xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 624e0d7f39cb5849016c2093e4ea620842e0cf8a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/units.h>
9 
10 #include <drm/drm_aperture.h>
11 #include <drm/drm_atomic_helper.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_ioctl.h>
14 #include <drm/drm_managed.h>
15 #include <drm/drm_print.h>
16 #include <drm/xe_drm.h>
17 
18 #include "regs/xe_gt_regs.h"
19 #include "regs/xe_regs.h"
20 #include "xe_bo.h"
21 #include "xe_debugfs.h"
22 #include "xe_display.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_drv.h"
26 #include "xe_exec_queue.h"
27 #include "xe_exec.h"
28 #include "xe_ggtt.h"
29 #include "xe_gt.h"
30 #include "xe_gt_mcr.h"
31 #include "xe_irq.h"
32 #include "xe_mmio.h"
33 #include "xe_module.h"
34 #include "xe_pat.h"
35 #include "xe_pcode.h"
36 #include "xe_pm.h"
37 #include "xe_query.h"
38 #include "xe_tile.h"
39 #include "xe_ttm_stolen_mgr.h"
40 #include "xe_ttm_sys_mgr.h"
41 #include "xe_vm.h"
42 #include "xe_wait_user_fence.h"
43 #include "xe_hwmon.h"
44 
45 #ifdef CONFIG_LOCKDEP
46 struct lockdep_map xe_device_mem_access_lockdep_map = {
47 	.name = "xe_device_mem_access_lockdep_map"
48 };
49 #endif
50 
51 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
52 {
53 	struct xe_device *xe = to_xe_device(dev);
54 	struct xe_drm_client *client;
55 	struct xe_file *xef;
56 	int ret = -ENOMEM;
57 
58 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
59 	if (!xef)
60 		return ret;
61 
62 	client = xe_drm_client_alloc();
63 	if (!client) {
64 		kfree(xef);
65 		return ret;
66 	}
67 
68 	xef->drm = file;
69 	xef->client = client;
70 	xef->xe = xe;
71 
72 	mutex_init(&xef->vm.lock);
73 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
74 
75 	mutex_init(&xef->exec_queue.lock);
76 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
77 
78 	spin_lock(&xe->clients.lock);
79 	xe->clients.count++;
80 	spin_unlock(&xe->clients.lock);
81 
82 	file->driver_priv = xef;
83 	return 0;
84 }
85 
86 static void device_kill_persistent_exec_queues(struct xe_device *xe,
87 					       struct xe_file *xef);
88 
89 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
90 {
91 	struct xe_device *xe = to_xe_device(dev);
92 	struct xe_file *xef = file->driver_priv;
93 	struct xe_vm *vm;
94 	struct xe_exec_queue *q;
95 	unsigned long idx;
96 
97 	mutex_lock(&xef->exec_queue.lock);
98 	xa_for_each(&xef->exec_queue.xa, idx, q) {
99 		xe_exec_queue_kill(q);
100 		xe_exec_queue_put(q);
101 	}
102 	mutex_unlock(&xef->exec_queue.lock);
103 	xa_destroy(&xef->exec_queue.xa);
104 	mutex_destroy(&xef->exec_queue.lock);
105 	device_kill_persistent_exec_queues(xe, xef);
106 
107 	mutex_lock(&xef->vm.lock);
108 	xa_for_each(&xef->vm.xa, idx, vm)
109 		xe_vm_close_and_put(vm);
110 	mutex_unlock(&xef->vm.lock);
111 	xa_destroy(&xef->vm.xa);
112 	mutex_destroy(&xef->vm.lock);
113 
114 	spin_lock(&xe->clients.lock);
115 	xe->clients.count--;
116 	spin_unlock(&xe->clients.lock);
117 
118 	xe_drm_client_put(xef->client);
119 	kfree(xef);
120 }
121 
122 static const struct drm_ioctl_desc xe_ioctls[] = {
123 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
124 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
125 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
126 			  DRM_RENDER_ALLOW),
127 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
128 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
129 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
130 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
131 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
132 			  DRM_RENDER_ALLOW),
133 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
134 			  DRM_RENDER_ALLOW),
135 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
136 			  DRM_RENDER_ALLOW),
137 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
138 			  DRM_RENDER_ALLOW),
139 };
140 
141 static const struct file_operations xe_driver_fops = {
142 	.owner = THIS_MODULE,
143 	.open = drm_open,
144 	.release = drm_release_noglobal,
145 	.unlocked_ioctl = drm_ioctl,
146 	.mmap = drm_gem_mmap,
147 	.poll = drm_poll,
148 	.read = drm_read,
149 	.compat_ioctl = drm_compat_ioctl,
150 	.llseek = noop_llseek,
151 #ifdef CONFIG_PROC_FS
152 	.show_fdinfo = drm_show_fdinfo,
153 #endif
154 };
155 
156 static void xe_driver_release(struct drm_device *dev)
157 {
158 	struct xe_device *xe = to_xe_device(dev);
159 
160 	pci_set_drvdata(to_pci_dev(xe->drm.dev), NULL);
161 }
162 
163 static struct drm_driver driver = {
164 	/* Don't use MTRRs here; the Xserver or userspace app should
165 	 * deal with them for Intel hardware.
166 	 */
167 	.driver_features =
168 	    DRIVER_GEM |
169 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
170 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
171 	.open = xe_file_open,
172 	.postclose = xe_file_close,
173 
174 	.gem_prime_import = xe_gem_prime_import,
175 
176 	.dumb_create = xe_bo_dumb_create,
177 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
178 #ifdef CONFIG_PROC_FS
179 	.show_fdinfo = xe_drm_client_fdinfo,
180 #endif
181 	.release = &xe_driver_release,
182 
183 	.ioctls = xe_ioctls,
184 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
185 	.fops = &xe_driver_fops,
186 	.name = DRIVER_NAME,
187 	.desc = DRIVER_DESC,
188 	.date = DRIVER_DATE,
189 	.major = DRIVER_MAJOR,
190 	.minor = DRIVER_MINOR,
191 	.patchlevel = DRIVER_PATCHLEVEL,
192 };
193 
194 static void xe_device_destroy(struct drm_device *dev, void *dummy)
195 {
196 	struct xe_device *xe = to_xe_device(dev);
197 
198 	if (xe->ordered_wq)
199 		destroy_workqueue(xe->ordered_wq);
200 
201 	if (xe->unordered_wq)
202 		destroy_workqueue(xe->unordered_wq);
203 
204 	ttm_device_fini(&xe->ttm);
205 }
206 
207 struct xe_device *xe_device_create(struct pci_dev *pdev,
208 				   const struct pci_device_id *ent)
209 {
210 	struct xe_device *xe;
211 	int err;
212 
213 	xe_display_driver_set_hooks(&driver);
214 
215 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
216 	if (err)
217 		return ERR_PTR(err);
218 
219 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
220 	if (IS_ERR(xe))
221 		return xe;
222 
223 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
224 			      xe->drm.anon_inode->i_mapping,
225 			      xe->drm.vma_offset_manager, false, false);
226 	if (WARN_ON(err))
227 		goto err;
228 
229 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
230 	if (err)
231 		goto err;
232 
233 	xe->info.devid = pdev->device;
234 	xe->info.revid = pdev->revision;
235 	xe->info.force_execlist = xe_modparam.force_execlist;
236 
237 	spin_lock_init(&xe->irq.lock);
238 	spin_lock_init(&xe->clients.lock);
239 
240 	init_waitqueue_head(&xe->ufence_wq);
241 
242 	drmm_mutex_init(&xe->drm, &xe->usm.lock);
243 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
244 
245 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
246 		/* Trigger a large asid and an early asid wrap. */
247 		u32 asid;
248 
249 		BUILD_BUG_ON(XE_MAX_ASID < 2);
250 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
251 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
252 				      &xe->usm.next_asid, GFP_KERNEL);
253 		drm_WARN_ON(&xe->drm, err);
254 		if (err >= 0)
255 			xa_erase(&xe->usm.asid_to_vm, asid);
256 	}
257 
258 	drmm_mutex_init(&xe->drm, &xe->persistent_engines.lock);
259 	INIT_LIST_HEAD(&xe->persistent_engines.list);
260 
261 	spin_lock_init(&xe->pinned.lock);
262 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
263 	INIT_LIST_HEAD(&xe->pinned.external_vram);
264 	INIT_LIST_HEAD(&xe->pinned.evicted);
265 
266 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
267 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
268 	if (!xe->ordered_wq || !xe->unordered_wq) {
269 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
270 		err = -ENOMEM;
271 		goto err;
272 	}
273 
274 	err = xe_display_create(xe);
275 	if (WARN_ON(err))
276 		goto err;
277 
278 	return xe;
279 
280 err:
281 	return ERR_PTR(err);
282 }
283 
284 /*
285  * The driver-initiated FLR is the highest level of reset that we can trigger
286  * from within the driver. It is different from the PCI FLR in that it doesn't
287  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
288  * it doesn't require a re-enumeration of the PCI BARs. However, the
289  * driver-initiated FLR does still cause a reset of both GT and display and a
290  * memory wipe of local and stolen memory, so recovery would require a full HW
291  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
292  * perform the FLR as the very last action before releasing access to the HW
293  * during the driver release flow, we don't attempt recovery at all, because
294  * if/when a new instance of i915 is bound to the device it will do a full
295  * re-init anyway.
296  */
297 static void xe_driver_flr(struct xe_device *xe)
298 {
299 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
300 	struct xe_gt *gt = xe_root_mmio_gt(xe);
301 	int ret;
302 
303 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
304 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
305 		return;
306 	}
307 
308 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
309 
310 	/*
311 	 * Make sure any pending FLR requests have cleared by waiting for the
312 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
313 	 * to make sure it's not still set from a prior attempt (it's a write to
314 	 * clear bit).
315 	 * Note that we should never be in a situation where a previous attempt
316 	 * is still pending (unless the HW is totally dead), but better to be
317 	 * safe in case something unexpected happens
318 	 */
319 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
320 	if (ret) {
321 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
322 		return;
323 	}
324 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
325 
326 	/* Trigger the actual Driver-FLR */
327 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
328 
329 	/* Wait for hardware teardown to complete */
330 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
331 	if (ret) {
332 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
333 		return;
334 	}
335 
336 	/* Wait for hardware/firmware re-init to complete */
337 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
338 			     flr_timeout, NULL, false);
339 	if (ret) {
340 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
341 		return;
342 	}
343 
344 	/* Clear sticky completion status */
345 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
346 }
347 
348 static void xe_driver_flr_fini(struct drm_device *drm, void *arg)
349 {
350 	struct xe_device *xe = arg;
351 
352 	if (xe->needs_flr_on_fini)
353 		xe_driver_flr(xe);
354 }
355 
356 static void xe_device_sanitize(struct drm_device *drm, void *arg)
357 {
358 	struct xe_device *xe = arg;
359 	struct xe_gt *gt;
360 	u8 id;
361 
362 	for_each_gt(gt, xe, id)
363 		xe_gt_sanitize(gt);
364 }
365 
366 static int xe_set_dma_info(struct xe_device *xe)
367 {
368 	unsigned int mask_size = xe->info.dma_mask_size;
369 	int err;
370 
371 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
372 
373 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
374 	if (err)
375 		goto mask_err;
376 
377 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
378 	if (err)
379 		goto mask_err;
380 
381 	return 0;
382 
383 mask_err:
384 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
385 	return err;
386 }
387 
388 /*
389  * Initialize MMIO resources that don't require any knowledge about tile count.
390  */
391 int xe_device_probe_early(struct xe_device *xe)
392 {
393 	int err;
394 
395 	err = xe_mmio_init(xe);
396 	if (err)
397 		return err;
398 
399 	err = xe_mmio_root_tile_init(xe);
400 	if (err)
401 		return err;
402 
403 	return 0;
404 }
405 
406 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
407 {
408 	u32 reg;
409 	int err;
410 
411 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
412 		return 0;
413 
414 	struct xe_gt *gt = xe_root_mmio_gt(xe);
415 
416 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
417 	if (err)
418 		return err;
419 
420 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
421 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
422 
423 	if (!xe->info.has_flat_ccs)
424 		drm_dbg(&xe->drm,
425 			"Flat CCS has been disabled in bios, May lead to performance impact");
426 
427 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
428 }
429 
430 int xe_device_probe(struct xe_device *xe)
431 {
432 	struct xe_tile *tile;
433 	struct xe_gt *gt;
434 	int err;
435 	u8 id;
436 
437 	xe_pat_init_early(xe);
438 
439 	xe->info.mem_region_mask = 1;
440 	err = xe_display_init_nommio(xe);
441 	if (err)
442 		return err;
443 
444 	err = xe_set_dma_info(xe);
445 	if (err)
446 		return err;
447 
448 	xe_mmio_probe_tiles(xe);
449 
450 	xe_ttm_sys_mgr_init(xe);
451 
452 	for_each_gt(gt, xe, id)
453 		xe_force_wake_init_gt(gt, gt_to_fw(gt));
454 
455 	for_each_tile(tile, xe, id) {
456 		err = xe_ggtt_init_early(tile->mem.ggtt);
457 		if (err)
458 			return err;
459 	}
460 
461 	err = drmm_add_action_or_reset(&xe->drm, xe_driver_flr_fini, xe);
462 	if (err)
463 		return err;
464 
465 	for_each_gt(gt, xe, id) {
466 		err = xe_pcode_probe(gt);
467 		if (err)
468 			return err;
469 	}
470 
471 	err = xe_display_init_noirq(xe);
472 	if (err)
473 		return err;
474 
475 	err = xe_irq_install(xe);
476 	if (err)
477 		goto err;
478 
479 	for_each_gt(gt, xe, id) {
480 		err = xe_gt_init_early(gt);
481 		if (err)
482 			goto err_irq_shutdown;
483 	}
484 
485 	err = xe_device_set_has_flat_ccs(xe);
486 	if (err)
487 		return err;
488 
489 	err = xe_mmio_probe_vram(xe);
490 	if (err)
491 		goto err_irq_shutdown;
492 
493 	for_each_tile(tile, xe, id) {
494 		err = xe_tile_init_noalloc(tile);
495 		if (err)
496 			goto err_irq_shutdown;
497 	}
498 
499 	/* Allocate and map stolen after potential VRAM resize */
500 	xe_ttm_stolen_mgr_init(xe);
501 
502 	/*
503 	 * Now that GT is initialized (TTM in particular),
504 	 * we can try to init display, and inherit the initial fb.
505 	 * This is the reason the first allocation needs to be done
506 	 * inside display.
507 	 */
508 	err = xe_display_init_noaccel(xe);
509 	if (err)
510 		goto err_irq_shutdown;
511 
512 	for_each_gt(gt, xe, id) {
513 		err = xe_gt_init(gt);
514 		if (err)
515 			goto err_irq_shutdown;
516 	}
517 
518 	xe_heci_gsc_init(xe);
519 
520 	err = xe_display_init(xe);
521 	if (err)
522 		goto err_irq_shutdown;
523 
524 	err = drm_dev_register(&xe->drm, 0);
525 	if (err)
526 		goto err_fini_display;
527 
528 	xe_display_register(xe);
529 
530 	xe_debugfs_register(xe);
531 
532 	xe_hwmon_register(xe);
533 
534 	err = drmm_add_action_or_reset(&xe->drm, xe_device_sanitize, xe);
535 	if (err)
536 		return err;
537 
538 	return 0;
539 
540 err_fini_display:
541 	xe_display_driver_remove(xe);
542 
543 err_irq_shutdown:
544 	xe_irq_shutdown(xe);
545 err:
546 	xe_display_fini(xe);
547 	return err;
548 }
549 
550 static void xe_device_remove_display(struct xe_device *xe)
551 {
552 	xe_display_unregister(xe);
553 
554 	drm_dev_unplug(&xe->drm);
555 	xe_display_driver_remove(xe);
556 }
557 
558 void xe_device_remove(struct xe_device *xe)
559 {
560 	xe_device_remove_display(xe);
561 
562 	xe_display_fini(xe);
563 
564 	xe_heci_gsc_fini(xe);
565 
566 	xe_irq_shutdown(xe);
567 }
568 
569 void xe_device_shutdown(struct xe_device *xe)
570 {
571 }
572 
573 void xe_device_add_persistent_exec_queues(struct xe_device *xe, struct xe_exec_queue *q)
574 {
575 	mutex_lock(&xe->persistent_engines.lock);
576 	list_add_tail(&q->persistent.link, &xe->persistent_engines.list);
577 	mutex_unlock(&xe->persistent_engines.lock);
578 }
579 
580 void xe_device_remove_persistent_exec_queues(struct xe_device *xe,
581 					     struct xe_exec_queue *q)
582 {
583 	mutex_lock(&xe->persistent_engines.lock);
584 	if (!list_empty(&q->persistent.link))
585 		list_del(&q->persistent.link);
586 	mutex_unlock(&xe->persistent_engines.lock);
587 }
588 
589 static void device_kill_persistent_exec_queues(struct xe_device *xe,
590 					       struct xe_file *xef)
591 {
592 	struct xe_exec_queue *q, *next;
593 
594 	mutex_lock(&xe->persistent_engines.lock);
595 	list_for_each_entry_safe(q, next, &xe->persistent_engines.list,
596 				 persistent.link)
597 		if (q->persistent.xef == xef) {
598 			xe_exec_queue_kill(q);
599 			list_del_init(&q->persistent.link);
600 		}
601 	mutex_unlock(&xe->persistent_engines.lock);
602 }
603 
604 void xe_device_wmb(struct xe_device *xe)
605 {
606 	struct xe_gt *gt = xe_root_mmio_gt(xe);
607 
608 	wmb();
609 	if (IS_DGFX(xe))
610 		xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0);
611 }
612 
613 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
614 {
615 	return xe_device_has_flat_ccs(xe) ?
616 		DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
617 }
618 
619 bool xe_device_mem_access_ongoing(struct xe_device *xe)
620 {
621 	if (xe_pm_read_callback_task(xe) != NULL)
622 		return true;
623 
624 	return atomic_read(&xe->mem_access.ref);
625 }
626 
627 void xe_device_assert_mem_access(struct xe_device *xe)
628 {
629 	XE_WARN_ON(!xe_device_mem_access_ongoing(xe));
630 }
631 
632 bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe)
633 {
634 	bool active;
635 
636 	if (xe_pm_read_callback_task(xe) == current)
637 		return true;
638 
639 	active = xe_pm_runtime_get_if_active(xe);
640 	if (active) {
641 		int ref = atomic_inc_return(&xe->mem_access.ref);
642 
643 		xe_assert(xe, ref != S32_MAX);
644 	}
645 
646 	return active;
647 }
648 
649 void xe_device_mem_access_get(struct xe_device *xe)
650 {
651 	int ref;
652 
653 	/*
654 	 * This looks racy, but should be fine since the pm_callback_task only
655 	 * transitions from NULL -> current (and back to NULL again), during the
656 	 * runtime_resume() or runtime_suspend() callbacks, for which there can
657 	 * only be a single one running for our device. We only need to prevent
658 	 * recursively calling the runtime_get or runtime_put from those
659 	 * callbacks, as well as preventing triggering any access_ongoing
660 	 * asserts.
661 	 */
662 	if (xe_pm_read_callback_task(xe) == current)
663 		return;
664 
665 	/*
666 	 * Since the resume here is synchronous it can be quite easy to deadlock
667 	 * if we are not careful. Also in practice it might be quite timing
668 	 * sensitive to ever see the 0 -> 1 transition with the callers locks
669 	 * held, so deadlocks might exist but are hard for lockdep to ever see.
670 	 * With this in mind, help lockdep learn about the potentially scary
671 	 * stuff that can happen inside the runtime_resume callback by acquiring
672 	 * a dummy lock (it doesn't protect anything and gets compiled out on
673 	 * non-debug builds).  Lockdep then only needs to see the
674 	 * mem_access_lockdep_map -> runtime_resume callback once, and then can
675 	 * hopefully validate all the (callers_locks) -> mem_access_lockdep_map.
676 	 * For example if the (callers_locks) are ever grabbed in the
677 	 * runtime_resume callback, lockdep should give us a nice splat.
678 	 */
679 	lock_map_acquire(&xe_device_mem_access_lockdep_map);
680 	lock_map_release(&xe_device_mem_access_lockdep_map);
681 
682 	xe_pm_runtime_get(xe);
683 	ref = atomic_inc_return(&xe->mem_access.ref);
684 
685 	xe_assert(xe, ref != S32_MAX);
686 
687 }
688 
689 void xe_device_mem_access_put(struct xe_device *xe)
690 {
691 	int ref;
692 
693 	if (xe_pm_read_callback_task(xe) == current)
694 		return;
695 
696 	ref = atomic_dec_return(&xe->mem_access.ref);
697 	xe_pm_runtime_put(xe);
698 
699 	xe_assert(xe, ref >= 0);
700 }
701