xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 5b5a56d9a2d64e8395dfbaddecb3e5149d7ecae8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_oa.h"
48 #include "xe_observation.h"
49 #include "xe_pat.h"
50 #include "xe_pcode.h"
51 #include "xe_pm.h"
52 #include "xe_query.h"
53 #include "xe_shrinker.h"
54 #include "xe_sriov.h"
55 #include "xe_tile.h"
56 #include "xe_ttm_stolen_mgr.h"
57 #include "xe_ttm_sys_mgr.h"
58 #include "xe_vm.h"
59 #include "xe_vram.h"
60 #include "xe_vsec.h"
61 #include "xe_wait_user_fence.h"
62 #include "xe_wa.h"
63 
64 #include <generated/xe_wa_oob.h>
65 
66 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
67 {
68 	struct xe_device *xe = to_xe_device(dev);
69 	struct xe_drm_client *client;
70 	struct xe_file *xef;
71 	int ret = -ENOMEM;
72 	struct task_struct *task = NULL;
73 
74 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
75 	if (!xef)
76 		return ret;
77 
78 	client = xe_drm_client_alloc();
79 	if (!client) {
80 		kfree(xef);
81 		return ret;
82 	}
83 
84 	xef->drm = file;
85 	xef->client = client;
86 	xef->xe = xe;
87 
88 	mutex_init(&xef->vm.lock);
89 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
90 
91 	mutex_init(&xef->exec_queue.lock);
92 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
93 
94 	file->driver_priv = xef;
95 	kref_init(&xef->refcount);
96 
97 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
98 	if (task) {
99 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
100 		xef->pid = task->pid;
101 		put_task_struct(task);
102 	}
103 
104 	return 0;
105 }
106 
107 static void xe_file_destroy(struct kref *ref)
108 {
109 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
110 
111 	xa_destroy(&xef->exec_queue.xa);
112 	mutex_destroy(&xef->exec_queue.lock);
113 	xa_destroy(&xef->vm.xa);
114 	mutex_destroy(&xef->vm.lock);
115 
116 	xe_drm_client_put(xef->client);
117 	kfree(xef->process_name);
118 	kfree(xef);
119 }
120 
121 /**
122  * xe_file_get() - Take a reference to the xe file object
123  * @xef: Pointer to the xe file
124  *
125  * Anyone with a pointer to xef must take a reference to the xe file
126  * object using this call.
127  *
128  * Return: xe file pointer
129  */
130 struct xe_file *xe_file_get(struct xe_file *xef)
131 {
132 	kref_get(&xef->refcount);
133 	return xef;
134 }
135 
136 /**
137  * xe_file_put() - Drop a reference to the xe file object
138  * @xef: Pointer to the xe file
139  *
140  * Used to drop reference to the xef object
141  */
142 void xe_file_put(struct xe_file *xef)
143 {
144 	kref_put(&xef->refcount, xe_file_destroy);
145 }
146 
147 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
148 {
149 	struct xe_device *xe = to_xe_device(dev);
150 	struct xe_file *xef = file->driver_priv;
151 	struct xe_vm *vm;
152 	struct xe_exec_queue *q;
153 	unsigned long idx;
154 
155 	xe_pm_runtime_get(xe);
156 
157 	/*
158 	 * No need for exec_queue.lock here as there is no contention for it
159 	 * when FD is closing as IOCTLs presumably can't be modifying the
160 	 * xarray. Taking exec_queue.lock here causes undue dependency on
161 	 * vm->lock taken during xe_exec_queue_kill().
162 	 */
163 	xa_for_each(&xef->exec_queue.xa, idx, q) {
164 		if (q->vm && q->hwe->hw_engine_group)
165 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
166 		xe_exec_queue_kill(q);
167 		xe_exec_queue_put(q);
168 	}
169 	xa_for_each(&xef->vm.xa, idx, vm)
170 		xe_vm_close_and_put(vm);
171 
172 	xe_file_put(xef);
173 
174 	xe_pm_runtime_put(xe);
175 }
176 
177 static const struct drm_ioctl_desc xe_ioctls[] = {
178 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
181 			  DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
187 			  DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
189 			  DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
191 			  DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
193 			  DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
195 };
196 
197 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
198 {
199 	struct drm_file *file_priv = file->private_data;
200 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
201 	long ret;
202 
203 	if (xe_device_wedged(xe))
204 		return -ECANCELED;
205 
206 	ret = xe_pm_runtime_get_ioctl(xe);
207 	if (ret >= 0)
208 		ret = drm_ioctl(file, cmd, arg);
209 	xe_pm_runtime_put(xe);
210 
211 	return ret;
212 }
213 
214 #ifdef CONFIG_COMPAT
215 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
216 {
217 	struct drm_file *file_priv = file->private_data;
218 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
219 	long ret;
220 
221 	if (xe_device_wedged(xe))
222 		return -ECANCELED;
223 
224 	ret = xe_pm_runtime_get_ioctl(xe);
225 	if (ret >= 0)
226 		ret = drm_compat_ioctl(file, cmd, arg);
227 	xe_pm_runtime_put(xe);
228 
229 	return ret;
230 }
231 #else
232 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
233 #define xe_drm_compat_ioctl NULL
234 #endif
235 
236 static const struct file_operations xe_driver_fops = {
237 	.owner = THIS_MODULE,
238 	.open = drm_open,
239 	.release = drm_release_noglobal,
240 	.unlocked_ioctl = xe_drm_ioctl,
241 	.mmap = drm_gem_mmap,
242 	.poll = drm_poll,
243 	.read = drm_read,
244 	.compat_ioctl = xe_drm_compat_ioctl,
245 	.llseek = noop_llseek,
246 #ifdef CONFIG_PROC_FS
247 	.show_fdinfo = drm_show_fdinfo,
248 #endif
249 	.fop_flags = FOP_UNSIGNED_OFFSET,
250 };
251 
252 static struct drm_driver driver = {
253 	/* Don't use MTRRs here; the Xserver or userspace app should
254 	 * deal with them for Intel hardware.
255 	 */
256 	.driver_features =
257 	    DRIVER_GEM |
258 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
259 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
260 	.open = xe_file_open,
261 	.postclose = xe_file_close,
262 
263 	.gem_prime_import = xe_gem_prime_import,
264 
265 	.dumb_create = xe_bo_dumb_create,
266 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
267 #ifdef CONFIG_PROC_FS
268 	.show_fdinfo = xe_drm_client_fdinfo,
269 #endif
270 	.ioctls = xe_ioctls,
271 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
272 	.fops = &xe_driver_fops,
273 	.name = DRIVER_NAME,
274 	.desc = DRIVER_DESC,
275 	.major = DRIVER_MAJOR,
276 	.minor = DRIVER_MINOR,
277 	.patchlevel = DRIVER_PATCHLEVEL,
278 };
279 
280 static void xe_device_destroy(struct drm_device *dev, void *dummy)
281 {
282 	struct xe_device *xe = to_xe_device(dev);
283 
284 	if (xe->preempt_fence_wq)
285 		destroy_workqueue(xe->preempt_fence_wq);
286 
287 	if (xe->ordered_wq)
288 		destroy_workqueue(xe->ordered_wq);
289 
290 	if (xe->unordered_wq)
291 		destroy_workqueue(xe->unordered_wq);
292 
293 	if (!IS_ERR_OR_NULL(xe->mem.shrinker))
294 		xe_shrinker_destroy(xe->mem.shrinker);
295 
296 	if (xe->destroy_wq)
297 		destroy_workqueue(xe->destroy_wq);
298 
299 	ttm_device_fini(&xe->ttm);
300 }
301 
302 struct xe_device *xe_device_create(struct pci_dev *pdev,
303 				   const struct pci_device_id *ent)
304 {
305 	struct xe_device *xe;
306 	int err;
307 
308 	xe_display_driver_set_hooks(&driver);
309 
310 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
311 	if (err)
312 		return ERR_PTR(err);
313 
314 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
315 	if (IS_ERR(xe))
316 		return xe;
317 
318 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
319 			      xe->drm.anon_inode->i_mapping,
320 			      xe->drm.vma_offset_manager, false, false);
321 	if (WARN_ON(err))
322 		goto err;
323 
324 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
325 	if (err)
326 		goto err;
327 
328 	xe->mem.shrinker = xe_shrinker_create(xe);
329 	if (IS_ERR(xe->mem.shrinker))
330 		return ERR_CAST(xe->mem.shrinker);
331 
332 	xe->info.devid = pdev->device;
333 	xe->info.revid = pdev->revision;
334 	xe->info.force_execlist = xe_modparam.force_execlist;
335 
336 	err = xe_irq_init(xe);
337 	if (err)
338 		goto err;
339 
340 	init_waitqueue_head(&xe->ufence_wq);
341 
342 	init_rwsem(&xe->usm.lock);
343 
344 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
345 
346 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
347 		/* Trigger a large asid and an early asid wrap. */
348 		u32 asid;
349 
350 		BUILD_BUG_ON(XE_MAX_ASID < 2);
351 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
352 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
353 				      &xe->usm.next_asid, GFP_KERNEL);
354 		drm_WARN_ON(&xe->drm, err);
355 		if (err >= 0)
356 			xa_erase(&xe->usm.asid_to_vm, asid);
357 	}
358 
359 	spin_lock_init(&xe->pinned.lock);
360 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
361 	INIT_LIST_HEAD(&xe->pinned.external_vram);
362 	INIT_LIST_HEAD(&xe->pinned.evicted);
363 
364 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
365 						       WQ_MEM_RECLAIM);
366 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
367 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
368 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
369 	if (!xe->ordered_wq || !xe->unordered_wq ||
370 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
371 		/*
372 		 * Cleanup done in xe_device_destroy via
373 		 * drmm_add_action_or_reset register above
374 		 */
375 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
376 		err = -ENOMEM;
377 		goto err;
378 	}
379 
380 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
381 	if (err)
382 		goto err;
383 
384 	err = xe_display_create(xe);
385 	if (WARN_ON(err))
386 		goto err;
387 
388 	return xe;
389 
390 err:
391 	return ERR_PTR(err);
392 }
393 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
394 
395 static bool xe_driver_flr_disabled(struct xe_device *xe)
396 {
397 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
398 }
399 
400 /*
401  * The driver-initiated FLR is the highest level of reset that we can trigger
402  * from within the driver. It is different from the PCI FLR in that it doesn't
403  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
404  * it doesn't require a re-enumeration of the PCI BARs. However, the
405  * driver-initiated FLR does still cause a reset of both GT and display and a
406  * memory wipe of local and stolen memory, so recovery would require a full HW
407  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
408  * perform the FLR as the very last action before releasing access to the HW
409  * during the driver release flow, we don't attempt recovery at all, because
410  * if/when a new instance of i915 is bound to the device it will do a full
411  * re-init anyway.
412  */
413 static void __xe_driver_flr(struct xe_device *xe)
414 {
415 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
416 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
417 	int ret;
418 
419 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
420 
421 	/*
422 	 * Make sure any pending FLR requests have cleared by waiting for the
423 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
424 	 * to make sure it's not still set from a prior attempt (it's a write to
425 	 * clear bit).
426 	 * Note that we should never be in a situation where a previous attempt
427 	 * is still pending (unless the HW is totally dead), but better to be
428 	 * safe in case something unexpected happens
429 	 */
430 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
431 	if (ret) {
432 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
433 		return;
434 	}
435 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
436 
437 	/* Trigger the actual Driver-FLR */
438 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
439 
440 	/* Wait for hardware teardown to complete */
441 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
442 	if (ret) {
443 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
444 		return;
445 	}
446 
447 	/* Wait for hardware/firmware re-init to complete */
448 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
449 			     flr_timeout, NULL, false);
450 	if (ret) {
451 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
452 		return;
453 	}
454 
455 	/* Clear sticky completion status */
456 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
457 }
458 
459 static void xe_driver_flr(struct xe_device *xe)
460 {
461 	if (xe_driver_flr_disabled(xe)) {
462 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
463 		return;
464 	}
465 
466 	__xe_driver_flr(xe);
467 }
468 
469 static void xe_driver_flr_fini(void *arg)
470 {
471 	struct xe_device *xe = arg;
472 
473 	if (xe->needs_flr_on_fini)
474 		xe_driver_flr(xe);
475 }
476 
477 static void xe_device_sanitize(void *arg)
478 {
479 	struct xe_device *xe = arg;
480 	struct xe_gt *gt;
481 	u8 id;
482 
483 	for_each_gt(gt, xe, id)
484 		xe_gt_sanitize(gt);
485 }
486 
487 static int xe_set_dma_info(struct xe_device *xe)
488 {
489 	unsigned int mask_size = xe->info.dma_mask_size;
490 	int err;
491 
492 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
493 
494 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
495 	if (err)
496 		goto mask_err;
497 
498 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
499 	if (err)
500 		goto mask_err;
501 
502 	return 0;
503 
504 mask_err:
505 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
506 	return err;
507 }
508 
509 static bool verify_lmem_ready(struct xe_device *xe)
510 {
511 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
512 
513 	return !!val;
514 }
515 
516 static int wait_for_lmem_ready(struct xe_device *xe)
517 {
518 	unsigned long timeout, start;
519 
520 	if (!IS_DGFX(xe))
521 		return 0;
522 
523 	if (IS_SRIOV_VF(xe))
524 		return 0;
525 
526 	if (verify_lmem_ready(xe))
527 		return 0;
528 
529 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
530 
531 	start = jiffies;
532 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
533 
534 	do {
535 		if (signal_pending(current))
536 			return -EINTR;
537 
538 		/*
539 		 * The boot firmware initializes local memory and
540 		 * assesses its health. If memory training fails,
541 		 * the punit will have been instructed to keep the GT powered
542 		 * down.we won't be able to communicate with it
543 		 *
544 		 * If the status check is done before punit updates the register,
545 		 * it can lead to the system being unusable.
546 		 * use a timeout and defer the probe to prevent this.
547 		 */
548 		if (time_after(jiffies, timeout)) {
549 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
550 			return -EPROBE_DEFER;
551 		}
552 
553 		msleep(20);
554 
555 	} while (!verify_lmem_ready(xe));
556 
557 	drm_dbg(&xe->drm, "lmem ready after %ums",
558 		jiffies_to_msecs(jiffies - start));
559 
560 	return 0;
561 }
562 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
563 
564 static void update_device_info(struct xe_device *xe)
565 {
566 	/* disable features that are not available/applicable to VFs */
567 	if (IS_SRIOV_VF(xe)) {
568 		xe->info.probe_display = 0;
569 		xe->info.has_heci_gscfi = 0;
570 		xe->info.skip_guc_pc = 1;
571 		xe->info.skip_pcode = 1;
572 	}
573 }
574 
575 /**
576  * xe_device_probe_early: Device early probe
577  * @xe: xe device instance
578  *
579  * Initialize MMIO resources that don't require any
580  * knowledge about tile count. Also initialize pcode and
581  * check vram initialization on root tile.
582  *
583  * Return: 0 on success, error code on failure
584  */
585 int xe_device_probe_early(struct xe_device *xe)
586 {
587 	int err;
588 
589 	err = xe_mmio_init(xe);
590 	if (err)
591 		return err;
592 
593 	xe_sriov_probe_early(xe);
594 
595 	update_device_info(xe);
596 
597 	err = xe_pcode_probe_early(xe);
598 	if (err)
599 		return err;
600 
601 	err = wait_for_lmem_ready(xe);
602 	if (err)
603 		return err;
604 
605 	xe->wedged.mode = xe_modparam.wedged_mode;
606 
607 	return 0;
608 }
609 
610 static int probe_has_flat_ccs(struct xe_device *xe)
611 {
612 	struct xe_gt *gt;
613 	unsigned int fw_ref;
614 	u32 reg;
615 
616 	/* Always enabled/disabled, no runtime check to do */
617 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
618 		return 0;
619 
620 	gt = xe_root_mmio_gt(xe);
621 
622 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
623 	if (!fw_ref)
624 		return -ETIMEDOUT;
625 
626 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
627 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
628 
629 	if (!xe->info.has_flat_ccs)
630 		drm_dbg(&xe->drm,
631 			"Flat CCS has been disabled in bios, May lead to performance impact");
632 
633 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
634 	return 0;
635 }
636 
637 int xe_device_probe(struct xe_device *xe)
638 {
639 	struct xe_tile *tile;
640 	struct xe_gt *gt;
641 	int err;
642 	u8 last_gt;
643 	u8 id;
644 
645 	xe_pat_init_early(xe);
646 
647 	err = xe_sriov_init(xe);
648 	if (err)
649 		return err;
650 
651 	xe->info.mem_region_mask = 1;
652 	err = xe_display_init_nommio(xe);
653 	if (err)
654 		return err;
655 
656 	err = xe_set_dma_info(xe);
657 	if (err)
658 		return err;
659 
660 	err = xe_mmio_probe_tiles(xe);
661 	if (err)
662 		return err;
663 
664 	xe_ttm_sys_mgr_init(xe);
665 
666 	for_each_gt(gt, xe, id) {
667 		err = xe_gt_init_early(gt);
668 		if (err)
669 			return err;
670 
671 		/*
672 		 * Only after this point can GT-specific MMIO operations
673 		 * (including things like communication with the GuC)
674 		 * be performed.
675 		 */
676 		xe_gt_mmio_init(gt);
677 	}
678 
679 	for_each_tile(tile, xe, id) {
680 		if (IS_SRIOV_VF(xe)) {
681 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
682 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
683 			if (err)
684 				return err;
685 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
686 			if (err)
687 				return err;
688 		}
689 		err = xe_ggtt_init_early(tile->mem.ggtt);
690 		if (err)
691 			return err;
692 		err = xe_memirq_init(&tile->memirq);
693 		if (err)
694 			return err;
695 	}
696 
697 	for_each_gt(gt, xe, id) {
698 		err = xe_gt_init_hwconfig(gt);
699 		if (err)
700 			return err;
701 	}
702 
703 	err = xe_devcoredump_init(xe);
704 	if (err)
705 		return err;
706 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
707 	if (err)
708 		return err;
709 
710 	err = xe_display_init_noirq(xe);
711 	if (err)
712 		return err;
713 
714 	err = xe_irq_install(xe);
715 	if (err)
716 		goto err;
717 
718 	err = probe_has_flat_ccs(xe);
719 	if (err)
720 		goto err;
721 
722 	err = xe_vram_probe(xe);
723 	if (err)
724 		goto err;
725 
726 	for_each_tile(tile, xe, id) {
727 		err = xe_tile_init_noalloc(tile);
728 		if (err)
729 			goto err;
730 	}
731 
732 	/* Allocate and map stolen after potential VRAM resize */
733 	xe_ttm_stolen_mgr_init(xe);
734 
735 	/*
736 	 * Now that GT is initialized (TTM in particular),
737 	 * we can try to init display, and inherit the initial fb.
738 	 * This is the reason the first allocation needs to be done
739 	 * inside display.
740 	 */
741 	err = xe_display_init_noaccel(xe);
742 	if (err)
743 		goto err;
744 
745 	for_each_gt(gt, xe, id) {
746 		last_gt = id;
747 
748 		err = xe_gt_init(gt);
749 		if (err)
750 			goto err_fini_gt;
751 	}
752 
753 	xe_heci_gsc_init(xe);
754 
755 	err = xe_oa_init(xe);
756 	if (err)
757 		goto err_fini_gt;
758 
759 	err = xe_display_init(xe);
760 	if (err)
761 		goto err_fini_oa;
762 
763 	err = drm_dev_register(&xe->drm, 0);
764 	if (err)
765 		goto err_fini_display;
766 
767 	xe_display_register(xe);
768 
769 	xe_oa_register(xe);
770 
771 	xe_debugfs_register(xe);
772 
773 	xe_hwmon_register(xe);
774 
775 	for_each_gt(gt, xe, id)
776 		xe_gt_sanitize_freq(gt);
777 
778 	xe_vsec_init(xe);
779 
780 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
781 
782 err_fini_display:
783 	xe_display_driver_remove(xe);
784 
785 err_fini_oa:
786 	xe_oa_fini(xe);
787 
788 err_fini_gt:
789 	for_each_gt(gt, xe, id) {
790 		if (id < last_gt)
791 			xe_gt_remove(gt);
792 		else
793 			break;
794 	}
795 
796 err:
797 	xe_display_fini(xe);
798 	return err;
799 }
800 
801 static void xe_device_remove_display(struct xe_device *xe)
802 {
803 	xe_display_unregister(xe);
804 
805 	drm_dev_unplug(&xe->drm);
806 	xe_display_driver_remove(xe);
807 }
808 
809 void xe_device_remove(struct xe_device *xe)
810 {
811 	struct xe_gt *gt;
812 	u8 id;
813 
814 	xe_oa_unregister(xe);
815 
816 	xe_device_remove_display(xe);
817 
818 	xe_display_fini(xe);
819 
820 	xe_oa_fini(xe);
821 
822 	xe_heci_gsc_fini(xe);
823 
824 	for_each_gt(gt, xe, id)
825 		xe_gt_remove(gt);
826 }
827 
828 void xe_device_shutdown(struct xe_device *xe)
829 {
830 	struct xe_gt *gt;
831 	u8 id;
832 
833 	drm_dbg(&xe->drm, "Shutting down device\n");
834 
835 	if (xe_driver_flr_disabled(xe)) {
836 		xe_display_pm_shutdown(xe);
837 
838 		xe_irq_suspend(xe);
839 
840 		for_each_gt(gt, xe, id)
841 			xe_gt_shutdown(gt);
842 
843 		xe_display_pm_shutdown_late(xe);
844 	} else {
845 		/* BOOM! */
846 		__xe_driver_flr(xe);
847 	}
848 }
849 
850 /**
851  * xe_device_wmb() - Device specific write memory barrier
852  * @xe: the &xe_device
853  *
854  * While wmb() is sufficient for a barrier if we use system memory, on discrete
855  * platforms with device memory we additionally need to issue a register write.
856  * Since it doesn't matter which register we write to, use the read-only VF_CAP
857  * register that is also marked as accessible by the VFs.
858  */
859 void xe_device_wmb(struct xe_device *xe)
860 {
861 	wmb();
862 	if (IS_DGFX(xe))
863 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
864 }
865 
866 /**
867  * xe_device_td_flush() - Flush transient L3 cache entries
868  * @xe: The device
869  *
870  * Display engine has direct access to memory and is never coherent with L3/L4
871  * caches (or CPU caches), however KMD is responsible for specifically flushing
872  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
873  * can happen from such a surface without seeing corruption.
874  *
875  * Display surfaces can be tagged as transient by mapping it using one of the
876  * various L3:XD PAT index modes on Xe2.
877  *
878  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
879  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
880  * Media is not coherent with L3 and we want to support render-vs-media
881  * usescases. For other engines like copy/blt the HW internally forces uncached
882  * behaviour, hence why we can skip the TDF on such platforms.
883  */
884 void xe_device_td_flush(struct xe_device *xe)
885 {
886 	struct xe_gt *gt;
887 	unsigned int fw_ref;
888 	u8 id;
889 
890 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
891 		return;
892 
893 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
894 		xe_device_l2_flush(xe);
895 		return;
896 	}
897 
898 	for_each_gt(gt, xe, id) {
899 		if (xe_gt_is_media_type(gt))
900 			continue;
901 
902 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
903 		if (!fw_ref)
904 			return;
905 
906 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
907 		/*
908 		 * FIXME: We can likely do better here with our choice of
909 		 * timeout. Currently we just assume the worst case, i.e. 150us,
910 		 * which is believed to be sufficient to cover the worst case
911 		 * scenario on current platforms if all cache entries are
912 		 * transient and need to be flushed..
913 		 */
914 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
915 				   150, NULL, false))
916 			xe_gt_err_once(gt, "TD flush timeout\n");
917 
918 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
919 	}
920 }
921 
922 void xe_device_l2_flush(struct xe_device *xe)
923 {
924 	struct xe_gt *gt;
925 	unsigned int fw_ref;
926 
927 	gt = xe_root_mmio_gt(xe);
928 
929 	if (!XE_WA(gt, 16023588340))
930 		return;
931 
932 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
933 	if (!fw_ref)
934 		return;
935 
936 	spin_lock(&gt->global_invl_lock);
937 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
938 
939 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
940 		xe_gt_err_once(gt, "Global invalidation timeout\n");
941 	spin_unlock(&gt->global_invl_lock);
942 
943 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
944 }
945 
946 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
947 {
948 	return xe_device_has_flat_ccs(xe) ?
949 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
950 }
951 
952 /**
953  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
954  * @xe: xe device instance
955  *
956  * To be used before any kind of memory access. It will splat a debug warning
957  * if the device is currently sleeping. But it doesn't guarantee in any way
958  * that the device is going to remain awake. Xe PM runtime get and put
959  * functions might be added to the outer bound of the memory access, while
960  * this check is intended for inner usage to splat some warning if the worst
961  * case has just happened.
962  */
963 void xe_device_assert_mem_access(struct xe_device *xe)
964 {
965 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
966 }
967 
968 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
969 {
970 	struct xe_gt *gt;
971 	u8 id;
972 
973 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
974 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
975 
976 	for_each_gt(gt, xe, id) {
977 		drm_printf(p, "GT id: %u\n", id);
978 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
979 		drm_printf(p, "\tType: %s\n",
980 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
981 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
982 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
983 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
984 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
985 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
986 	}
987 }
988 
989 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
990 {
991 	return sign_extend64(address, xe->info.va_bits - 1);
992 }
993 
994 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
995 {
996 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
997 }
998 
999 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1000 {
1001 	struct xe_device *xe = arg;
1002 
1003 	xe_pm_runtime_put(xe);
1004 }
1005 
1006 /**
1007  * xe_device_declare_wedged - Declare device wedged
1008  * @xe: xe device instance
1009  *
1010  * This is a final state that can only be cleared with a module
1011  * re-probe (unbind + bind).
1012  * In this state every IOCTL will be blocked so the GT cannot be used.
1013  * In general it will be called upon any critical error such as gt reset
1014  * failure or guc loading failure. Userspace will be notified of this state
1015  * through device wedged uevent.
1016  * If xe.wedged module parameter is set to 2, this function will be called
1017  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1018  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1019  * the issue is preserved for further debugging.
1020  */
1021 void xe_device_declare_wedged(struct xe_device *xe)
1022 {
1023 	struct xe_gt *gt;
1024 	u8 id;
1025 
1026 	if (xe->wedged.mode == 0) {
1027 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1028 		return;
1029 	}
1030 
1031 	xe_pm_runtime_get_noresume(xe);
1032 
1033 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1034 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1035 		return;
1036 	}
1037 
1038 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1039 		xe->needs_flr_on_fini = true;
1040 		drm_err(&xe->drm,
1041 			"CRITICAL: Xe has declared device %s as wedged.\n"
1042 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1043 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1044 			dev_name(xe->drm.dev));
1045 
1046 		/* Notify userspace of wedged device */
1047 		drm_dev_wedged_event(&xe->drm,
1048 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1049 	}
1050 
1051 	for_each_gt(gt, xe, id)
1052 		xe_gt_declare_wedged(gt);
1053 }
1054