xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 49ac6f05ace5bb0070c68a0193aa05d3c25d4c83)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/delay.h>
9 #include <linux/units.h>
10 
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <drm/xe_drm.h>
19 
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_hwmon.h"
41 #include "xe_irq.h"
42 #include "xe_memirq.h"
43 #include "xe_mmio.h"
44 #include "xe_module.h"
45 #include "xe_observation.h"
46 #include "xe_pat.h"
47 #include "xe_pcode.h"
48 #include "xe_pm.h"
49 #include "xe_query.h"
50 #include "xe_sriov.h"
51 #include "xe_tile.h"
52 #include "xe_ttm_stolen_mgr.h"
53 #include "xe_ttm_sys_mgr.h"
54 #include "xe_vm.h"
55 #include "xe_vram.h"
56 #include "xe_wait_user_fence.h"
57 #include "xe_wa.h"
58 
59 #include <generated/xe_wa_oob.h>
60 
61 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
62 {
63 	struct xe_device *xe = to_xe_device(dev);
64 	struct xe_drm_client *client;
65 	struct xe_file *xef;
66 	int ret = -ENOMEM;
67 
68 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
69 	if (!xef)
70 		return ret;
71 
72 	client = xe_drm_client_alloc();
73 	if (!client) {
74 		kfree(xef);
75 		return ret;
76 	}
77 
78 	xef->drm = file;
79 	xef->client = client;
80 	xef->xe = xe;
81 
82 	mutex_init(&xef->vm.lock);
83 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
84 
85 	mutex_init(&xef->exec_queue.lock);
86 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
87 
88 	spin_lock(&xe->clients.lock);
89 	xe->clients.count++;
90 	spin_unlock(&xe->clients.lock);
91 
92 	file->driver_priv = xef;
93 	kref_init(&xef->refcount);
94 
95 	return 0;
96 }
97 
98 static void xe_file_destroy(struct kref *ref)
99 {
100 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
101 	struct xe_device *xe = xef->xe;
102 
103 	xa_destroy(&xef->exec_queue.xa);
104 	mutex_destroy(&xef->exec_queue.lock);
105 	xa_destroy(&xef->vm.xa);
106 	mutex_destroy(&xef->vm.lock);
107 
108 	spin_lock(&xe->clients.lock);
109 	xe->clients.count--;
110 	spin_unlock(&xe->clients.lock);
111 
112 	xe_drm_client_put(xef->client);
113 	kfree(xef);
114 }
115 
116 /**
117  * xe_file_get() - Take a reference to the xe file object
118  * @xef: Pointer to the xe file
119  *
120  * Anyone with a pointer to xef must take a reference to the xe file
121  * object using this call.
122  *
123  * Return: xe file pointer
124  */
125 struct xe_file *xe_file_get(struct xe_file *xef)
126 {
127 	kref_get(&xef->refcount);
128 	return xef;
129 }
130 
131 /**
132  * xe_file_put() - Drop a reference to the xe file object
133  * @xef: Pointer to the xe file
134  *
135  * Used to drop reference to the xef object
136  */
137 void xe_file_put(struct xe_file *xef)
138 {
139 	kref_put(&xef->refcount, xe_file_destroy);
140 }
141 
142 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
143 {
144 	struct xe_device *xe = to_xe_device(dev);
145 	struct xe_file *xef = file->driver_priv;
146 	struct xe_vm *vm;
147 	struct xe_exec_queue *q;
148 	unsigned long idx;
149 
150 	xe_pm_runtime_get(xe);
151 
152 	/*
153 	 * No need for exec_queue.lock here as there is no contention for it
154 	 * when FD is closing as IOCTLs presumably can't be modifying the
155 	 * xarray. Taking exec_queue.lock here causes undue dependency on
156 	 * vm->lock taken during xe_exec_queue_kill().
157 	 */
158 	xa_for_each(&xef->exec_queue.xa, idx, q) {
159 		xe_exec_queue_kill(q);
160 		xe_exec_queue_put(q);
161 	}
162 	mutex_lock(&xef->vm.lock);
163 	xa_for_each(&xef->vm.xa, idx, vm)
164 		xe_vm_close_and_put(vm);
165 	mutex_unlock(&xef->vm.lock);
166 
167 	xe_file_put(xef);
168 
169 	xe_pm_runtime_put(xe);
170 }
171 
172 static const struct drm_ioctl_desc xe_ioctls[] = {
173 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
174 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
175 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
176 			  DRM_RENDER_ALLOW),
177 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
178 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
182 			  DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
184 			  DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
186 			  DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
190 };
191 
192 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
193 {
194 	struct drm_file *file_priv = file->private_data;
195 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
196 	long ret;
197 
198 	if (xe_device_wedged(xe))
199 		return -ECANCELED;
200 
201 	ret = xe_pm_runtime_get_ioctl(xe);
202 	if (ret >= 0)
203 		ret = drm_ioctl(file, cmd, arg);
204 	xe_pm_runtime_put(xe);
205 
206 	return ret;
207 }
208 
209 #ifdef CONFIG_COMPAT
210 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
211 {
212 	struct drm_file *file_priv = file->private_data;
213 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
214 	long ret;
215 
216 	if (xe_device_wedged(xe))
217 		return -ECANCELED;
218 
219 	ret = xe_pm_runtime_get_ioctl(xe);
220 	if (ret >= 0)
221 		ret = drm_compat_ioctl(file, cmd, arg);
222 	xe_pm_runtime_put(xe);
223 
224 	return ret;
225 }
226 #else
227 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
228 #define xe_drm_compat_ioctl NULL
229 #endif
230 
231 static const struct file_operations xe_driver_fops = {
232 	.owner = THIS_MODULE,
233 	.open = drm_open,
234 	.release = drm_release_noglobal,
235 	.unlocked_ioctl = xe_drm_ioctl,
236 	.mmap = drm_gem_mmap,
237 	.poll = drm_poll,
238 	.read = drm_read,
239 	.compat_ioctl = xe_drm_compat_ioctl,
240 	.llseek = noop_llseek,
241 #ifdef CONFIG_PROC_FS
242 	.show_fdinfo = drm_show_fdinfo,
243 #endif
244 };
245 
246 static struct drm_driver driver = {
247 	/* Don't use MTRRs here; the Xserver or userspace app should
248 	 * deal with them for Intel hardware.
249 	 */
250 	.driver_features =
251 	    DRIVER_GEM |
252 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
253 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
254 	.open = xe_file_open,
255 	.postclose = xe_file_close,
256 
257 	.gem_prime_import = xe_gem_prime_import,
258 
259 	.dumb_create = xe_bo_dumb_create,
260 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
261 #ifdef CONFIG_PROC_FS
262 	.show_fdinfo = xe_drm_client_fdinfo,
263 #endif
264 	.ioctls = xe_ioctls,
265 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
266 	.fops = &xe_driver_fops,
267 	.name = DRIVER_NAME,
268 	.desc = DRIVER_DESC,
269 	.date = DRIVER_DATE,
270 	.major = DRIVER_MAJOR,
271 	.minor = DRIVER_MINOR,
272 	.patchlevel = DRIVER_PATCHLEVEL,
273 };
274 
275 static void xe_device_destroy(struct drm_device *dev, void *dummy)
276 {
277 	struct xe_device *xe = to_xe_device(dev);
278 
279 	if (xe->preempt_fence_wq)
280 		destroy_workqueue(xe->preempt_fence_wq);
281 
282 	if (xe->ordered_wq)
283 		destroy_workqueue(xe->ordered_wq);
284 
285 	if (xe->unordered_wq)
286 		destroy_workqueue(xe->unordered_wq);
287 
288 	ttm_device_fini(&xe->ttm);
289 }
290 
291 struct xe_device *xe_device_create(struct pci_dev *pdev,
292 				   const struct pci_device_id *ent)
293 {
294 	struct xe_device *xe;
295 	int err;
296 
297 	xe_display_driver_set_hooks(&driver);
298 
299 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
300 	if (err)
301 		return ERR_PTR(err);
302 
303 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
304 	if (IS_ERR(xe))
305 		return xe;
306 
307 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
308 			      xe->drm.anon_inode->i_mapping,
309 			      xe->drm.vma_offset_manager, false, false);
310 	if (WARN_ON(err))
311 		goto err;
312 
313 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
314 	if (err)
315 		goto err;
316 
317 	xe->info.devid = pdev->device;
318 	xe->info.revid = pdev->revision;
319 	xe->info.force_execlist = xe_modparam.force_execlist;
320 
321 	spin_lock_init(&xe->irq.lock);
322 	spin_lock_init(&xe->clients.lock);
323 
324 	init_waitqueue_head(&xe->ufence_wq);
325 
326 	err = drmm_mutex_init(&xe->drm, &xe->usm.lock);
327 	if (err)
328 		goto err;
329 
330 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
331 
332 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
333 		/* Trigger a large asid and an early asid wrap. */
334 		u32 asid;
335 
336 		BUILD_BUG_ON(XE_MAX_ASID < 2);
337 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
338 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
339 				      &xe->usm.next_asid, GFP_KERNEL);
340 		drm_WARN_ON(&xe->drm, err);
341 		if (err >= 0)
342 			xa_erase(&xe->usm.asid_to_vm, asid);
343 	}
344 
345 	spin_lock_init(&xe->pinned.lock);
346 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
347 	INIT_LIST_HEAD(&xe->pinned.external_vram);
348 	INIT_LIST_HEAD(&xe->pinned.evicted);
349 
350 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
351 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
352 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
353 	if (!xe->ordered_wq || !xe->unordered_wq ||
354 	    !xe->preempt_fence_wq) {
355 		/*
356 		 * Cleanup done in xe_device_destroy via
357 		 * drmm_add_action_or_reset register above
358 		 */
359 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
360 		err = -ENOMEM;
361 		goto err;
362 	}
363 
364 	err = xe_display_create(xe);
365 	if (WARN_ON(err))
366 		goto err;
367 
368 	return xe;
369 
370 err:
371 	return ERR_PTR(err);
372 }
373 
374 /*
375  * The driver-initiated FLR is the highest level of reset that we can trigger
376  * from within the driver. It is different from the PCI FLR in that it doesn't
377  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
378  * it doesn't require a re-enumeration of the PCI BARs. However, the
379  * driver-initiated FLR does still cause a reset of both GT and display and a
380  * memory wipe of local and stolen memory, so recovery would require a full HW
381  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
382  * perform the FLR as the very last action before releasing access to the HW
383  * during the driver release flow, we don't attempt recovery at all, because
384  * if/when a new instance of i915 is bound to the device it will do a full
385  * re-init anyway.
386  */
387 static void xe_driver_flr(struct xe_device *xe)
388 {
389 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
390 	struct xe_gt *gt = xe_root_mmio_gt(xe);
391 	int ret;
392 
393 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
394 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
395 		return;
396 	}
397 
398 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
399 
400 	/*
401 	 * Make sure any pending FLR requests have cleared by waiting for the
402 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
403 	 * to make sure it's not still set from a prior attempt (it's a write to
404 	 * clear bit).
405 	 * Note that we should never be in a situation where a previous attempt
406 	 * is still pending (unless the HW is totally dead), but better to be
407 	 * safe in case something unexpected happens
408 	 */
409 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
410 	if (ret) {
411 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
412 		return;
413 	}
414 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
415 
416 	/* Trigger the actual Driver-FLR */
417 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
418 
419 	/* Wait for hardware teardown to complete */
420 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
421 	if (ret) {
422 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
423 		return;
424 	}
425 
426 	/* Wait for hardware/firmware re-init to complete */
427 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
428 			     flr_timeout, NULL, false);
429 	if (ret) {
430 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
431 		return;
432 	}
433 
434 	/* Clear sticky completion status */
435 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
436 }
437 
438 static void xe_driver_flr_fini(void *arg)
439 {
440 	struct xe_device *xe = arg;
441 
442 	if (xe->needs_flr_on_fini)
443 		xe_driver_flr(xe);
444 }
445 
446 static void xe_device_sanitize(void *arg)
447 {
448 	struct xe_device *xe = arg;
449 	struct xe_gt *gt;
450 	u8 id;
451 
452 	for_each_gt(gt, xe, id)
453 		xe_gt_sanitize(gt);
454 }
455 
456 static int xe_set_dma_info(struct xe_device *xe)
457 {
458 	unsigned int mask_size = xe->info.dma_mask_size;
459 	int err;
460 
461 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
462 
463 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
464 	if (err)
465 		goto mask_err;
466 
467 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
468 	if (err)
469 		goto mask_err;
470 
471 	return 0;
472 
473 mask_err:
474 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
475 	return err;
476 }
477 
478 static bool verify_lmem_ready(struct xe_gt *gt)
479 {
480 	u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
481 
482 	return !!val;
483 }
484 
485 static int wait_for_lmem_ready(struct xe_device *xe)
486 {
487 	struct xe_gt *gt = xe_root_mmio_gt(xe);
488 	unsigned long timeout, start;
489 
490 	if (!IS_DGFX(xe))
491 		return 0;
492 
493 	if (IS_SRIOV_VF(xe))
494 		return 0;
495 
496 	if (verify_lmem_ready(gt))
497 		return 0;
498 
499 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
500 
501 	start = jiffies;
502 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
503 
504 	do {
505 		if (signal_pending(current))
506 			return -EINTR;
507 
508 		/*
509 		 * The boot firmware initializes local memory and
510 		 * assesses its health. If memory training fails,
511 		 * the punit will have been instructed to keep the GT powered
512 		 * down.we won't be able to communicate with it
513 		 *
514 		 * If the status check is done before punit updates the register,
515 		 * it can lead to the system being unusable.
516 		 * use a timeout and defer the probe to prevent this.
517 		 */
518 		if (time_after(jiffies, timeout)) {
519 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
520 			return -EPROBE_DEFER;
521 		}
522 
523 		msleep(20);
524 
525 	} while (!verify_lmem_ready(gt));
526 
527 	drm_dbg(&xe->drm, "lmem ready after %ums",
528 		jiffies_to_msecs(jiffies - start));
529 
530 	return 0;
531 }
532 
533 static void update_device_info(struct xe_device *xe)
534 {
535 	/* disable features that are not available/applicable to VFs */
536 	if (IS_SRIOV_VF(xe)) {
537 		xe->info.enable_display = 0;
538 		xe->info.has_heci_gscfi = 0;
539 		xe->info.skip_guc_pc = 1;
540 		xe->info.skip_pcode = 1;
541 	}
542 }
543 
544 /**
545  * xe_device_probe_early: Device early probe
546  * @xe: xe device instance
547  *
548  * Initialize MMIO resources that don't require any
549  * knowledge about tile count. Also initialize pcode and
550  * check vram initialization on root tile.
551  *
552  * Return: 0 on success, error code on failure
553  */
554 int xe_device_probe_early(struct xe_device *xe)
555 {
556 	int err;
557 
558 	err = xe_mmio_init(xe);
559 	if (err)
560 		return err;
561 
562 	xe_sriov_probe_early(xe);
563 
564 	update_device_info(xe);
565 
566 	err = xe_pcode_probe_early(xe);
567 	if (err)
568 		return err;
569 
570 	err = wait_for_lmem_ready(xe);
571 	if (err)
572 		return err;
573 
574 	xe->wedged.mode = xe_modparam.wedged_mode;
575 
576 	return 0;
577 }
578 
579 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
580 {
581 	u32 reg;
582 	int err;
583 
584 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
585 		return 0;
586 
587 	struct xe_gt *gt = xe_root_mmio_gt(xe);
588 
589 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
590 	if (err)
591 		return err;
592 
593 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
594 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
595 
596 	if (!xe->info.has_flat_ccs)
597 		drm_dbg(&xe->drm,
598 			"Flat CCS has been disabled in bios, May lead to performance impact");
599 
600 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
601 }
602 
603 int xe_device_probe(struct xe_device *xe)
604 {
605 	struct xe_tile *tile;
606 	struct xe_gt *gt;
607 	int err;
608 	u8 last_gt;
609 	u8 id;
610 
611 	xe_pat_init_early(xe);
612 
613 	err = xe_sriov_init(xe);
614 	if (err)
615 		return err;
616 
617 	xe->info.mem_region_mask = 1;
618 	err = xe_display_init_nommio(xe);
619 	if (err)
620 		return err;
621 
622 	err = xe_set_dma_info(xe);
623 	if (err)
624 		return err;
625 
626 	err = xe_mmio_probe_tiles(xe);
627 	if (err)
628 		return err;
629 
630 	xe_ttm_sys_mgr_init(xe);
631 
632 	for_each_gt(gt, xe, id) {
633 		err = xe_gt_init_early(gt);
634 		if (err)
635 			return err;
636 	}
637 
638 	for_each_tile(tile, xe, id) {
639 		if (IS_SRIOV_VF(xe)) {
640 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
641 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
642 			if (err)
643 				return err;
644 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
645 			if (err)
646 				return err;
647 		}
648 		err = xe_ggtt_init_early(tile->mem.ggtt);
649 		if (err)
650 			return err;
651 		if (IS_SRIOV_VF(xe)) {
652 			err = xe_memirq_init(&tile->sriov.vf.memirq);
653 			if (err)
654 				return err;
655 		}
656 	}
657 
658 	for_each_gt(gt, xe, id) {
659 		err = xe_gt_init_hwconfig(gt);
660 		if (err)
661 			return err;
662 	}
663 
664 	err = xe_devcoredump_init(xe);
665 	if (err)
666 		return err;
667 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
668 	if (err)
669 		return err;
670 
671 	err = xe_display_init_noirq(xe);
672 	if (err)
673 		return err;
674 
675 	err = xe_irq_install(xe);
676 	if (err)
677 		goto err;
678 
679 	err = xe_device_set_has_flat_ccs(xe);
680 	if (err)
681 		goto err;
682 
683 	err = xe_vram_probe(xe);
684 	if (err)
685 		goto err;
686 
687 	for_each_tile(tile, xe, id) {
688 		err = xe_tile_init_noalloc(tile);
689 		if (err)
690 			goto err;
691 	}
692 
693 	/* Allocate and map stolen after potential VRAM resize */
694 	xe_ttm_stolen_mgr_init(xe);
695 
696 	/*
697 	 * Now that GT is initialized (TTM in particular),
698 	 * we can try to init display, and inherit the initial fb.
699 	 * This is the reason the first allocation needs to be done
700 	 * inside display.
701 	 */
702 	err = xe_display_init_noaccel(xe);
703 	if (err)
704 		goto err;
705 
706 	for_each_gt(gt, xe, id) {
707 		last_gt = id;
708 
709 		err = xe_gt_init(gt);
710 		if (err)
711 			goto err_fini_gt;
712 	}
713 
714 	xe_heci_gsc_init(xe);
715 
716 	err = xe_oa_init(xe);
717 	if (err)
718 		goto err_fini_gt;
719 
720 	err = xe_display_init(xe);
721 	if (err)
722 		goto err_fini_oa;
723 
724 	err = drm_dev_register(&xe->drm, 0);
725 	if (err)
726 		goto err_fini_display;
727 
728 	xe_display_register(xe);
729 
730 	xe_oa_register(xe);
731 
732 	xe_debugfs_register(xe);
733 
734 	xe_hwmon_register(xe);
735 
736 	for_each_gt(gt, xe, id)
737 		xe_gt_sanitize_freq(gt);
738 
739 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
740 
741 err_fini_display:
742 	xe_display_driver_remove(xe);
743 
744 err_fini_oa:
745 	xe_oa_fini(xe);
746 
747 err_fini_gt:
748 	for_each_gt(gt, xe, id) {
749 		if (id < last_gt)
750 			xe_gt_remove(gt);
751 		else
752 			break;
753 	}
754 
755 err:
756 	xe_display_fini(xe);
757 	return err;
758 }
759 
760 static void xe_device_remove_display(struct xe_device *xe)
761 {
762 	xe_display_unregister(xe);
763 
764 	drm_dev_unplug(&xe->drm);
765 	xe_display_driver_remove(xe);
766 }
767 
768 void xe_device_remove(struct xe_device *xe)
769 {
770 	struct xe_gt *gt;
771 	u8 id;
772 
773 	xe_oa_unregister(xe);
774 
775 	xe_device_remove_display(xe);
776 
777 	xe_display_fini(xe);
778 
779 	xe_oa_fini(xe);
780 
781 	xe_heci_gsc_fini(xe);
782 
783 	for_each_gt(gt, xe, id)
784 		xe_gt_remove(gt);
785 }
786 
787 void xe_device_shutdown(struct xe_device *xe)
788 {
789 }
790 
791 void xe_device_wmb(struct xe_device *xe)
792 {
793 	struct xe_gt *gt = xe_root_mmio_gt(xe);
794 
795 	wmb();
796 	if (IS_DGFX(xe))
797 		xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0);
798 }
799 
800 /**
801  * xe_device_td_flush() - Flush transient L3 cache entries
802  * @xe: The device
803  *
804  * Display engine has direct access to memory and is never coherent with L3/L4
805  * caches (or CPU caches), however KMD is responsible for specifically flushing
806  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
807  * can happen from such a surface without seeing corruption.
808  *
809  * Display surfaces can be tagged as transient by mapping it using one of the
810  * various L3:XD PAT index modes on Xe2.
811  *
812  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
813  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
814  * Media is not coherent with L3 and we want to support render-vs-media
815  * usescases. For other engines like copy/blt the HW internally forces uncached
816  * behaviour, hence why we can skip the TDF on such platforms.
817  */
818 void xe_device_td_flush(struct xe_device *xe)
819 {
820 	struct xe_gt *gt;
821 	u8 id;
822 
823 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
824 		return;
825 
826 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
827 		xe_device_l2_flush(xe);
828 		return;
829 	}
830 
831 	for_each_gt(gt, xe, id) {
832 		if (xe_gt_is_media_type(gt))
833 			continue;
834 
835 		if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
836 			return;
837 
838 		xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
839 		/*
840 		 * FIXME: We can likely do better here with our choice of
841 		 * timeout. Currently we just assume the worst case, i.e. 150us,
842 		 * which is believed to be sufficient to cover the worst case
843 		 * scenario on current platforms if all cache entries are
844 		 * transient and need to be flushed..
845 		 */
846 		if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
847 				   150, NULL, false))
848 			xe_gt_err_once(gt, "TD flush timeout\n");
849 
850 		xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
851 	}
852 }
853 
854 void xe_device_l2_flush(struct xe_device *xe)
855 {
856 	struct xe_gt *gt;
857 	int err;
858 
859 	gt = xe_root_mmio_gt(xe);
860 
861 	if (!XE_WA(gt, 16023588340))
862 		return;
863 
864 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
865 	if (err)
866 		return;
867 
868 	spin_lock(&gt->global_invl_lock);
869 	xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
870 
871 	if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true))
872 		xe_gt_err_once(gt, "Global invalidation timeout\n");
873 	spin_unlock(&gt->global_invl_lock);
874 
875 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
876 }
877 
878 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
879 {
880 	return xe_device_has_flat_ccs(xe) ?
881 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
882 }
883 
884 /**
885  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
886  * @xe: xe device instance
887  *
888  * To be used before any kind of memory access. It will splat a debug warning
889  * if the device is currently sleeping. But it doesn't guarantee in any way
890  * that the device is going to remain awake. Xe PM runtime get and put
891  * functions might be added to the outer bound of the memory access, while
892  * this check is intended for inner usage to splat some warning if the worst
893  * case has just happened.
894  */
895 void xe_device_assert_mem_access(struct xe_device *xe)
896 {
897 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
898 }
899 
900 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
901 {
902 	struct xe_gt *gt;
903 	u8 id;
904 
905 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
906 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
907 
908 	for_each_gt(gt, xe, id) {
909 		drm_printf(p, "GT id: %u\n", id);
910 		drm_printf(p, "\tType: %s\n",
911 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
912 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
913 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
914 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
915 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
916 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
917 	}
918 }
919 
920 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
921 {
922 	return sign_extend64(address, xe->info.va_bits - 1);
923 }
924 
925 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
926 {
927 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
928 }
929 
930 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
931 {
932 	struct xe_device *xe = arg;
933 
934 	xe_pm_runtime_put(xe);
935 }
936 
937 /**
938  * xe_device_declare_wedged - Declare device wedged
939  * @xe: xe device instance
940  *
941  * This is a final state that can only be cleared with a mudule
942  * re-probe (unbind + bind).
943  * In this state every IOCTL will be blocked so the GT cannot be used.
944  * In general it will be called upon any critical error such as gt reset
945  * failure or guc loading failure.
946  * If xe.wedged module parameter is set to 2, this function will be called
947  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
948  * snapshot capture. In this mode, GT reset won't be attempted so the state of
949  * the issue is preserved for further debugging.
950  */
951 void xe_device_declare_wedged(struct xe_device *xe)
952 {
953 	struct xe_gt *gt;
954 	u8 id;
955 
956 	if (xe->wedged.mode == 0) {
957 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
958 		return;
959 	}
960 
961 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
962 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
963 		return;
964 	}
965 
966 	xe_pm_runtime_get_noresume(xe);
967 
968 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
969 		xe->needs_flr_on_fini = true;
970 		drm_err(&xe->drm,
971 			"CRITICAL: Xe has declared device %s as wedged.\n"
972 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
973 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
974 			dev_name(xe->drm.dev));
975 	}
976 
977 	for_each_gt(gt, xe, id)
978 		xe_gt_declare_wedged(gt);
979 }
980