xa_for_each(&xef->vm.xa, idx, vm) 173 xe_vm_close_and_put(vm); 174 175 xe_file_put(xef); 176 177 xe_pm_runtime_put(xe); 178 } 179 180 static const struct drm_ioctl_desc xe_ioctls[] = { 181 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 183 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 184 DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 190 DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 192 DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 198 }; 199 200 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 201 { 202 struct drm_file *file_priv = file->private_data; 203 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 204 long ret; 205 206 if (xe_device_wedged(xe)) 207 return -ECANCELED; 208 209 ret = xe_pm_runtime_get_ioctl(xe); 210 if (ret >= 0) 211 ret = drm_ioctl(file, cmd, arg); 212 xe_pm_runtime_put(xe); 213 214 return ret; 215 } 216 217 #ifdef CONFIG_COMPAT 218 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 219 { 220 struct drm_file *file_priv = file->private_data; 221 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 222 long ret; 223 224 if (xe_device_wedged(xe)) 225 return -ECANCELED; 226 227 ret = xe_pm_runtime_get_ioctl(xe); 228 if (ret >= 0) 229 ret = drm_compat_ioctl(file, cmd, arg); 230 xe_pm_runtime_put(xe); 231 232 return ret; 233 } 234 #else 235 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 236 #define xe_drm_compat_ioctl NULL 237 #endif 238 239 static void barrier_open(struct vm_area_struct *vma) 240 { 241 drm_dev_get(vma->vm_private_data); 242 } 243 244 static void barrier_close(struct vm_area_struct *vma) 245 { 246 drm_dev_put(vma->vm_private_data); 247 } 248 249 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 250 { 251 struct page *dummy_page = (struct page *)res; 252 253 __free_page(dummy_page); 254 } 255 256 static vm_fault_t barrier_fault(struct vm_fault *vmf) 257 { 258 struct drm_device *dev = vmf->vma->vm_private_data; 259 struct vm_area_struct *vma = vmf->vma; 260 vm_fault_t ret = VM_FAULT_NOPAGE; 261 pgprot_t prot; 262 int idx; 263 264 prot = vm_get_page_prot(vma->vm_flags); 265 266 if (drm_dev_enter(dev, &idx)) { 267 unsigned long pfn; 268 269 #define LAST_DB_PAGE_OFFSET 0x7ff001 270 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 271 LAST_DB_PAGE_OFFSET); 272 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 273 pgprot_noncached(prot)); 274 drm_dev_exit(idx); 275 } else { 276 struct page *page; 277 278 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 279 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 280 if (!page) 281 return VM_FAULT_OOM; 282 283 /* Set the page to be freed using drmm release action */ 284 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 285 return VM_FAULT_OOM; 286 287 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 288 prot); 289 } 290 291 return ret; 292 } 293 294 static const struct vm_operations_struct vm_ops_barrier = { 295 .open = barrier_open, 296 .close = barrier_close, 297 .fault = barrier_fault, 298 }; 299 300 static int xe_pci_barrier_mmap(struct file *filp, 301 struct vm_area_struct *vma) 302 { 303 struct drm_file *priv = filp->private_data; 304 struct drm_device *dev = priv->minor->dev; 305 struct xe_device *xe = to_xe_device(dev); 306 307 if (!IS_DGFX(xe)) 308 return -EINVAL; 309 310 if (vma->vm_end - vma->vm_start > SZ_4K) 311 return -EINVAL; 312 313 if (is_cow_mapping(vma->vm_flags)) 314 return -EINVAL; 315 316 if (vma->vm_flags & (VM_READ | VM_EXEC)) 317 return -EINVAL; 318 319 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 320 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 321 vma->vm_ops = &vm_ops_barrier; 322 vma->vm_private_data = dev; 323 drm_dev_get(vma->vm_private_data); 324 325 return 0; 326 } 327 328 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 329 { 330 struct drm_file *priv = filp->private_data; 331 struct drm_device *dev = priv->minor->dev; 332 333 if (drm_dev_is_unplugged(dev)) 334 return -ENODEV; 335 336 switch (vma->vm_pgoff) { 337 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 338 return xe_pci_barrier_mmap(filp, vma); 339 } 340 341 return drm_gem_mmap(filp, vma); 342 } 343 344 static const struct file_operations xe_driver_fops = { 345 .owner = THIS_MODULE, 346 .open = drm_open, 347 .release = drm_release_noglobal, 348 .unlocked_ioctl = xe_drm_ioctl, 349 .mmap = xe_mmap, 350 .poll = drm_poll, 351 .read = drm_read, 352 .compat_ioctl = xe_drm_compat_ioctl, 353 .llseek = noop_llseek, 354 #ifdef CONFIG_PROC_FS 355 .show_fdinfo = drm_show_fdinfo, 356 #endif 357 .fop_flags = FOP_UNSIGNED_OFFSET, 358 }; 359 360 static struct drm_driver driver = { 361 /* Don't use MTRRs here; the Xserver or userspace app should 362 * deal with them for Intel hardware. 363 */ 364 .driver_features = 365 DRIVER_GEM | 366 DRIVER_RENDER | DRIVER_SYNCOBJ | 367 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 368 .open = xe_file_open, 369 .postclose = xe_file_close, 370 371 .gem_prime_import = xe_gem_prime_import, 372 373 .dumb_create = xe_bo_dumb_create, 374 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 375 #ifdef CONFIG_PROC_FS 376 .show_fdinfo = xe_drm_client_fdinfo, 377 #endif 378 .ioctls = xe_ioctls, 379 .num_ioctls = ARRAY_SIZE(xe_ioctls), 380 .fops = &xe_driver_fops, 381 .name = DRIVER_NAME, 382 .desc = DRIVER_DESC, 383 .major = DRIVER_MAJOR, 384 .minor = DRIVER_MINOR, 385 .patchlevel = DRIVER_PATCHLEVEL, 386 }; 387 388 static void xe_device_destroy(struct drm_device *dev, void *dummy) 389 { 390 struct xe_device *xe = to_xe_device(dev); 391 392 xe_bo_dev_fini(&xe->bo_device); 393 394 if (xe->preempt_fence_wq) 395 destroy_workqueue(xe->preempt_fence_wq); 396 397 if (xe->ordered_wq) 398 destroy_workqueue(xe->ordered_wq); 399 400 if (xe->unordered_wq) 401 destroy_workqueue(xe->unordered_wq); 402 403 if (!IS_ERR_OR_NULL(xe->mem.shrinker)) 404 xe_shrinker_destroy(xe->mem.shrinker); 405 406 if (xe->destroy_wq) 407 destroy_workqueue(xe->destroy_wq); 408 409 ttm_device_fini(&xe->ttm); 410 } 411 412 struct xe_device *xe_device_create(struct pci_dev *pdev, 413 const struct pci_device_id *ent) 414 { 415 struct xe_device *xe; 416 int err; 417 418 xe_display_driver_set_hooks(&driver); 419 420 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 421 if (err) 422 return ERR_PTR(err); 423 424 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 425 if (IS_ERR(xe)) 426 return xe; 427 428 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 429 xe->drm.anon_inode->i_mapping, 430 xe->drm.vma_offset_manager, false, false); 431 if (WARN_ON(err)) 432 goto err; 433 434 xe_bo_dev_init(&xe->bo_device); 435 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 436 if (err) 437 goto err; 438 439 xe->mem.shrinker = xe_shrinker_create(xe); 440 if (IS_ERR(xe->mem.shrinker)) 441 return ERR_CAST(xe->mem.shrinker); 442 443 xe->info.devid = pdev->device; 444 xe->info.revid = pdev->revision; 445 xe->info.force_execlist = xe_modparam.force_execlist; 446 447 err = xe_irq_init(xe); 448 if (err) 449 goto err; 450 451 init_waitqueue_head(&xe->ufence_wq); 452 453 init_rwsem(&xe->usm.lock); 454 455 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 456 457 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 458 /* Trigger a large asid and an early asid wrap. */ 459 u32 asid; 460 461 BUILD_BUG_ON(XE_MAX_ASID < 2); 462 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 463 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 464 &xe->usm.next_asid, GFP_KERNEL); 465 drm_WARN_ON(&xe->drm, err); 466 if (err >= 0) 467 xa_erase(&xe->usm.asid_to_vm, asid); 468 } 469 470 spin_lock_init(&xe->pinned.lock); 471 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 472 INIT_LIST_HEAD(&xe->pinned.external_vram); 473 INIT_LIST_HEAD(&xe->pinned.evicted); 474 475 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 476 WQ_MEM_RECLAIM); 477 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 478 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 479 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 480 if (!xe->ordered_wq || !xe->unordered_wq || 481 !xe->preempt_fence_wq || !xe->destroy_wq) { 482 /* 483 * Cleanup done in xe_device_destroy via 484 * drmm_add_action_or_reset register above 485 */ 486 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 487 err = -ENOMEM; 488 goto err; 489 } 490 491 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 492 if (err) 493 goto err; 494 495 err = xe_display_create(xe); 496 if (WARN_ON(err)) 497 goto err; 498 499 return xe; 500 501 err: 502 return ERR_PTR(err); 503 } 504 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 505 506 static bool xe_driver_flr_disabled(struct xe_device *xe) 507 { 508 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 509 } 510 511 /* 512 * The driver-initiated FLR is the highest level of reset that we can trigger 513 * from within the driver. It is different from the PCI FLR in that it doesn't 514 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 515 * it doesn't require a re-enumeration of the PCI BARs. However, the 516 * driver-initiated FLR does still cause a reset of both GT and display and a 517 * memory wipe of local and stolen memory, so recovery would require a full HW 518 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 519 * perform the FLR as the very last action before releasing access to the HW 520 * during the driver release flow, we don't attempt recovery at all, because 521 * if/when a new instance of i915 is bound to the device it will do a full 522 * re-init anyway. 523 */ 524 static void __xe_driver_flr(struct xe_device *xe) 525 { 526 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 527 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 528 int ret; 529 530 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 531 532 /* 533 * Make sure any pending FLR requests have cleared by waiting for the 534 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 535 * to make sure it's not still set from a prior attempt (it's a write to 536 * clear bit). 537 * Note that we should never be in a situation where a previous attempt 538 * is still pending (unless the HW is totally dead), but better to be 539 * safe in case something unexpected happens 540 */ 541 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 542 if (ret) { 543 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 544 return; 545 } 546 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 547 548 /* Trigger the actual Driver-FLR */ 549 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 550 551 /* Wait for hardware teardown to complete */ 552 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 553 if (ret) { 554 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 555 return; 556 } 557 558 /* Wait for hardware/firmware re-init to complete */ 559 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 560 flr_timeout, NULL, false); 561 if (ret) { 562 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 563 return; 564 } 565 566 /* Clear sticky completion status */ 567 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 568 } 569 570 static void xe_driver_flr(struct xe_device *xe) 571 { 572 if (xe_driver_flr_disabled(xe)) { 573 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 574 return; 575 } 576 577 __xe_driver_flr(xe); 578 } 579 580 static void xe_driver_flr_fini(void *arg) 581 { 582 struct xe_device *xe = arg; 583 584 if (xe->needs_flr_on_fini) 585 xe_driver_flr(xe); 586 } 587 588 static void xe_device_sanitize(void *arg) 589 { 590 struct xe_device *xe = arg; 591 struct xe_gt *gt; 592 u8 id; 593 594 for_each_gt(gt, xe, id) 595 xe_gt_sanitize(gt); 596 } 597 598 static int xe_set_dma_info(struct xe_device *xe) 599 { 600 unsigned int mask_size = xe->info.dma_mask_size; 601 int err; 602 603 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 604 605 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 606 if (err) 607 goto mask_err; 608 609 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 610 if (err) 611 goto mask_err; 612 613 return 0; 614 615 mask_err: 616 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 617 return err; 618 } 619 620 static bool verify_lmem_ready(struct xe_device *xe) 621 { 622 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 623 624 return !!val; 625 } 626 627 static int wait_for_lmem_ready(struct xe_device *xe) 628 { 629 unsigned long timeout, start; 630 631 if (!IS_DGFX(xe)) 632 return 0; 633 634 if (IS_SRIOV_VF(xe)) 635 return 0; 636 637 if (verify_lmem_ready(xe)) 638 return 0; 639 640 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 641 642 start = jiffies; 643 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 644 645 do { 646 if (signal_pending(current)) 647 return -EINTR; 648 649 /* 650 * The boot firmware initializes local memory and 651 * assesses its health. If memory training fails, 652 * the punit will have been instructed to keep the GT powered 653 * down.we won't be able to communicate with it 654 * 655 * If the status check is done before punit updates the register, 656 * it can lead to the system being unusable. 657 * use a timeout and defer the probe to prevent this. 658 */ 659 if (time_after(jiffies, timeout)) { 660 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 661 return -EPROBE_DEFER; 662 } 663 664 msleep(20); 665 666 } while (!verify_lmem_ready(xe)); 667 668 drm_dbg(&xe->drm, "lmem ready after %ums", 669 jiffies_to_msecs(jiffies - start)); 670 671 return 0; 672 } 673 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 674 675 static void sriov_update_device_info(struct xe_device *xe) 676 { 677 /* disable features that are not available/applicable to VFs */ 678 if (IS_SRIOV_VF(xe)) { 679 xe->info.probe_display = 0; 680 xe->info.has_heci_gscfi = 0; 681 xe->info.skip_guc_pc = 1; 682 xe->info.skip_pcode = 1; 683 } 684 } 685 686 /** 687 * xe_device_probe_early: Device early probe 688 * @xe: xe device instance 689 * 690 * Initialize MMIO resources that don't require any 691 * knowledge about tile count. Also initialize pcode and 692 * check vram initialization on root tile. 693 * 694 * Return: 0 on success, error code on failure 695 */ 696 int xe_device_probe_early(struct xe_device *xe) 697 { 698 int err; 699 700 err = xe_mmio_probe_early(xe); 701 if (err) 702 return err; 703 704 xe_sriov_probe_early(xe); 705 706 sriov_update_device_info(xe); 707 708 err = xe_pcode_probe_early(xe); 709 if (err) { 710 int save_err = err; 711 712 /* 713 * Try to leave device in survivability mode if device is 714 * possible, but still return the previous error for error 715 * propagation 716 */ 717 err = xe_survivability_mode_enable(xe); 718 if (err) 719 return err; 720 721 return save_err; 722 } 723 724 err = wait_for_lmem_ready(xe); 725 if (err) 726 return err; 727 728 xe->wedged.mode = xe_modparam.wedged_mode; 729 730 return 0; 731 } 732 733 static int probe_has_flat_ccs(struct xe_device *xe) 734 { 735 struct xe_gt *gt; 736 unsigned int fw_ref; 737 u32 reg; 738 739 /* Always enabled/disabled, no runtime check to do */ 740 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 741 return 0; 742 743 gt = xe_root_mmio_gt(xe); 744 745 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 746 if (!fw_ref) 747 return -ETIMEDOUT; 748 749 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 750 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 751 752 if (!xe->info.has_flat_ccs) 753 drm_dbg(&xe->drm, 754 "Flat CCS has been disabled in bios, May lead to performance impact"); 755 756 xe_force_wake_put(gt_to_fw(gt), fw_ref); 757 758 return 0; 759 } 760 761 int xe_device_probe(struct xe_device *xe) 762 { 763 struct xe_tile *tile; 764 struct xe_gt *gt; 765 int err; 766 u8 id; 767 768 xe_pat_init_early(xe); 769 770 err = xe_sriov_init(xe); 771 if (err) 772 return err; 773 774 xe->info.mem_region_mask = 1; 775 776 err = xe_set_dma_info(xe); 777 if (err) 778 return err; 779 780 err = xe_mmio_probe_tiles(xe); 781 if (err) 782 return err; 783 784 err = xe_ttm_sys_mgr_init(xe); 785 if (err) 786 return err; 787 788 for_each_gt(gt, xe, id) { 789 err = xe_gt_init_early(gt); 790 if (err) 791 return err; 792 793 /* 794 * Only after this point can GT-specific MMIO operations 795 * (including things like communication with the GuC) 796 * be performed. 797 */ 798 xe_gt_mmio_init(gt); 799 } 800 801 for_each_tile(tile, xe, id) { 802 if (IS_SRIOV_VF(xe)) { 803 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 804 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 805 if (err) 806 return err; 807 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 808 if (err) 809 return err; 810 } 811 err = xe_ggtt_init_early(tile->mem.ggtt); 812 if (err) 813 return err; 814 err = xe_memirq_init(&tile->memirq); 815 if (err) 816 return err; 817 } 818 819 for_each_gt(gt, xe, id) { 820 err = xe_gt_init_hwconfig(gt); 821 if (err) 822 return err; 823 } 824 825 err = xe_devcoredump_init(xe); 826 if (err) 827 return err; 828 829 /* 830 * From here on, if a step fails, make sure a Driver-FLR is triggereed 831 */ 832 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 833 if (err) 834 return err; 835 836 err = probe_has_flat_ccs(xe); 837 if (err) 838 return err; 839 840 err = xe_vram_probe(xe); 841 if (err) 842 return err; 843 844 for_each_tile(tile, xe, id) { 845 err = xe_tile_init_noalloc(tile); 846 if (err) 847 return err; 848 } 849 850 /* Allocate and map stolen after potential VRAM resize */ 851 err = xe_ttm_stolen_mgr_init(xe); 852 if (err) 853 return err; 854 855 /* 856 * Now that GT is initialized (TTM in particular), 857 * we can try to init display, and inherit the initial fb. 858 * This is the reason the first allocation needs to be done 859 * inside display. 860 */ 861 err = xe_display_init_early(xe); 862 if (err) 863 return err; 864 865 for_each_tile(tile, xe, id) { 866 err = xe_tile_init(tile); 867 if (err) 868 return err; 869 } 870 871 err = xe_irq_install(xe); 872 if (err) 873 return err; 874 875 for_each_gt(gt, xe, id) { 876 err = xe_gt_init(gt); 877 if (err) 878 return err; 879 } 880 881 err = xe_heci_gsc_init(xe); 882 if (err) 883 return err; 884 885 err = xe_oa_init(xe); 886 if (err) 887 return err; 888 889 err = xe_display_init(xe); 890 if (err) 891 return err; 892 893 err = xe_pxp_init(xe); 894 if (err) 895 return err; 896 897 err = drm_dev_register(&xe->drm, 0); 898 if (err) 899 return err; 900 901 xe_display_register(xe); 902 903 err = xe_oa_register(xe); 904 if (err) 905 goto err_unregister_display; 906 907 err = xe_pmu_register(&xe->pmu); 908 if (err) 909 goto err_unregister_display; 910 911 xe_debugfs_register(xe); 912 913 err = xe_hwmon_register(xe); 914 if (err) 915 goto err_unregister_display; 916 917 for_each_gt(gt, xe, id) 918 xe_gt_sanitize_freq(gt); 919 920 xe_vsec_init(xe); 921 922 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 923 924 err_unregister_display: 925 xe_display_unregister(xe); 926 927 return err; 928 } 929 930 void xe_device_remove(struct xe_device *xe) 931 { 932 xe_display_unregister(xe); 933 934 drm_dev_unplug(&xe->drm); 935 } 936 937 void xe_device_shutdown(struct xe_device *xe) 938 { 939 struct xe_gt *gt; 940 u8 id; 941 942 drm_dbg(&xe->drm, "Shutting down device\n"); 943 944 if (xe_driver_flr_disabled(xe)) { 945 xe_display_pm_shutdown(xe); 946 947 xe_irq_suspend(xe); 948 949 for_each_gt(gt, xe, id) 950 xe_gt_shutdown(gt); 951 952 xe_display_pm_shutdown_late(xe); 953 } else { 954 /* BOOM! */ 955 __xe_driver_flr(xe); 956 } 957 } 958 959 /** 960 * xe_device_wmb() - Device specific write memory barrier 961 * @xe: the &xe_device 962 * 963 * While wmb() is sufficient for a barrier if we use system memory, on discrete 964 * platforms with device memory we additionally need to issue a register write. 965 * Since it doesn't matter which register we write to, use the read-only VF_CAP 966 * register that is also marked as accessible by the VFs. 967 */ 968 void xe_device_wmb(struct xe_device *xe) 969 { 970 wmb(); 971 if (IS_DGFX(xe)) 972 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 973 } 974 975 /** 976 * xe_device_td_flush() - Flush transient L3 cache entries 977 * @xe: The device 978 * 979 * Display engine has direct access to memory and is never coherent with L3/L4 980 * caches (or CPU caches), however KMD is responsible for specifically flushing 981 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 982 * can happen from such a surface without seeing corruption. 983 * 984 * Display surfaces can be tagged as transient by mapping it using one of the 985 * various L3:XD PAT index modes on Xe2. 986 * 987 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 988 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 989 * Media is not coherent with L3 and we want to support render-vs-media 990 * usescases. For other engines like copy/blt the HW internally forces uncached 991 * behaviour, hence why we can skip the TDF on such platforms. 992 */ 993 void xe_device_td_flush(struct xe_device *xe) 994 { 995 struct xe_gt *gt; 996 unsigned int fw_ref; 997 u8 id; 998 999 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1000 return; 1001 1002 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1003 xe_device_l2_flush(xe); 1004 return; 1005 } 1006 1007 for_each_gt(gt, xe, id) { 1008 if (xe_gt_is_media_type(gt)) 1009 continue; 1010 1011 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1012 if (!fw_ref) 1013 return; 1014 1015 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1016 /* 1017 * FIXME: We can likely do better here with our choice of 1018 * timeout. Currently we just assume the worst case, i.e. 150us, 1019 * which is believed to be sufficient to cover the worst case 1020 * scenario on current platforms if all cache entries are 1021 * transient and need to be flushed.. 1022 */ 1023 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1024 150, NULL, false)) 1025 xe_gt_err_once(gt, "TD flush timeout\n"); 1026 1027 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1028 } 1029 } 1030 1031 void xe_device_l2_flush(struct xe_device *xe) 1032 { 1033 struct xe_gt *gt; 1034 unsigned int fw_ref; 1035 1036 gt = xe_root_mmio_gt(xe); 1037 1038 if (!XE_WA(gt, 16023588340)) 1039 return; 1040 1041 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1042 if (!fw_ref) 1043 return; 1044 1045 spin_lock(>->global_invl_lock); 1046 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1047 1048 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1049 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1050 spin_unlock(>->global_invl_lock); 1051 1052 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1053 } 1054 1055 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1056 { 1057 return xe_device_has_flat_ccs(xe) ? 1058 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1059 } 1060 1061 /** 1062 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1063 * @xe: xe device instance 1064 * 1065 * To be used before any kind of memory access. It will splat a debug warning 1066 * if the device is currently sleeping. But it doesn't guarantee in any way 1067 * that the device is going to remain awake. Xe PM runtime get and put 1068 * functions might be added to the outer bound of the memory access, while 1069 * this check is intended for inner usage to splat some warning if the worst 1070 * case has just happened. 1071 */ 1072 void xe_device_assert_mem_access(struct xe_device *xe) 1073 { 1074 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1075 } 1076 1077 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1078 { 1079 struct xe_gt *gt; 1080 u8 id; 1081 1082 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1083 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1084 1085 for_each_gt(gt, xe, id) { 1086 drm_printf(p, "GT id: %u\n", id); 1087 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1088 drm_printf(p, "\tType: %s\n", 1089 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1090 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1091 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1092 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1093 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1094 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1095 } 1096 } 1097 1098 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1099 { 1100 return sign_extend64(address, xe->info.va_bits - 1); 1101 } 1102 1103 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1104 { 1105 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1106 } 1107 1108 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1109 { 1110 struct xe_device *xe = arg; 1111 1112 xe_pm_runtime_put(xe); 1113 } 1114 1115 /** 1116 * xe_device_declare_wedged - Declare device wedged 1117 * @xe: xe device instance 1118 * 1119 * This is a final state that can only be cleared with a module 1120 * re-probe (unbind + bind). 1121 * In this state every IOCTL will be blocked so the GT cannot be used. 1122 * In general it will be called upon any critical error such as gt reset 1123 * failure or guc loading failure. Userspace will be notified of this state 1124 * through device wedged uevent. 1125 * If xe.wedged module parameter is set to 2, this function will be called 1126 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1127 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1128 * the issue is preserved for further debugging. 1129 */ 1130 void xe_device_declare_wedged(struct xe_device *xe) 1131 { 1132 struct xe_gt *gt; 1133 u8 id; 1134 1135 if (xe->wedged.mode == 0) { 1136 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1137 return; 1138 } 1139 1140 xe_pm_runtime_get_noresume(xe); 1141 1142 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1143 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1144 return; 1145 } 1146 1147 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1148 xe->needs_flr_on_fini = true; 1149 drm_err(&xe->drm, 1150 "CRITICAL: Xe has declared device %s as wedged.\n" 1151 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1152 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1153 dev_name(xe->drm.dev)); 1154 1155 /* Notify userspace of wedged device */ 1156 drm_dev_wedged_event(&xe->drm, 1157 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET); 1158 } 1159 1160 for_each_gt(gt, xe, id) 1161 xe_gt_declare_wedged(gt); 1162 } 1163