xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 5488bec96bccbd87335921338f8dc38b87db7d2c)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_oa.h"
48 #include "xe_observation.h"
49 #include "xe_pat.h"
50 #include "xe_pcode.h"
51 #include "xe_pm.h"
52 #include "xe_pmu.h"
53 #include "xe_pxp.h"
54 #include "xe_query.h"
55 #include "xe_sriov.h"
56 #include "xe_tile.h"
57 #include "xe_ttm_stolen_mgr.h"
58 #include "xe_ttm_sys_mgr.h"
59 #include "xe_vm.h"
60 #include "xe_vram.h"
61 #include "xe_vsec.h"
62 #include "xe_wait_user_fence.h"
63 #include "xe_wa.h"
64 
65 #include <generated/xe_wa_oob.h>
66 
67 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
68 {
69 	struct xe_device *xe = to_xe_device(dev);
70 	struct xe_drm_client *client;
71 	struct xe_file *xef;
72 	int ret = -ENOMEM;
73 	struct task_struct *task = NULL;
74 
75 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
76 	if (!xef)
77 		return ret;
78 
79 	client = xe_drm_client_alloc();
80 	if (!client) {
81 		kfree(xef);
82 		return ret;
83 	}
84 
85 	xef->drm = file;
86 	xef->client = client;
87 	xef->xe = xe;
88 
89 	mutex_init(&xef->vm.lock);
90 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
91 
92 	mutex_init(&xef->exec_queue.lock);
93 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
94 
95 	file->driver_priv = xef;
96 	kref_init(&xef->refcount);
97 
98 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
99 	if (task) {
100 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
101 		xef->pid = task->pid;
102 		put_task_struct(task);
103 	}
104 
105 	return 0;
106 }
107 
108 static void xe_file_destroy(struct kref *ref)
109 {
110 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
111 
112 	xa_destroy(&xef->exec_queue.xa);
113 	mutex_destroy(&xef->exec_queue.lock);
114 	xa_destroy(&xef->vm.xa);
115 	mutex_destroy(&xef->vm.lock);
116 
117 	xe_drm_client_put(xef->client);
118 	kfree(xef->process_name);
119 	kfree(xef);
120 }
121 
122 /**
123  * xe_file_get() - Take a reference to the xe file object
124  * @xef: Pointer to the xe file
125  *
126  * Anyone with a pointer to xef must take a reference to the xe file
127  * object using this call.
128  *
129  * Return: xe file pointer
130  */
131 struct xe_file *xe_file_get(struct xe_file *xef)
132 {
133 	kref_get(&xef->refcount);
134 	return xef;
135 }
136 
137 /**
138  * xe_file_put() - Drop a reference to the xe file object
139  * @xef: Pointer to the xe file
140  *
141  * Used to drop reference to the xef object
142  */
143 void xe_file_put(struct xe_file *xef)
144 {
145 	kref_put(&xef->refcount, xe_file_destroy);
146 }
147 
148 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
149 {
150 	struct xe_device *xe = to_xe_device(dev);
151 	struct xe_file *xef = file->driver_priv;
152 	struct xe_vm *vm;
153 	struct xe_exec_queue *q;
154 	unsigned long idx;
155 
156 	xe_pm_runtime_get(xe);
157 
158 	/*
159 	 * No need for exec_queue.lock here as there is no contention for it
160 	 * when FD is closing as IOCTLs presumably can't be modifying the
161 	 * xarray. Taking exec_queue.lock here causes undue dependency on
162 	 * vm->lock taken during xe_exec_queue_kill().
163 	 */
164 	xa_for_each(&xef->exec_queue.xa, idx, q) {
165 		if (q->vm && q->hwe->hw_engine_group)
166 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
167 		xe_exec_queue_kill(q);
168 		xe_exec_queue_put(q);
169 	}
170 	xa_for_each(&xef->vm.xa, idx, vm)
171 		xe_vm_close_and_put(vm);
172 
173 	xe_file_put(xef);
174 
175 	xe_pm_runtime_put(xe);
176 }
177 
178 static const struct drm_ioctl_desc xe_ioctls[] = {
179 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
182 			  DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
192 			  DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
194 			  DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
196 };
197 
198 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
199 {
200 	struct drm_file *file_priv = file->private_data;
201 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
202 	long ret;
203 
204 	if (xe_device_wedged(xe))
205 		return -ECANCELED;
206 
207 	ret = xe_pm_runtime_get_ioctl(xe);
208 	if (ret >= 0)
209 		ret = drm_ioctl(file, cmd, arg);
210 	xe_pm_runtime_put(xe);
211 
212 	return ret;
213 }
214 
215 #ifdef CONFIG_COMPAT
216 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
217 {
218 	struct drm_file *file_priv = file->private_data;
219 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
220 	long ret;
221 
222 	if (xe_device_wedged(xe))
223 		return -ECANCELED;
224 
225 	ret = xe_pm_runtime_get_ioctl(xe);
226 	if (ret >= 0)
227 		ret = drm_compat_ioctl(file, cmd, arg);
228 	xe_pm_runtime_put(xe);
229 
230 	return ret;
231 }
232 #else
233 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
234 #define xe_drm_compat_ioctl NULL
235 #endif
236 
237 static void barrier_open(struct vm_area_struct *vma)
238 {
239 	drm_dev_get(vma->vm_private_data);
240 }
241 
242 static void barrier_close(struct vm_area_struct *vma)
243 {
244 	drm_dev_put(vma->vm_private_data);
245 }
246 
247 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
248 {
249 	struct page *dummy_page = (struct page *)res;
250 
251 	__free_page(dummy_page);
252 }
253 
254 static vm_fault_t barrier_fault(struct vm_fault *vmf)
255 {
256 	struct drm_device *dev = vmf->vma->vm_private_data;
257 	struct vm_area_struct *vma = vmf->vma;
258 	vm_fault_t ret = VM_FAULT_NOPAGE;
259 	pgprot_t prot;
260 	int idx;
261 
262 	prot = vm_get_page_prot(vma->vm_flags);
263 
264 	if (drm_dev_enter(dev, &idx)) {
265 		unsigned long pfn;
266 
267 #define LAST_DB_PAGE_OFFSET 0x7ff001
268 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
269 				LAST_DB_PAGE_OFFSET);
270 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
271 					  pgprot_noncached(prot));
272 		drm_dev_exit(idx);
273 	} else {
274 		struct page *page;
275 
276 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
277 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
278 		if (!page)
279 			return VM_FAULT_OOM;
280 
281 		/* Set the page to be freed using drmm release action */
282 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
283 			return VM_FAULT_OOM;
284 
285 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
286 					  prot);
287 	}
288 
289 	return ret;
290 }
291 
292 static const struct vm_operations_struct vm_ops_barrier = {
293 	.open = barrier_open,
294 	.close = barrier_close,
295 	.fault = barrier_fault,
296 };
297 
298 static int xe_pci_barrier_mmap(struct file *filp,
299 			       struct vm_area_struct *vma)
300 {
301 	struct drm_file *priv = filp->private_data;
302 	struct drm_device *dev = priv->minor->dev;
303 	struct xe_device *xe = to_xe_device(dev);
304 
305 	if (!IS_DGFX(xe))
306 		return -EINVAL;
307 
308 	if (vma->vm_end - vma->vm_start > SZ_4K)
309 		return -EINVAL;
310 
311 	if (is_cow_mapping(vma->vm_flags))
312 		return -EINVAL;
313 
314 	if (vma->vm_flags & (VM_READ | VM_EXEC))
315 		return -EINVAL;
316 
317 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
318 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
319 	vma->vm_ops = &vm_ops_barrier;
320 	vma->vm_private_data = dev;
321 	drm_dev_get(vma->vm_private_data);
322 
323 	return 0;
324 }
325 
326 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
327 {
328 	struct drm_file *priv = filp->private_data;
329 	struct drm_device *dev = priv->minor->dev;
330 
331 	if (drm_dev_is_unplugged(dev))
332 		return -ENODEV;
333 
334 	switch (vma->vm_pgoff) {
335 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
336 		return xe_pci_barrier_mmap(filp, vma);
337 	}
338 
339 	return drm_gem_mmap(filp, vma);
340 }
341 
342 static const struct file_operations xe_driver_fops = {
343 	.owner = THIS_MODULE,
344 	.open = drm_open,
345 	.release = drm_release_noglobal,
346 	.unlocked_ioctl = xe_drm_ioctl,
347 	.mmap = xe_mmap,
348 	.poll = drm_poll,
349 	.read = drm_read,
350 	.compat_ioctl = xe_drm_compat_ioctl,
351 	.llseek = noop_llseek,
352 #ifdef CONFIG_PROC_FS
353 	.show_fdinfo = drm_show_fdinfo,
354 #endif
355 	.fop_flags = FOP_UNSIGNED_OFFSET,
356 };
357 
358 static struct drm_driver driver = {
359 	/* Don't use MTRRs here; the Xserver or userspace app should
360 	 * deal with them for Intel hardware.
361 	 */
362 	.driver_features =
363 	    DRIVER_GEM |
364 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
365 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
366 	.open = xe_file_open,
367 	.postclose = xe_file_close,
368 
369 	.gem_prime_import = xe_gem_prime_import,
370 
371 	.dumb_create = xe_bo_dumb_create,
372 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
373 #ifdef CONFIG_PROC_FS
374 	.show_fdinfo = xe_drm_client_fdinfo,
375 #endif
376 	.ioctls = xe_ioctls,
377 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
378 	.fops = &xe_driver_fops,
379 	.name = DRIVER_NAME,
380 	.desc = DRIVER_DESC,
381 	.major = DRIVER_MAJOR,
382 	.minor = DRIVER_MINOR,
383 	.patchlevel = DRIVER_PATCHLEVEL,
384 };
385 
386 static void xe_device_destroy(struct drm_device *dev, void *dummy)
387 {
388 	struct xe_device *xe = to_xe_device(dev);
389 
390 	if (xe->preempt_fence_wq)
391 		destroy_workqueue(xe->preempt_fence_wq);
392 
393 	if (xe->ordered_wq)
394 		destroy_workqueue(xe->ordered_wq);
395 
396 	if (xe->unordered_wq)
397 		destroy_workqueue(xe->unordered_wq);
398 
399 	if (xe->destroy_wq)
400 		destroy_workqueue(xe->destroy_wq);
401 
402 	ttm_device_fini(&xe->ttm);
403 }
404 
405 struct xe_device *xe_device_create(struct pci_dev *pdev,
406 				   const struct pci_device_id *ent)
407 {
408 	struct xe_device *xe;
409 	int err;
410 
411 	xe_display_driver_set_hooks(&driver);
412 
413 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
414 	if (err)
415 		return ERR_PTR(err);
416 
417 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
418 	if (IS_ERR(xe))
419 		return xe;
420 
421 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
422 			      xe->drm.anon_inode->i_mapping,
423 			      xe->drm.vma_offset_manager, false, false);
424 	if (WARN_ON(err))
425 		goto err;
426 
427 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
428 	if (err)
429 		goto err;
430 
431 	xe->info.devid = pdev->device;
432 	xe->info.revid = pdev->revision;
433 	xe->info.force_execlist = xe_modparam.force_execlist;
434 
435 	err = xe_irq_init(xe);
436 	if (err)
437 		goto err;
438 
439 	init_waitqueue_head(&xe->ufence_wq);
440 
441 	init_rwsem(&xe->usm.lock);
442 
443 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
444 
445 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
446 		/* Trigger a large asid and an early asid wrap. */
447 		u32 asid;
448 
449 		BUILD_BUG_ON(XE_MAX_ASID < 2);
450 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
451 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
452 				      &xe->usm.next_asid, GFP_KERNEL);
453 		drm_WARN_ON(&xe->drm, err);
454 		if (err >= 0)
455 			xa_erase(&xe->usm.asid_to_vm, asid);
456 	}
457 
458 	spin_lock_init(&xe->pinned.lock);
459 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
460 	INIT_LIST_HEAD(&xe->pinned.external_vram);
461 	INIT_LIST_HEAD(&xe->pinned.evicted);
462 
463 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
464 						       WQ_MEM_RECLAIM);
465 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
466 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
467 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
468 	if (!xe->ordered_wq || !xe->unordered_wq ||
469 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
470 		/*
471 		 * Cleanup done in xe_device_destroy via
472 		 * drmm_add_action_or_reset register above
473 		 */
474 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
475 		err = -ENOMEM;
476 		goto err;
477 	}
478 
479 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
480 	if (err)
481 		goto err;
482 
483 	err = xe_display_create(xe);
484 	if (WARN_ON(err))
485 		goto err;
486 
487 	return xe;
488 
489 err:
490 	return ERR_PTR(err);
491 }
492 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
493 
494 static bool xe_driver_flr_disabled(struct xe_device *xe)
495 {
496 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
497 }
498 
499 /*
500  * The driver-initiated FLR is the highest level of reset that we can trigger
501  * from within the driver. It is different from the PCI FLR in that it doesn't
502  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
503  * it doesn't require a re-enumeration of the PCI BARs. However, the
504  * driver-initiated FLR does still cause a reset of both GT and display and a
505  * memory wipe of local and stolen memory, so recovery would require a full HW
506  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
507  * perform the FLR as the very last action before releasing access to the HW
508  * during the driver release flow, we don't attempt recovery at all, because
509  * if/when a new instance of i915 is bound to the device it will do a full
510  * re-init anyway.
511  */
512 static void __xe_driver_flr(struct xe_device *xe)
513 {
514 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
515 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
516 	int ret;
517 
518 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
519 
520 	/*
521 	 * Make sure any pending FLR requests have cleared by waiting for the
522 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
523 	 * to make sure it's not still set from a prior attempt (it's a write to
524 	 * clear bit).
525 	 * Note that we should never be in a situation where a previous attempt
526 	 * is still pending (unless the HW is totally dead), but better to be
527 	 * safe in case something unexpected happens
528 	 */
529 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
530 	if (ret) {
531 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
532 		return;
533 	}
534 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
535 
536 	/* Trigger the actual Driver-FLR */
537 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
538 
539 	/* Wait for hardware teardown to complete */
540 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
541 	if (ret) {
542 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
543 		return;
544 	}
545 
546 	/* Wait for hardware/firmware re-init to complete */
547 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
548 			     flr_timeout, NULL, false);
549 	if (ret) {
550 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
551 		return;
552 	}
553 
554 	/* Clear sticky completion status */
555 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
556 }
557 
558 static void xe_driver_flr(struct xe_device *xe)
559 {
560 	if (xe_driver_flr_disabled(xe)) {
561 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
562 		return;
563 	}
564 
565 	__xe_driver_flr(xe);
566 }
567 
568 static void xe_driver_flr_fini(void *arg)
569 {
570 	struct xe_device *xe = arg;
571 
572 	if (xe->needs_flr_on_fini)
573 		xe_driver_flr(xe);
574 }
575 
576 static void xe_device_sanitize(void *arg)
577 {
578 	struct xe_device *xe = arg;
579 	struct xe_gt *gt;
580 	u8 id;
581 
582 	for_each_gt(gt, xe, id)
583 		xe_gt_sanitize(gt);
584 }
585 
586 static int xe_set_dma_info(struct xe_device *xe)
587 {
588 	unsigned int mask_size = xe->info.dma_mask_size;
589 	int err;
590 
591 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
592 
593 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
594 	if (err)
595 		goto mask_err;
596 
597 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
598 	if (err)
599 		goto mask_err;
600 
601 	return 0;
602 
603 mask_err:
604 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
605 	return err;
606 }
607 
608 static bool verify_lmem_ready(struct xe_device *xe)
609 {
610 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
611 
612 	return !!val;
613 }
614 
615 static int wait_for_lmem_ready(struct xe_device *xe)
616 {
617 	unsigned long timeout, start;
618 
619 	if (!IS_DGFX(xe))
620 		return 0;
621 
622 	if (IS_SRIOV_VF(xe))
623 		return 0;
624 
625 	if (verify_lmem_ready(xe))
626 		return 0;
627 
628 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
629 
630 	start = jiffies;
631 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
632 
633 	do {
634 		if (signal_pending(current))
635 			return -EINTR;
636 
637 		/*
638 		 * The boot firmware initializes local memory and
639 		 * assesses its health. If memory training fails,
640 		 * the punit will have been instructed to keep the GT powered
641 		 * down.we won't be able to communicate with it
642 		 *
643 		 * If the status check is done before punit updates the register,
644 		 * it can lead to the system being unusable.
645 		 * use a timeout and defer the probe to prevent this.
646 		 */
647 		if (time_after(jiffies, timeout)) {
648 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
649 			return -EPROBE_DEFER;
650 		}
651 
652 		msleep(20);
653 
654 	} while (!verify_lmem_ready(xe));
655 
656 	drm_dbg(&xe->drm, "lmem ready after %ums",
657 		jiffies_to_msecs(jiffies - start));
658 
659 	return 0;
660 }
661 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
662 
663 static void sriov_update_device_info(struct xe_device *xe)
664 {
665 	/* disable features that are not available/applicable to VFs */
666 	if (IS_SRIOV_VF(xe)) {
667 		xe->info.probe_display = 0;
668 		xe->info.has_heci_gscfi = 0;
669 		xe->info.skip_guc_pc = 1;
670 		xe->info.skip_pcode = 1;
671 	}
672 }
673 
674 /**
675  * xe_device_probe_early: Device early probe
676  * @xe: xe device instance
677  *
678  * Initialize MMIO resources that don't require any
679  * knowledge about tile count. Also initialize pcode and
680  * check vram initialization on root tile.
681  *
682  * Return: 0 on success, error code on failure
683  */
684 int xe_device_probe_early(struct xe_device *xe)
685 {
686 	int err;
687 
688 	err = xe_mmio_probe_early(xe);
689 	if (err)
690 		return err;
691 
692 	xe_sriov_probe_early(xe);
693 
694 	sriov_update_device_info(xe);
695 
696 	err = xe_pcode_probe_early(xe);
697 	if (err)
698 		return err;
699 
700 	err = wait_for_lmem_ready(xe);
701 	if (err)
702 		return err;
703 
704 	xe->wedged.mode = xe_modparam.wedged_mode;
705 
706 	return 0;
707 }
708 
709 static int probe_has_flat_ccs(struct xe_device *xe)
710 {
711 	struct xe_gt *gt;
712 	unsigned int fw_ref;
713 	u32 reg;
714 
715 	/* Always enabled/disabled, no runtime check to do */
716 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
717 		return 0;
718 
719 	gt = xe_root_mmio_gt(xe);
720 
721 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
722 	if (!fw_ref)
723 		return -ETIMEDOUT;
724 
725 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
726 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
727 
728 	if (!xe->info.has_flat_ccs)
729 		drm_dbg(&xe->drm,
730 			"Flat CCS has been disabled in bios, May lead to performance impact");
731 
732 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
733 
734 	return 0;
735 }
736 
737 int xe_device_probe(struct xe_device *xe)
738 {
739 	struct xe_tile *tile;
740 	struct xe_gt *gt;
741 	int err;
742 	u8 id;
743 
744 	xe_pat_init_early(xe);
745 
746 	err = xe_sriov_init(xe);
747 	if (err)
748 		return err;
749 
750 	xe->info.mem_region_mask = 1;
751 
752 	err = xe_set_dma_info(xe);
753 	if (err)
754 		return err;
755 
756 	err = xe_mmio_probe_tiles(xe);
757 	if (err)
758 		return err;
759 
760 	err = xe_ttm_sys_mgr_init(xe);
761 	if (err)
762 		return err;
763 
764 	for_each_gt(gt, xe, id) {
765 		err = xe_gt_init_early(gt);
766 		if (err)
767 			return err;
768 
769 		/*
770 		 * Only after this point can GT-specific MMIO operations
771 		 * (including things like communication with the GuC)
772 		 * be performed.
773 		 */
774 		xe_gt_mmio_init(gt);
775 	}
776 
777 	for_each_tile(tile, xe, id) {
778 		if (IS_SRIOV_VF(xe)) {
779 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
780 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
781 			if (err)
782 				return err;
783 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
784 			if (err)
785 				return err;
786 		}
787 		err = xe_ggtt_init_early(tile->mem.ggtt);
788 		if (err)
789 			return err;
790 		err = xe_memirq_init(&tile->memirq);
791 		if (err)
792 			return err;
793 	}
794 
795 	for_each_gt(gt, xe, id) {
796 		err = xe_gt_init_hwconfig(gt);
797 		if (err)
798 			return err;
799 	}
800 
801 	err = xe_devcoredump_init(xe);
802 	if (err)
803 		return err;
804 
805 	/*
806 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
807 	 */
808 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
809 	if (err)
810 		return err;
811 
812 	err = probe_has_flat_ccs(xe);
813 	if (err)
814 		return err;
815 
816 	err = xe_vram_probe(xe);
817 	if (err)
818 		return err;
819 
820 	for_each_tile(tile, xe, id) {
821 		err = xe_tile_init_noalloc(tile);
822 		if (err)
823 			return err;
824 	}
825 
826 	/* Allocate and map stolen after potential VRAM resize */
827 	err = xe_ttm_stolen_mgr_init(xe);
828 	if (err)
829 		return err;
830 
831 	/*
832 	 * Now that GT is initialized (TTM in particular),
833 	 * we can try to init display, and inherit the initial fb.
834 	 * This is the reason the first allocation needs to be done
835 	 * inside display.
836 	 */
837 	err = xe_display_init_early(xe);
838 	if (err)
839 		return err;
840 
841 	for_each_tile(tile, xe, id) {
842 		err = xe_tile_init(tile);
843 		if (err)
844 			return err;
845 	}
846 
847 	err = xe_irq_install(xe);
848 	if (err)
849 		return err;
850 
851 	for_each_gt(gt, xe, id) {
852 		err = xe_gt_init(gt);
853 		if (err)
854 			return err;
855 	}
856 
857 	err = xe_heci_gsc_init(xe);
858 	if (err)
859 		return err;
860 
861 	err = xe_oa_init(xe);
862 	if (err)
863 		return err;
864 
865 	err = xe_display_init(xe);
866 	if (err)
867 		return err;
868 
869 	err = xe_pxp_init(xe);
870 	if (err)
871 		return err;
872 
873 	err = drm_dev_register(&xe->drm, 0);
874 	if (err)
875 		return err;
876 
877 	xe_display_register(xe);
878 
879 	err = xe_oa_register(xe);
880 	if (err)
881 		goto err_unregister_display;
882 
883 	err = xe_pmu_register(&xe->pmu);
884 	if (err)
885 		goto err_unregister_display;
886 
887 	xe_debugfs_register(xe);
888 
889 	err = xe_hwmon_register(xe);
890 	if (err)
891 		goto err_unregister_display;
892 
893 	for_each_gt(gt, xe, id)
894 		xe_gt_sanitize_freq(gt);
895 
896 	xe_vsec_init(xe);
897 
898 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
899 
900 err_unregister_display:
901 	xe_display_unregister(xe);
902 
903 	return err;
904 }
905 
906 void xe_device_remove(struct xe_device *xe)
907 {
908 	xe_display_unregister(xe);
909 
910 	drm_dev_unplug(&xe->drm);
911 }
912 
913 void xe_device_shutdown(struct xe_device *xe)
914 {
915 	struct xe_gt *gt;
916 	u8 id;
917 
918 	drm_dbg(&xe->drm, "Shutting down device\n");
919 
920 	if (xe_driver_flr_disabled(xe)) {
921 		xe_display_pm_shutdown(xe);
922 
923 		xe_irq_suspend(xe);
924 
925 		for_each_gt(gt, xe, id)
926 			xe_gt_shutdown(gt);
927 
928 		xe_display_pm_shutdown_late(xe);
929 	} else {
930 		/* BOOM! */
931 		__xe_driver_flr(xe);
932 	}
933 }
934 
935 /**
936  * xe_device_wmb() - Device specific write memory barrier
937  * @xe: the &xe_device
938  *
939  * While wmb() is sufficient for a barrier if we use system memory, on discrete
940  * platforms with device memory we additionally need to issue a register write.
941  * Since it doesn't matter which register we write to, use the read-only VF_CAP
942  * register that is also marked as accessible by the VFs.
943  */
944 void xe_device_wmb(struct xe_device *xe)
945 {
946 	wmb();
947 	if (IS_DGFX(xe))
948 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
949 }
950 
951 /**
952  * xe_device_td_flush() - Flush transient L3 cache entries
953  * @xe: The device
954  *
955  * Display engine has direct access to memory and is never coherent with L3/L4
956  * caches (or CPU caches), however KMD is responsible for specifically flushing
957  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
958  * can happen from such a surface without seeing corruption.
959  *
960  * Display surfaces can be tagged as transient by mapping it using one of the
961  * various L3:XD PAT index modes on Xe2.
962  *
963  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
964  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
965  * Media is not coherent with L3 and we want to support render-vs-media
966  * usescases. For other engines like copy/blt the HW internally forces uncached
967  * behaviour, hence why we can skip the TDF on such platforms.
968  */
969 void xe_device_td_flush(struct xe_device *xe)
970 {
971 	struct xe_gt *gt;
972 	unsigned int fw_ref;
973 	u8 id;
974 
975 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
976 		return;
977 
978 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
979 		xe_device_l2_flush(xe);
980 		return;
981 	}
982 
983 	for_each_gt(gt, xe, id) {
984 		if (xe_gt_is_media_type(gt))
985 			continue;
986 
987 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
988 		if (!fw_ref)
989 			return;
990 
991 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
992 		/*
993 		 * FIXME: We can likely do better here with our choice of
994 		 * timeout. Currently we just assume the worst case, i.e. 150us,
995 		 * which is believed to be sufficient to cover the worst case
996 		 * scenario on current platforms if all cache entries are
997 		 * transient and need to be flushed..
998 		 */
999 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1000 				   150, NULL, false))
1001 			xe_gt_err_once(gt, "TD flush timeout\n");
1002 
1003 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1004 	}
1005 }
1006 
1007 void xe_device_l2_flush(struct xe_device *xe)
1008 {
1009 	struct xe_gt *gt;
1010 	unsigned int fw_ref;
1011 
1012 	gt = xe_root_mmio_gt(xe);
1013 
1014 	if (!XE_WA(gt, 16023588340))
1015 		return;
1016 
1017 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1018 	if (!fw_ref)
1019 		return;
1020 
1021 	spin_lock(&gt->global_invl_lock);
1022 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1023 
1024 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1025 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1026 	spin_unlock(&gt->global_invl_lock);
1027 
1028 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1029 }
1030 
1031 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1032 {
1033 	return xe_device_has_flat_ccs(xe) ?
1034 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1035 }
1036 
1037 /**
1038  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1039  * @xe: xe device instance
1040  *
1041  * To be used before any kind of memory access. It will splat a debug warning
1042  * if the device is currently sleeping. But it doesn't guarantee in any way
1043  * that the device is going to remain awake. Xe PM runtime get and put
1044  * functions might be added to the outer bound of the memory access, while
1045  * this check is intended for inner usage to splat some warning if the worst
1046  * case has just happened.
1047  */
1048 void xe_device_assert_mem_access(struct xe_device *xe)
1049 {
1050 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1051 }
1052 
1053 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1054 {
1055 	struct xe_gt *gt;
1056 	u8 id;
1057 
1058 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1059 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1060 
1061 	for_each_gt(gt, xe, id) {
1062 		drm_printf(p, "GT id: %u\n", id);
1063 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1064 		drm_printf(p, "\tType: %s\n",
1065 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1066 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1067 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1068 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1069 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1070 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1071 	}
1072 }
1073 
1074 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1075 {
1076 	return sign_extend64(address, xe->info.va_bits - 1);
1077 }
1078 
1079 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1080 {
1081 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1082 }
1083 
1084 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1085 {
1086 	struct xe_device *xe = arg;
1087 
1088 	xe_pm_runtime_put(xe);
1089 }
1090 
1091 /**
1092  * xe_device_declare_wedged - Declare device wedged
1093  * @xe: xe device instance
1094  *
1095  * This is a final state that can only be cleared with a module
1096  * re-probe (unbind + bind).
1097  * In this state every IOCTL will be blocked so the GT cannot be used.
1098  * In general it will be called upon any critical error such as gt reset
1099  * failure or guc loading failure. Userspace will be notified of this state
1100  * through device wedged uevent.
1101  * If xe.wedged module parameter is set to 2, this function will be called
1102  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1103  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1104  * the issue is preserved for further debugging.
1105  */
1106 void xe_device_declare_wedged(struct xe_device *xe)
1107 {
1108 	struct xe_gt *gt;
1109 	u8 id;
1110 
1111 	if (xe->wedged.mode == 0) {
1112 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1113 		return;
1114 	}
1115 
1116 	xe_pm_runtime_get_noresume(xe);
1117 
1118 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1119 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1120 		return;
1121 	}
1122 
1123 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1124 		xe->needs_flr_on_fini = true;
1125 		drm_err(&xe->drm,
1126 			"CRITICAL: Xe has declared device %s as wedged.\n"
1127 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1128 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1129 			dev_name(xe->drm.dev));
1130 
1131 		/* Notify userspace of wedged device */
1132 		drm_dev_wedged_event(&xe->drm,
1133 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1134 	}
1135 
1136 	for_each_gt(gt, xe, id)
1137 		xe_gt_declare_wedged(gt);
1138 }
1139