1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_query.h" 53 #include "xe_sriov.h" 54 #include "xe_tile.h" 55 #include "xe_ttm_stolen_mgr.h" 56 #include "xe_ttm_sys_mgr.h" 57 #include "xe_vm.h" 58 #include "xe_vram.h" 59 #include "xe_vsec.h" 60 #include "xe_wait_user_fence.h" 61 #include "xe_wa.h" 62 63 #include <generated/xe_wa_oob.h> 64 65 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 66 { 67 struct xe_device *xe = to_xe_device(dev); 68 struct xe_drm_client *client; 69 struct xe_file *xef; 70 int ret = -ENOMEM; 71 struct task_struct *task = NULL; 72 73 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 74 if (!xef) 75 return ret; 76 77 client = xe_drm_client_alloc(); 78 if (!client) { 79 kfree(xef); 80 return ret; 81 } 82 83 xef->drm = file; 84 xef->client = client; 85 xef->xe = xe; 86 87 mutex_init(&xef->vm.lock); 88 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 89 90 mutex_init(&xef->exec_queue.lock); 91 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 92 93 file->driver_priv = xef; 94 kref_init(&xef->refcount); 95 96 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 97 if (task) { 98 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 99 xef->pid = task->pid; 100 put_task_struct(task); 101 } 102 103 return 0; 104 } 105 106 static void xe_file_destroy(struct kref *ref) 107 { 108 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 109 110 xa_destroy(&xef->exec_queue.xa); 111 mutex_destroy(&xef->exec_queue.lock); 112 xa_destroy(&xef->vm.xa); 113 mutex_destroy(&xef->vm.lock); 114 115 xe_drm_client_put(xef->client); 116 kfree(xef->process_name); 117 kfree(xef); 118 } 119 120 /** 121 * xe_file_get() - Take a reference to the xe file object 122 * @xef: Pointer to the xe file 123 * 124 * Anyone with a pointer to xef must take a reference to the xe file 125 * object using this call. 126 * 127 * Return: xe file pointer 128 */ 129 struct xe_file *xe_file_get(struct xe_file *xef) 130 { 131 kref_get(&xef->refcount); 132 return xef; 133 } 134 135 /** 136 * xe_file_put() - Drop a reference to the xe file object 137 * @xef: Pointer to the xe file 138 * 139 * Used to drop reference to the xef object 140 */ 141 void xe_file_put(struct xe_file *xef) 142 { 143 kref_put(&xef->refcount, xe_file_destroy); 144 } 145 146 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 147 { 148 struct xe_device *xe = to_xe_device(dev); 149 struct xe_file *xef = file->driver_priv; 150 struct xe_vm *vm; 151 struct xe_exec_queue *q; 152 unsigned long idx; 153 154 xe_pm_runtime_get(xe); 155 156 /* 157 * No need for exec_queue.lock here as there is no contention for it 158 * when FD is closing as IOCTLs presumably can't be modifying the 159 * xarray. Taking exec_queue.lock here causes undue dependency on 160 * vm->lock taken during xe_exec_queue_kill(). 161 */ 162 xa_for_each(&xef->exec_queue.xa, idx, q) { 163 if (q->vm && q->hwe->hw_engine_group) 164 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 165 xe_exec_queue_kill(q); 166 xe_exec_queue_put(q); 167 } 168 xa_for_each(&xef->vm.xa, idx, vm) 169 xe_vm_close_and_put(vm); 170 171 xe_file_put(xef); 172 173 xe_pm_runtime_put(xe); 174 } 175 176 static const struct drm_ioctl_desc xe_ioctls[] = { 177 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 178 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 179 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 180 DRM_RENDER_ALLOW), 181 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 183 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 186 DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 188 DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 190 DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 192 DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 194 }; 195 196 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 197 { 198 struct drm_file *file_priv = file->private_data; 199 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 200 long ret; 201 202 if (xe_device_wedged(xe)) 203 return -ECANCELED; 204 205 ret = xe_pm_runtime_get_ioctl(xe); 206 if (ret >= 0) 207 ret = drm_ioctl(file, cmd, arg); 208 xe_pm_runtime_put(xe); 209 210 return ret; 211 } 212 213 #ifdef CONFIG_COMPAT 214 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 215 { 216 struct drm_file *file_priv = file->private_data; 217 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 218 long ret; 219 220 if (xe_device_wedged(xe)) 221 return -ECANCELED; 222 223 ret = xe_pm_runtime_get_ioctl(xe); 224 if (ret >= 0) 225 ret = drm_compat_ioctl(file, cmd, arg); 226 xe_pm_runtime_put(xe); 227 228 return ret; 229 } 230 #else 231 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 232 #define xe_drm_compat_ioctl NULL 233 #endif 234 235 static const struct file_operations xe_driver_fops = { 236 .owner = THIS_MODULE, 237 .open = drm_open, 238 .release = drm_release_noglobal, 239 .unlocked_ioctl = xe_drm_ioctl, 240 .mmap = drm_gem_mmap, 241 .poll = drm_poll, 242 .read = drm_read, 243 .compat_ioctl = xe_drm_compat_ioctl, 244 .llseek = noop_llseek, 245 #ifdef CONFIG_PROC_FS 246 .show_fdinfo = drm_show_fdinfo, 247 #endif 248 .fop_flags = FOP_UNSIGNED_OFFSET, 249 }; 250 251 static struct drm_driver driver = { 252 /* Don't use MTRRs here; the Xserver or userspace app should 253 * deal with them for Intel hardware. 254 */ 255 .driver_features = 256 DRIVER_GEM | 257 DRIVER_RENDER | DRIVER_SYNCOBJ | 258 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 259 .open = xe_file_open, 260 .postclose = xe_file_close, 261 262 .gem_prime_import = xe_gem_prime_import, 263 264 .dumb_create = xe_bo_dumb_create, 265 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 266 #ifdef CONFIG_PROC_FS 267 .show_fdinfo = xe_drm_client_fdinfo, 268 #endif 269 .ioctls = xe_ioctls, 270 .num_ioctls = ARRAY_SIZE(xe_ioctls), 271 .fops = &xe_driver_fops, 272 .name = DRIVER_NAME, 273 .desc = DRIVER_DESC, 274 .date = DRIVER_DATE, 275 .major = DRIVER_MAJOR, 276 .minor = DRIVER_MINOR, 277 .patchlevel = DRIVER_PATCHLEVEL, 278 }; 279 280 static void xe_device_destroy(struct drm_device *dev, void *dummy) 281 { 282 struct xe_device *xe = to_xe_device(dev); 283 284 if (xe->preempt_fence_wq) 285 destroy_workqueue(xe->preempt_fence_wq); 286 287 if (xe->ordered_wq) 288 destroy_workqueue(xe->ordered_wq); 289 290 if (xe->unordered_wq) 291 destroy_workqueue(xe->unordered_wq); 292 293 if (xe->destroy_wq) 294 destroy_workqueue(xe->destroy_wq); 295 296 ttm_device_fini(&xe->ttm); 297 } 298 299 struct xe_device *xe_device_create(struct pci_dev *pdev, 300 const struct pci_device_id *ent) 301 { 302 struct xe_device *xe; 303 int err; 304 305 xe_display_driver_set_hooks(&driver); 306 307 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 308 if (err) 309 return ERR_PTR(err); 310 311 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 312 if (IS_ERR(xe)) 313 return xe; 314 315 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 316 xe->drm.anon_inode->i_mapping, 317 xe->drm.vma_offset_manager, false, false); 318 if (WARN_ON(err)) 319 goto err; 320 321 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 322 if (err) 323 goto err; 324 325 xe->info.devid = pdev->device; 326 xe->info.revid = pdev->revision; 327 xe->info.force_execlist = xe_modparam.force_execlist; 328 329 err = xe_irq_init(xe); 330 if (err) 331 goto err; 332 333 init_waitqueue_head(&xe->ufence_wq); 334 335 init_rwsem(&xe->usm.lock); 336 337 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 338 339 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 340 /* Trigger a large asid and an early asid wrap. */ 341 u32 asid; 342 343 BUILD_BUG_ON(XE_MAX_ASID < 2); 344 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 345 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 346 &xe->usm.next_asid, GFP_KERNEL); 347 drm_WARN_ON(&xe->drm, err); 348 if (err >= 0) 349 xa_erase(&xe->usm.asid_to_vm, asid); 350 } 351 352 spin_lock_init(&xe->pinned.lock); 353 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 354 INIT_LIST_HEAD(&xe->pinned.external_vram); 355 INIT_LIST_HEAD(&xe->pinned.evicted); 356 357 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 358 WQ_MEM_RECLAIM); 359 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 360 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 361 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 362 if (!xe->ordered_wq || !xe->unordered_wq || 363 !xe->preempt_fence_wq || !xe->destroy_wq) { 364 /* 365 * Cleanup done in xe_device_destroy via 366 * drmm_add_action_or_reset register above 367 */ 368 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 369 err = -ENOMEM; 370 goto err; 371 } 372 373 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 374 if (err) 375 goto err; 376 377 err = xe_display_create(xe); 378 if (WARN_ON(err)) 379 goto err; 380 381 return xe; 382 383 err: 384 return ERR_PTR(err); 385 } 386 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 387 388 static bool xe_driver_flr_disabled(struct xe_device *xe) 389 { 390 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 391 } 392 393 /* 394 * The driver-initiated FLR is the highest level of reset that we can trigger 395 * from within the driver. It is different from the PCI FLR in that it doesn't 396 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 397 * it doesn't require a re-enumeration of the PCI BARs. However, the 398 * driver-initiated FLR does still cause a reset of both GT and display and a 399 * memory wipe of local and stolen memory, so recovery would require a full HW 400 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 401 * perform the FLR as the very last action before releasing access to the HW 402 * during the driver release flow, we don't attempt recovery at all, because 403 * if/when a new instance of i915 is bound to the device it will do a full 404 * re-init anyway. 405 */ 406 static void __xe_driver_flr(struct xe_device *xe) 407 { 408 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 409 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 410 int ret; 411 412 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 413 414 /* 415 * Make sure any pending FLR requests have cleared by waiting for the 416 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 417 * to make sure it's not still set from a prior attempt (it's a write to 418 * clear bit). 419 * Note that we should never be in a situation where a previous attempt 420 * is still pending (unless the HW is totally dead), but better to be 421 * safe in case something unexpected happens 422 */ 423 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 424 if (ret) { 425 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 426 return; 427 } 428 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 429 430 /* Trigger the actual Driver-FLR */ 431 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 432 433 /* Wait for hardware teardown to complete */ 434 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 435 if (ret) { 436 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 437 return; 438 } 439 440 /* Wait for hardware/firmware re-init to complete */ 441 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 442 flr_timeout, NULL, false); 443 if (ret) { 444 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 445 return; 446 } 447 448 /* Clear sticky completion status */ 449 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 450 } 451 452 static void xe_driver_flr(struct xe_device *xe) 453 { 454 if (xe_driver_flr_disabled(xe)) { 455 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 456 return; 457 } 458 459 __xe_driver_flr(xe); 460 } 461 462 static void xe_driver_flr_fini(void *arg) 463 { 464 struct xe_device *xe = arg; 465 466 if (xe->needs_flr_on_fini) 467 xe_driver_flr(xe); 468 } 469 470 static void xe_device_sanitize(void *arg) 471 { 472 struct xe_device *xe = arg; 473 struct xe_gt *gt; 474 u8 id; 475 476 for_each_gt(gt, xe, id) 477 xe_gt_sanitize(gt); 478 } 479 480 static int xe_set_dma_info(struct xe_device *xe) 481 { 482 unsigned int mask_size = xe->info.dma_mask_size; 483 int err; 484 485 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 486 487 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 488 if (err) 489 goto mask_err; 490 491 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 492 if (err) 493 goto mask_err; 494 495 return 0; 496 497 mask_err: 498 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 499 return err; 500 } 501 502 static bool verify_lmem_ready(struct xe_device *xe) 503 { 504 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 505 506 return !!val; 507 } 508 509 static int wait_for_lmem_ready(struct xe_device *xe) 510 { 511 unsigned long timeout, start; 512 513 if (!IS_DGFX(xe)) 514 return 0; 515 516 if (IS_SRIOV_VF(xe)) 517 return 0; 518 519 if (verify_lmem_ready(xe)) 520 return 0; 521 522 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 523 524 start = jiffies; 525 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 526 527 do { 528 if (signal_pending(current)) 529 return -EINTR; 530 531 /* 532 * The boot firmware initializes local memory and 533 * assesses its health. If memory training fails, 534 * the punit will have been instructed to keep the GT powered 535 * down.we won't be able to communicate with it 536 * 537 * If the status check is done before punit updates the register, 538 * it can lead to the system being unusable. 539 * use a timeout and defer the probe to prevent this. 540 */ 541 if (time_after(jiffies, timeout)) { 542 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 543 return -EPROBE_DEFER; 544 } 545 546 msleep(20); 547 548 } while (!verify_lmem_ready(xe)); 549 550 drm_dbg(&xe->drm, "lmem ready after %ums", 551 jiffies_to_msecs(jiffies - start)); 552 553 return 0; 554 } 555 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 556 557 static void update_device_info(struct xe_device *xe) 558 { 559 /* disable features that are not available/applicable to VFs */ 560 if (IS_SRIOV_VF(xe)) { 561 xe->info.probe_display = 0; 562 xe->info.has_heci_gscfi = 0; 563 xe->info.skip_guc_pc = 1; 564 xe->info.skip_pcode = 1; 565 } 566 } 567 568 /** 569 * xe_device_probe_early: Device early probe 570 * @xe: xe device instance 571 * 572 * Initialize MMIO resources that don't require any 573 * knowledge about tile count. Also initialize pcode and 574 * check vram initialization on root tile. 575 * 576 * Return: 0 on success, error code on failure 577 */ 578 int xe_device_probe_early(struct xe_device *xe) 579 { 580 int err; 581 582 err = xe_mmio_init(xe); 583 if (err) 584 return err; 585 586 xe_sriov_probe_early(xe); 587 588 update_device_info(xe); 589 590 err = xe_pcode_probe_early(xe); 591 if (err) 592 return err; 593 594 err = wait_for_lmem_ready(xe); 595 if (err) 596 return err; 597 598 xe->wedged.mode = xe_modparam.wedged_mode; 599 600 return 0; 601 } 602 603 static int probe_has_flat_ccs(struct xe_device *xe) 604 { 605 struct xe_gt *gt; 606 unsigned int fw_ref; 607 u32 reg; 608 609 /* Always enabled/disabled, no runtime check to do */ 610 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 611 return 0; 612 613 gt = xe_root_mmio_gt(xe); 614 615 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 616 if (!fw_ref) 617 return -ETIMEDOUT; 618 619 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 620 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 621 622 if (!xe->info.has_flat_ccs) 623 drm_dbg(&xe->drm, 624 "Flat CCS has been disabled in bios, May lead to performance impact"); 625 626 xe_force_wake_put(gt_to_fw(gt), fw_ref); 627 return 0; 628 } 629 630 int xe_device_probe(struct xe_device *xe) 631 { 632 struct xe_tile *tile; 633 struct xe_gt *gt; 634 int err; 635 u8 last_gt; 636 u8 id; 637 638 xe_pat_init_early(xe); 639 640 err = xe_sriov_init(xe); 641 if (err) 642 return err; 643 644 xe->info.mem_region_mask = 1; 645 err = xe_display_init_nommio(xe); 646 if (err) 647 return err; 648 649 err = xe_set_dma_info(xe); 650 if (err) 651 return err; 652 653 err = xe_mmio_probe_tiles(xe); 654 if (err) 655 return err; 656 657 xe_ttm_sys_mgr_init(xe); 658 659 for_each_gt(gt, xe, id) { 660 err = xe_gt_init_early(gt); 661 if (err) 662 return err; 663 664 /* 665 * Only after this point can GT-specific MMIO operations 666 * (including things like communication with the GuC) 667 * be performed. 668 */ 669 xe_gt_mmio_init(gt); 670 } 671 672 for_each_tile(tile, xe, id) { 673 if (IS_SRIOV_VF(xe)) { 674 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 675 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 676 if (err) 677 return err; 678 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 679 if (err) 680 return err; 681 } 682 err = xe_ggtt_init_early(tile->mem.ggtt); 683 if (err) 684 return err; 685 err = xe_memirq_init(&tile->memirq); 686 if (err) 687 return err; 688 } 689 690 for_each_gt(gt, xe, id) { 691 err = xe_gt_init_hwconfig(gt); 692 if (err) 693 return err; 694 } 695 696 err = xe_devcoredump_init(xe); 697 if (err) 698 return err; 699 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 700 if (err) 701 return err; 702 703 err = xe_display_init_noirq(xe); 704 if (err) 705 return err; 706 707 err = xe_irq_install(xe); 708 if (err) 709 goto err; 710 711 err = probe_has_flat_ccs(xe); 712 if (err) 713 goto err; 714 715 err = xe_vram_probe(xe); 716 if (err) 717 goto err; 718 719 for_each_tile(tile, xe, id) { 720 err = xe_tile_init_noalloc(tile); 721 if (err) 722 goto err; 723 } 724 725 /* Allocate and map stolen after potential VRAM resize */ 726 xe_ttm_stolen_mgr_init(xe); 727 728 /* 729 * Now that GT is initialized (TTM in particular), 730 * we can try to init display, and inherit the initial fb. 731 * This is the reason the first allocation needs to be done 732 * inside display. 733 */ 734 err = xe_display_init_noaccel(xe); 735 if (err) 736 goto err; 737 738 for_each_gt(gt, xe, id) { 739 last_gt = id; 740 741 err = xe_gt_init(gt); 742 if (err) 743 goto err_fini_gt; 744 } 745 746 xe_heci_gsc_init(xe); 747 748 err = xe_oa_init(xe); 749 if (err) 750 goto err_fini_gt; 751 752 err = xe_display_init(xe); 753 if (err) 754 goto err_fini_oa; 755 756 err = drm_dev_register(&xe->drm, 0); 757 if (err) 758 goto err_fini_display; 759 760 xe_display_register(xe); 761 762 xe_oa_register(xe); 763 764 xe_debugfs_register(xe); 765 766 xe_hwmon_register(xe); 767 768 for_each_gt(gt, xe, id) 769 xe_gt_sanitize_freq(gt); 770 771 xe_vsec_init(xe); 772 773 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 774 775 err_fini_display: 776 xe_display_driver_remove(xe); 777 778 err_fini_oa: 779 xe_oa_fini(xe); 780 781 err_fini_gt: 782 for_each_gt(gt, xe, id) { 783 if (id < last_gt) 784 xe_gt_remove(gt); 785 else 786 break; 787 } 788 789 err: 790 xe_display_fini(xe); 791 return err; 792 } 793 794 static void xe_device_remove_display(struct xe_device *xe) 795 { 796 xe_display_unregister(xe); 797 798 drm_dev_unplug(&xe->drm); 799 xe_display_driver_remove(xe); 800 } 801 802 void xe_device_remove(struct xe_device *xe) 803 { 804 struct xe_gt *gt; 805 u8 id; 806 807 xe_oa_unregister(xe); 808 809 xe_device_remove_display(xe); 810 811 xe_display_fini(xe); 812 813 xe_oa_fini(xe); 814 815 xe_heci_gsc_fini(xe); 816 817 for_each_gt(gt, xe, id) 818 xe_gt_remove(gt); 819 } 820 821 void xe_device_shutdown(struct xe_device *xe) 822 { 823 struct xe_gt *gt; 824 u8 id; 825 826 drm_dbg(&xe->drm, "Shutting down device\n"); 827 828 if (xe_driver_flr_disabled(xe)) { 829 xe_display_pm_shutdown(xe); 830 831 xe_irq_suspend(xe); 832 833 for_each_gt(gt, xe, id) 834 xe_gt_shutdown(gt); 835 836 xe_display_pm_shutdown_late(xe); 837 } else { 838 /* BOOM! */ 839 __xe_driver_flr(xe); 840 } 841 } 842 843 /** 844 * xe_device_wmb() - Device specific write memory barrier 845 * @xe: the &xe_device 846 * 847 * While wmb() is sufficient for a barrier if we use system memory, on discrete 848 * platforms with device memory we additionally need to issue a register write. 849 * Since it doesn't matter which register we write to, use the read-only VF_CAP 850 * register that is also marked as accessible by the VFs. 851 */ 852 void xe_device_wmb(struct xe_device *xe) 853 { 854 wmb(); 855 if (IS_DGFX(xe)) 856 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 857 } 858 859 /** 860 * xe_device_td_flush() - Flush transient L3 cache entries 861 * @xe: The device 862 * 863 * Display engine has direct access to memory and is never coherent with L3/L4 864 * caches (or CPU caches), however KMD is responsible for specifically flushing 865 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 866 * can happen from such a surface without seeing corruption. 867 * 868 * Display surfaces can be tagged as transient by mapping it using one of the 869 * various L3:XD PAT index modes on Xe2. 870 * 871 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 872 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 873 * Media is not coherent with L3 and we want to support render-vs-media 874 * usescases. For other engines like copy/blt the HW internally forces uncached 875 * behaviour, hence why we can skip the TDF on such platforms. 876 */ 877 void xe_device_td_flush(struct xe_device *xe) 878 { 879 struct xe_gt *gt; 880 unsigned int fw_ref; 881 u8 id; 882 883 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 884 return; 885 886 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 887 xe_device_l2_flush(xe); 888 return; 889 } 890 891 for_each_gt(gt, xe, id) { 892 if (xe_gt_is_media_type(gt)) 893 continue; 894 895 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 896 if (!fw_ref) 897 return; 898 899 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 900 /* 901 * FIXME: We can likely do better here with our choice of 902 * timeout. Currently we just assume the worst case, i.e. 150us, 903 * which is believed to be sufficient to cover the worst case 904 * scenario on current platforms if all cache entries are 905 * transient and need to be flushed.. 906 */ 907 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 908 150, NULL, false)) 909 xe_gt_err_once(gt, "TD flush timeout\n"); 910 911 xe_force_wake_put(gt_to_fw(gt), fw_ref); 912 } 913 } 914 915 void xe_device_l2_flush(struct xe_device *xe) 916 { 917 struct xe_gt *gt; 918 unsigned int fw_ref; 919 920 gt = xe_root_mmio_gt(xe); 921 922 if (!XE_WA(gt, 16023588340)) 923 return; 924 925 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 926 if (!fw_ref) 927 return; 928 929 spin_lock(>->global_invl_lock); 930 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 931 932 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 933 xe_gt_err_once(gt, "Global invalidation timeout\n"); 934 spin_unlock(>->global_invl_lock); 935 936 xe_force_wake_put(gt_to_fw(gt), fw_ref); 937 } 938 939 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 940 { 941 return xe_device_has_flat_ccs(xe) ? 942 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 943 } 944 945 /** 946 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 947 * @xe: xe device instance 948 * 949 * To be used before any kind of memory access. It will splat a debug warning 950 * if the device is currently sleeping. But it doesn't guarantee in any way 951 * that the device is going to remain awake. Xe PM runtime get and put 952 * functions might be added to the outer bound of the memory access, while 953 * this check is intended for inner usage to splat some warning if the worst 954 * case has just happened. 955 */ 956 void xe_device_assert_mem_access(struct xe_device *xe) 957 { 958 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 959 } 960 961 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 962 { 963 struct xe_gt *gt; 964 u8 id; 965 966 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 967 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 968 969 for_each_gt(gt, xe, id) { 970 drm_printf(p, "GT id: %u\n", id); 971 drm_printf(p, "\tTile: %u\n", gt->tile->id); 972 drm_printf(p, "\tType: %s\n", 973 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 974 drm_printf(p, "\tIP ver: %u.%u.%u\n", 975 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 976 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 977 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 978 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 979 } 980 } 981 982 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 983 { 984 return sign_extend64(address, xe->info.va_bits - 1); 985 } 986 987 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 988 { 989 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 990 } 991 992 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 993 { 994 struct xe_device *xe = arg; 995 996 xe_pm_runtime_put(xe); 997 } 998 999 /** 1000 * xe_device_declare_wedged - Declare device wedged 1001 * @xe: xe device instance 1002 * 1003 * This is a final state that can only be cleared with a module 1004 * re-probe (unbind + bind). 1005 * In this state every IOCTL will be blocked so the GT cannot be used. 1006 * In general it will be called upon any critical error such as gt reset 1007 * failure or guc loading failure. 1008 * If xe.wedged module parameter is set to 2, this function will be called 1009 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1010 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1011 * the issue is preserved for further debugging. 1012 */ 1013 void xe_device_declare_wedged(struct xe_device *xe) 1014 { 1015 struct xe_gt *gt; 1016 u8 id; 1017 1018 if (xe->wedged.mode == 0) { 1019 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1020 return; 1021 } 1022 1023 xe_pm_runtime_get_noresume(xe); 1024 1025 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1026 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1027 return; 1028 } 1029 1030 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1031 xe->needs_flr_on_fini = true; 1032 drm_err(&xe->drm, 1033 "CRITICAL: Xe has declared device %s as wedged.\n" 1034 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1035 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1036 dev_name(xe->drm.dev)); 1037 } 1038 1039 for_each_gt(gt, xe, id) 1040 xe_gt_declare_wedged(gt); 1041 } 1042