1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/delay.h> 9 #include <linux/units.h> 10 11 #include <drm/drm_aperture.h> 12 #include <drm/drm_atomic_helper.h> 13 #include <drm/drm_client.h> 14 #include <drm/drm_gem_ttm_helper.h> 15 #include <drm/drm_ioctl.h> 16 #include <drm/drm_managed.h> 17 #include <drm/drm_print.h> 18 #include <drm/xe_drm.h> 19 20 #include "display/xe_display.h" 21 #include "instructions/xe_gpu_commands.h" 22 #include "regs/xe_gt_regs.h" 23 #include "regs/xe_regs.h" 24 #include "xe_bo.h" 25 #include "xe_debugfs.h" 26 #include "xe_devcoredump.h" 27 #include "xe_dma_buf.h" 28 #include "xe_drm_client.h" 29 #include "xe_drv.h" 30 #include "xe_exec.h" 31 #include "xe_exec_queue.h" 32 #include "xe_force_wake.h" 33 #include "xe_ggtt.h" 34 #include "xe_gsc_proxy.h" 35 #include "xe_gt.h" 36 #include "xe_gt_mcr.h" 37 #include "xe_gt_printk.h" 38 #include "xe_gt_sriov_vf.h" 39 #include "xe_guc.h" 40 #include "xe_hw_engine_group.h" 41 #include "xe_hwmon.h" 42 #include "xe_irq.h" 43 #include "xe_memirq.h" 44 #include "xe_mmio.h" 45 #include "xe_module.h" 46 #include "xe_observation.h" 47 #include "xe_pat.h" 48 #include "xe_pcode.h" 49 #include "xe_pm.h" 50 #include "xe_query.h" 51 #include "xe_sriov.h" 52 #include "xe_tile.h" 53 #include "xe_ttm_stolen_mgr.h" 54 #include "xe_ttm_sys_mgr.h" 55 #include "xe_vm.h" 56 #include "xe_vram.h" 57 #include "xe_wait_user_fence.h" 58 #include "xe_wa.h" 59 60 #include <generated/xe_wa_oob.h> 61 62 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 63 { 64 struct xe_device *xe = to_xe_device(dev); 65 struct xe_drm_client *client; 66 struct xe_file *xef; 67 int ret = -ENOMEM; 68 struct task_struct *task = NULL; 69 70 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 71 if (!xef) 72 return ret; 73 74 client = xe_drm_client_alloc(); 75 if (!client) { 76 kfree(xef); 77 return ret; 78 } 79 80 xef->drm = file; 81 xef->client = client; 82 xef->xe = xe; 83 84 mutex_init(&xef->vm.lock); 85 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 86 87 mutex_init(&xef->exec_queue.lock); 88 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 89 90 spin_lock(&xe->clients.lock); 91 xe->clients.count++; 92 spin_unlock(&xe->clients.lock); 93 94 file->driver_priv = xef; 95 kref_init(&xef->refcount); 96 97 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 98 if (task) { 99 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 100 xef->pid = task->pid; 101 put_task_struct(task); 102 } 103 104 return 0; 105 } 106 107 static void xe_file_destroy(struct kref *ref) 108 { 109 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 110 struct xe_device *xe = xef->xe; 111 112 xa_destroy(&xef->exec_queue.xa); 113 mutex_destroy(&xef->exec_queue.lock); 114 xa_destroy(&xef->vm.xa); 115 mutex_destroy(&xef->vm.lock); 116 117 spin_lock(&xe->clients.lock); 118 xe->clients.count--; 119 spin_unlock(&xe->clients.lock); 120 121 xe_drm_client_put(xef->client); 122 kfree(xef->process_name); 123 kfree(xef); 124 } 125 126 /** 127 * xe_file_get() - Take a reference to the xe file object 128 * @xef: Pointer to the xe file 129 * 130 * Anyone with a pointer to xef must take a reference to the xe file 131 * object using this call. 132 * 133 * Return: xe file pointer 134 */ 135 struct xe_file *xe_file_get(struct xe_file *xef) 136 { 137 kref_get(&xef->refcount); 138 return xef; 139 } 140 141 /** 142 * xe_file_put() - Drop a reference to the xe file object 143 * @xef: Pointer to the xe file 144 * 145 * Used to drop reference to the xef object 146 */ 147 void xe_file_put(struct xe_file *xef) 148 { 149 kref_put(&xef->refcount, xe_file_destroy); 150 } 151 152 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 153 { 154 struct xe_device *xe = to_xe_device(dev); 155 struct xe_file *xef = file->driver_priv; 156 struct xe_vm *vm; 157 struct xe_exec_queue *q; 158 unsigned long idx; 159 160 xe_pm_runtime_get(xe); 161 162 /* 163 * No need for exec_queue.lock here as there is no contention for it 164 * when FD is closing as IOCTLs presumably can't be modifying the 165 * xarray. Taking exec_queue.lock here causes undue dependency on 166 * vm->lock taken during xe_exec_queue_kill(). 167 */ 168 xa_for_each(&xef->exec_queue.xa, idx, q) { 169 if (q->vm && q->hwe->hw_engine_group) 170 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 171 xe_exec_queue_kill(q); 172 xe_exec_queue_put(q); 173 } 174 mutex_lock(&xef->vm.lock); 175 xa_for_each(&xef->vm.xa, idx, vm) 176 xe_vm_close_and_put(vm); 177 mutex_unlock(&xef->vm.lock); 178 179 xe_file_put(xef); 180 181 xe_pm_runtime_put(xe); 182 } 183 184 static const struct drm_ioctl_desc xe_ioctls[] = { 185 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 188 DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 198 DRM_RENDER_ALLOW), 199 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 200 DRM_RENDER_ALLOW), 201 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 202 }; 203 204 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 205 { 206 struct drm_file *file_priv = file->private_data; 207 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 208 long ret; 209 210 if (xe_device_wedged(xe)) 211 return -ECANCELED; 212 213 ret = xe_pm_runtime_get_ioctl(xe); 214 if (ret >= 0) 215 ret = drm_ioctl(file, cmd, arg); 216 xe_pm_runtime_put(xe); 217 218 return ret; 219 } 220 221 #ifdef CONFIG_COMPAT 222 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 223 { 224 struct drm_file *file_priv = file->private_data; 225 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 226 long ret; 227 228 if (xe_device_wedged(xe)) 229 return -ECANCELED; 230 231 ret = xe_pm_runtime_get_ioctl(xe); 232 if (ret >= 0) 233 ret = drm_compat_ioctl(file, cmd, arg); 234 xe_pm_runtime_put(xe); 235 236 return ret; 237 } 238 #else 239 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 240 #define xe_drm_compat_ioctl NULL 241 #endif 242 243 static const struct file_operations xe_driver_fops = { 244 .owner = THIS_MODULE, 245 .open = drm_open, 246 .release = drm_release_noglobal, 247 .unlocked_ioctl = xe_drm_ioctl, 248 .mmap = drm_gem_mmap, 249 .poll = drm_poll, 250 .read = drm_read, 251 .compat_ioctl = xe_drm_compat_ioctl, 252 .llseek = noop_llseek, 253 #ifdef CONFIG_PROC_FS 254 .show_fdinfo = drm_show_fdinfo, 255 #endif 256 }; 257 258 static struct drm_driver driver = { 259 /* Don't use MTRRs here; the Xserver or userspace app should 260 * deal with them for Intel hardware. 261 */ 262 .driver_features = 263 DRIVER_GEM | 264 DRIVER_RENDER | DRIVER_SYNCOBJ | 265 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 266 .open = xe_file_open, 267 .postclose = xe_file_close, 268 269 .gem_prime_import = xe_gem_prime_import, 270 271 .dumb_create = xe_bo_dumb_create, 272 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 273 #ifdef CONFIG_PROC_FS 274 .show_fdinfo = xe_drm_client_fdinfo, 275 #endif 276 .ioctls = xe_ioctls, 277 .num_ioctls = ARRAY_SIZE(xe_ioctls), 278 .fops = &xe_driver_fops, 279 .name = DRIVER_NAME, 280 .desc = DRIVER_DESC, 281 .date = DRIVER_DATE, 282 .major = DRIVER_MAJOR, 283 .minor = DRIVER_MINOR, 284 .patchlevel = DRIVER_PATCHLEVEL, 285 }; 286 287 static void xe_device_destroy(struct drm_device *dev, void *dummy) 288 { 289 struct xe_device *xe = to_xe_device(dev); 290 291 if (xe->preempt_fence_wq) 292 destroy_workqueue(xe->preempt_fence_wq); 293 294 if (xe->ordered_wq) 295 destroy_workqueue(xe->ordered_wq); 296 297 if (xe->unordered_wq) 298 destroy_workqueue(xe->unordered_wq); 299 300 ttm_device_fini(&xe->ttm); 301 } 302 303 struct xe_device *xe_device_create(struct pci_dev *pdev, 304 const struct pci_device_id *ent) 305 { 306 struct xe_device *xe; 307 int err; 308 309 xe_display_driver_set_hooks(&driver); 310 311 err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); 312 if (err) 313 return ERR_PTR(err); 314 315 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 316 if (IS_ERR(xe)) 317 return xe; 318 319 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 320 xe->drm.anon_inode->i_mapping, 321 xe->drm.vma_offset_manager, false, false); 322 if (WARN_ON(err)) 323 goto err; 324 325 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 326 if (err) 327 goto err; 328 329 xe->info.devid = pdev->device; 330 xe->info.revid = pdev->revision; 331 xe->info.force_execlist = xe_modparam.force_execlist; 332 333 spin_lock_init(&xe->irq.lock); 334 spin_lock_init(&xe->clients.lock); 335 336 init_waitqueue_head(&xe->ufence_wq); 337 338 err = drmm_mutex_init(&xe->drm, &xe->usm.lock); 339 if (err) 340 goto err; 341 342 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 343 344 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 345 /* Trigger a large asid and an early asid wrap. */ 346 u32 asid; 347 348 BUILD_BUG_ON(XE_MAX_ASID < 2); 349 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 350 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 351 &xe->usm.next_asid, GFP_KERNEL); 352 drm_WARN_ON(&xe->drm, err); 353 if (err >= 0) 354 xa_erase(&xe->usm.asid_to_vm, asid); 355 } 356 357 spin_lock_init(&xe->pinned.lock); 358 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 359 INIT_LIST_HEAD(&xe->pinned.external_vram); 360 INIT_LIST_HEAD(&xe->pinned.evicted); 361 362 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); 363 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 364 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 365 if (!xe->ordered_wq || !xe->unordered_wq || 366 !xe->preempt_fence_wq) { 367 /* 368 * Cleanup done in xe_device_destroy via 369 * drmm_add_action_or_reset register above 370 */ 371 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 372 err = -ENOMEM; 373 goto err; 374 } 375 376 err = xe_display_create(xe); 377 if (WARN_ON(err)) 378 goto err; 379 380 return xe; 381 382 err: 383 return ERR_PTR(err); 384 } 385 386 /* 387 * The driver-initiated FLR is the highest level of reset that we can trigger 388 * from within the driver. It is different from the PCI FLR in that it doesn't 389 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 390 * it doesn't require a re-enumeration of the PCI BARs. However, the 391 * driver-initiated FLR does still cause a reset of both GT and display and a 392 * memory wipe of local and stolen memory, so recovery would require a full HW 393 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 394 * perform the FLR as the very last action before releasing access to the HW 395 * during the driver release flow, we don't attempt recovery at all, because 396 * if/when a new instance of i915 is bound to the device it will do a full 397 * re-init anyway. 398 */ 399 static void xe_driver_flr(struct xe_device *xe) 400 { 401 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 402 struct xe_gt *gt = xe_root_mmio_gt(xe); 403 int ret; 404 405 if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 406 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 407 return; 408 } 409 410 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 411 412 /* 413 * Make sure any pending FLR requests have cleared by waiting for the 414 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 415 * to make sure it's not still set from a prior attempt (it's a write to 416 * clear bit). 417 * Note that we should never be in a situation where a previous attempt 418 * is still pending (unless the HW is totally dead), but better to be 419 * safe in case something unexpected happens 420 */ 421 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 422 if (ret) { 423 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 424 return; 425 } 426 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); 427 428 /* Trigger the actual Driver-FLR */ 429 xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); 430 431 /* Wait for hardware teardown to complete */ 432 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 433 if (ret) { 434 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 435 return; 436 } 437 438 /* Wait for hardware/firmware re-init to complete */ 439 ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 440 flr_timeout, NULL, false); 441 if (ret) { 442 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 443 return; 444 } 445 446 /* Clear sticky completion status */ 447 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); 448 } 449 450 static void xe_driver_flr_fini(void *arg) 451 { 452 struct xe_device *xe = arg; 453 454 if (xe->needs_flr_on_fini) 455 xe_driver_flr(xe); 456 } 457 458 static void xe_device_sanitize(void *arg) 459 { 460 struct xe_device *xe = arg; 461 struct xe_gt *gt; 462 u8 id; 463 464 for_each_gt(gt, xe, id) 465 xe_gt_sanitize(gt); 466 } 467 468 static int xe_set_dma_info(struct xe_device *xe) 469 { 470 unsigned int mask_size = xe->info.dma_mask_size; 471 int err; 472 473 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 474 475 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 476 if (err) 477 goto mask_err; 478 479 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 480 if (err) 481 goto mask_err; 482 483 return 0; 484 485 mask_err: 486 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 487 return err; 488 } 489 490 static bool verify_lmem_ready(struct xe_gt *gt) 491 { 492 u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT; 493 494 return !!val; 495 } 496 497 static int wait_for_lmem_ready(struct xe_device *xe) 498 { 499 struct xe_gt *gt = xe_root_mmio_gt(xe); 500 unsigned long timeout, start; 501 502 if (!IS_DGFX(xe)) 503 return 0; 504 505 if (IS_SRIOV_VF(xe)) 506 return 0; 507 508 if (verify_lmem_ready(gt)) 509 return 0; 510 511 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 512 513 start = jiffies; 514 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 515 516 do { 517 if (signal_pending(current)) 518 return -EINTR; 519 520 /* 521 * The boot firmware initializes local memory and 522 * assesses its health. If memory training fails, 523 * the punit will have been instructed to keep the GT powered 524 * down.we won't be able to communicate with it 525 * 526 * If the status check is done before punit updates the register, 527 * it can lead to the system being unusable. 528 * use a timeout and defer the probe to prevent this. 529 */ 530 if (time_after(jiffies, timeout)) { 531 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 532 return -EPROBE_DEFER; 533 } 534 535 msleep(20); 536 537 } while (!verify_lmem_ready(gt)); 538 539 drm_dbg(&xe->drm, "lmem ready after %ums", 540 jiffies_to_msecs(jiffies - start)); 541 542 return 0; 543 } 544 545 static void update_device_info(struct xe_device *xe) 546 { 547 /* disable features that are not available/applicable to VFs */ 548 if (IS_SRIOV_VF(xe)) { 549 xe->info.probe_display = 0; 550 xe->info.has_heci_gscfi = 0; 551 xe->info.skip_guc_pc = 1; 552 xe->info.skip_pcode = 1; 553 } 554 } 555 556 /** 557 * xe_device_probe_early: Device early probe 558 * @xe: xe device instance 559 * 560 * Initialize MMIO resources that don't require any 561 * knowledge about tile count. Also initialize pcode and 562 * check vram initialization on root tile. 563 * 564 * Return: 0 on success, error code on failure 565 */ 566 int xe_device_probe_early(struct xe_device *xe) 567 { 568 int err; 569 570 err = xe_mmio_init(xe); 571 if (err) 572 return err; 573 574 xe_sriov_probe_early(xe); 575 576 update_device_info(xe); 577 578 err = xe_pcode_probe_early(xe); 579 if (err) 580 return err; 581 582 err = wait_for_lmem_ready(xe); 583 if (err) 584 return err; 585 586 xe->wedged.mode = xe_modparam.wedged_mode; 587 588 return 0; 589 } 590 591 static int xe_device_set_has_flat_ccs(struct xe_device *xe) 592 { 593 u32 reg; 594 int err; 595 596 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) 597 return 0; 598 599 struct xe_gt *gt = xe_root_mmio_gt(xe); 600 601 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 602 if (err) 603 return err; 604 605 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 606 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 607 608 if (!xe->info.has_flat_ccs) 609 drm_dbg(&xe->drm, 610 "Flat CCS has been disabled in bios, May lead to performance impact"); 611 612 return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 613 } 614 615 int xe_device_probe(struct xe_device *xe) 616 { 617 struct xe_tile *tile; 618 struct xe_gt *gt; 619 int err; 620 u8 last_gt; 621 u8 id; 622 623 xe_pat_init_early(xe); 624 625 err = xe_sriov_init(xe); 626 if (err) 627 return err; 628 629 xe->info.mem_region_mask = 1; 630 err = xe_display_init_nommio(xe); 631 if (err) 632 return err; 633 634 err = xe_set_dma_info(xe); 635 if (err) 636 return err; 637 638 err = xe_mmio_probe_tiles(xe); 639 if (err) 640 return err; 641 642 xe_ttm_sys_mgr_init(xe); 643 644 for_each_gt(gt, xe, id) { 645 err = xe_gt_init_early(gt); 646 if (err) 647 return err; 648 } 649 650 for_each_tile(tile, xe, id) { 651 if (IS_SRIOV_VF(xe)) { 652 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 653 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 654 if (err) 655 return err; 656 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 657 if (err) 658 return err; 659 } 660 err = xe_ggtt_init_early(tile->mem.ggtt); 661 if (err) 662 return err; 663 if (IS_SRIOV_VF(xe)) { 664 err = xe_memirq_init(&tile->sriov.vf.memirq); 665 if (err) 666 return err; 667 } 668 } 669 670 for_each_gt(gt, xe, id) { 671 err = xe_gt_init_hwconfig(gt); 672 if (err) 673 return err; 674 } 675 676 err = xe_devcoredump_init(xe); 677 if (err) 678 return err; 679 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 680 if (err) 681 return err; 682 683 err = xe_display_init_noirq(xe); 684 if (err) 685 return err; 686 687 err = xe_irq_install(xe); 688 if (err) 689 goto err; 690 691 err = xe_device_set_has_flat_ccs(xe); 692 if (err) 693 goto err; 694 695 err = xe_vram_probe(xe); 696 if (err) 697 goto err; 698 699 for_each_tile(tile, xe, id) { 700 err = xe_tile_init_noalloc(tile); 701 if (err) 702 goto err; 703 } 704 705 /* Allocate and map stolen after potential VRAM resize */ 706 xe_ttm_stolen_mgr_init(xe); 707 708 /* 709 * Now that GT is initialized (TTM in particular), 710 * we can try to init display, and inherit the initial fb. 711 * This is the reason the first allocation needs to be done 712 * inside display. 713 */ 714 err = xe_display_init_noaccel(xe); 715 if (err) 716 goto err; 717 718 for_each_gt(gt, xe, id) { 719 last_gt = id; 720 721 err = xe_gt_init(gt); 722 if (err) 723 goto err_fini_gt; 724 } 725 726 xe_heci_gsc_init(xe); 727 728 err = xe_oa_init(xe); 729 if (err) 730 goto err_fini_gt; 731 732 err = xe_display_init(xe); 733 if (err) 734 goto err_fini_oa; 735 736 err = drm_dev_register(&xe->drm, 0); 737 if (err) 738 goto err_fini_display; 739 740 xe_display_register(xe); 741 742 xe_oa_register(xe); 743 744 xe_debugfs_register(xe); 745 746 xe_hwmon_register(xe); 747 748 for_each_gt(gt, xe, id) 749 xe_gt_sanitize_freq(gt); 750 751 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 752 753 err_fini_display: 754 xe_display_driver_remove(xe); 755 756 err_fini_oa: 757 xe_oa_fini(xe); 758 759 err_fini_gt: 760 for_each_gt(gt, xe, id) { 761 if (id < last_gt) 762 xe_gt_remove(gt); 763 else 764 break; 765 } 766 767 err: 768 xe_display_fini(xe); 769 return err; 770 } 771 772 static void xe_device_remove_display(struct xe_device *xe) 773 { 774 xe_display_unregister(xe); 775 776 drm_dev_unplug(&xe->drm); 777 xe_display_driver_remove(xe); 778 } 779 780 void xe_device_remove(struct xe_device *xe) 781 { 782 struct xe_gt *gt; 783 u8 id; 784 785 xe_oa_unregister(xe); 786 787 xe_device_remove_display(xe); 788 789 xe_display_fini(xe); 790 791 xe_oa_fini(xe); 792 793 xe_heci_gsc_fini(xe); 794 795 for_each_gt(gt, xe, id) 796 xe_gt_remove(gt); 797 } 798 799 void xe_device_shutdown(struct xe_device *xe) 800 { 801 } 802 803 /** 804 * xe_device_wmb() - Device specific write memory barrier 805 * @xe: the &xe_device 806 * 807 * While wmb() is sufficient for a barrier if we use system memory, on discrete 808 * platforms with device memory we additionally need to issue a register write. 809 * Since it doesn't matter which register we write to, use the read-only VF_CAP 810 * register that is also marked as accessible by the VFs. 811 */ 812 void xe_device_wmb(struct xe_device *xe) 813 { 814 struct xe_gt *gt = xe_root_mmio_gt(xe); 815 816 wmb(); 817 if (IS_DGFX(xe)) 818 xe_mmio_write32(gt, VF_CAP_REG, 0); 819 } 820 821 /** 822 * xe_device_td_flush() - Flush transient L3 cache entries 823 * @xe: The device 824 * 825 * Display engine has direct access to memory and is never coherent with L3/L4 826 * caches (or CPU caches), however KMD is responsible for specifically flushing 827 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 828 * can happen from such a surface without seeing corruption. 829 * 830 * Display surfaces can be tagged as transient by mapping it using one of the 831 * various L3:XD PAT index modes on Xe2. 832 * 833 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 834 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 835 * Media is not coherent with L3 and we want to support render-vs-media 836 * usescases. For other engines like copy/blt the HW internally forces uncached 837 * behaviour, hence why we can skip the TDF on such platforms. 838 */ 839 void xe_device_td_flush(struct xe_device *xe) 840 { 841 struct xe_gt *gt; 842 u8 id; 843 844 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 845 return; 846 847 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 848 xe_device_l2_flush(xe); 849 return; 850 } 851 852 for_each_gt(gt, xe, id) { 853 if (xe_gt_is_media_type(gt)) 854 continue; 855 856 if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) 857 return; 858 859 xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 860 /* 861 * FIXME: We can likely do better here with our choice of 862 * timeout. Currently we just assume the worst case, i.e. 150us, 863 * which is believed to be sufficient to cover the worst case 864 * scenario on current platforms if all cache entries are 865 * transient and need to be flushed.. 866 */ 867 if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 868 150, NULL, false)) 869 xe_gt_err_once(gt, "TD flush timeout\n"); 870 871 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 872 } 873 } 874 875 void xe_device_l2_flush(struct xe_device *xe) 876 { 877 struct xe_gt *gt; 878 int err; 879 880 gt = xe_root_mmio_gt(xe); 881 882 if (!XE_WA(gt, 16023588340)) 883 return; 884 885 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 886 if (err) 887 return; 888 889 spin_lock(>->global_invl_lock); 890 xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1); 891 892 if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true)) 893 xe_gt_err_once(gt, "Global invalidation timeout\n"); 894 spin_unlock(>->global_invl_lock); 895 896 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 897 } 898 899 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 900 { 901 return xe_device_has_flat_ccs(xe) ? 902 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 903 } 904 905 /** 906 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 907 * @xe: xe device instance 908 * 909 * To be used before any kind of memory access. It will splat a debug warning 910 * if the device is currently sleeping. But it doesn't guarantee in any way 911 * that the device is going to remain awake. Xe PM runtime get and put 912 * functions might be added to the outer bound of the memory access, while 913 * this check is intended for inner usage to splat some warning if the worst 914 * case has just happened. 915 */ 916 void xe_device_assert_mem_access(struct xe_device *xe) 917 { 918 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 919 } 920 921 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 922 { 923 struct xe_gt *gt; 924 u8 id; 925 926 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 927 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 928 929 for_each_gt(gt, xe, id) { 930 drm_printf(p, "GT id: %u\n", id); 931 drm_printf(p, "\tType: %s\n", 932 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 933 drm_printf(p, "\tIP ver: %u.%u.%u\n", 934 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 935 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 936 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 937 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 938 } 939 } 940 941 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 942 { 943 return sign_extend64(address, xe->info.va_bits - 1); 944 } 945 946 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 947 { 948 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 949 } 950 951 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 952 { 953 struct xe_device *xe = arg; 954 955 xe_pm_runtime_put(xe); 956 } 957 958 /** 959 * xe_device_declare_wedged - Declare device wedged 960 * @xe: xe device instance 961 * 962 * This is a final state that can only be cleared with a mudule 963 * re-probe (unbind + bind). 964 * In this state every IOCTL will be blocked so the GT cannot be used. 965 * In general it will be called upon any critical error such as gt reset 966 * failure or guc loading failure. 967 * If xe.wedged module parameter is set to 2, this function will be called 968 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 969 * snapshot capture. In this mode, GT reset won't be attempted so the state of 970 * the issue is preserved for further debugging. 971 */ 972 void xe_device_declare_wedged(struct xe_device *xe) 973 { 974 struct xe_gt *gt; 975 u8 id; 976 977 if (xe->wedged.mode == 0) { 978 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 979 return; 980 } 981 982 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 983 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 984 return; 985 } 986 987 xe_pm_runtime_get_noresume(xe); 988 989 if (!atomic_xchg(&xe->wedged.flag, 1)) { 990 xe->needs_flr_on_fini = true; 991 drm_err(&xe->drm, 992 "CRITICAL: Xe has declared device %s as wedged.\n" 993 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 994 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 995 dev_name(xe->drm.dev)); 996 } 997 998 for_each_gt(gt, xe, id) 999 xe_gt_declare_wedged(gt); 1000 } 1001