xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 44343e8b250abb2f6bfd615493ca07a7f11f3cc2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_i2c.h"
47 #include "xe_irq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_nvm.h"
51 #include "xe_oa.h"
52 #include "xe_observation.h"
53 #include "xe_pat.h"
54 #include "xe_pcode.h"
55 #include "xe_pm.h"
56 #include "xe_pmu.h"
57 #include "xe_psmi.h"
58 #include "xe_pxp.h"
59 #include "xe_query.h"
60 #include "xe_shrinker.h"
61 #include "xe_survivability_mode.h"
62 #include "xe_sriov.h"
63 #include "xe_tile.h"
64 #include "xe_ttm_stolen_mgr.h"
65 #include "xe_ttm_sys_mgr.h"
66 #include "xe_vm.h"
67 #include "xe_vm_madvise.h"
68 #include "xe_vram.h"
69 #include "xe_vram_types.h"
70 #include "xe_vsec.h"
71 #include "xe_wait_user_fence.h"
72 #include "xe_wa.h"
73 
74 #include <generated/xe_device_wa_oob.h>
75 #include <generated/xe_wa_oob.h>
76 
77 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
78 {
79 	struct xe_device *xe = to_xe_device(dev);
80 	struct xe_drm_client *client;
81 	struct xe_file *xef;
82 	int ret = -ENOMEM;
83 	struct task_struct *task = NULL;
84 
85 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
86 	if (!xef)
87 		return ret;
88 
89 	client = xe_drm_client_alloc();
90 	if (!client) {
91 		kfree(xef);
92 		return ret;
93 	}
94 
95 	xef->drm = file;
96 	xef->client = client;
97 	xef->xe = xe;
98 
99 	mutex_init(&xef->vm.lock);
100 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
101 
102 	mutex_init(&xef->exec_queue.lock);
103 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
104 
105 	file->driver_priv = xef;
106 	kref_init(&xef->refcount);
107 
108 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
109 	if (task) {
110 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
111 		xef->pid = task->pid;
112 		put_task_struct(task);
113 	}
114 
115 	return 0;
116 }
117 
118 static void xe_file_destroy(struct kref *ref)
119 {
120 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
121 
122 	xa_destroy(&xef->exec_queue.xa);
123 	mutex_destroy(&xef->exec_queue.lock);
124 	xa_destroy(&xef->vm.xa);
125 	mutex_destroy(&xef->vm.lock);
126 
127 	xe_drm_client_put(xef->client);
128 	kfree(xef->process_name);
129 	kfree(xef);
130 }
131 
132 /**
133  * xe_file_get() - Take a reference to the xe file object
134  * @xef: Pointer to the xe file
135  *
136  * Anyone with a pointer to xef must take a reference to the xe file
137  * object using this call.
138  *
139  * Return: xe file pointer
140  */
141 struct xe_file *xe_file_get(struct xe_file *xef)
142 {
143 	kref_get(&xef->refcount);
144 	return xef;
145 }
146 
147 /**
148  * xe_file_put() - Drop a reference to the xe file object
149  * @xef: Pointer to the xe file
150  *
151  * Used to drop reference to the xef object
152  */
153 void xe_file_put(struct xe_file *xef)
154 {
155 	kref_put(&xef->refcount, xe_file_destroy);
156 }
157 
158 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
159 {
160 	struct xe_device *xe = to_xe_device(dev);
161 	struct xe_file *xef = file->driver_priv;
162 	struct xe_vm *vm;
163 	struct xe_exec_queue *q;
164 	unsigned long idx;
165 
166 	xe_pm_runtime_get(xe);
167 
168 	/*
169 	 * No need for exec_queue.lock here as there is no contention for it
170 	 * when FD is closing as IOCTLs presumably can't be modifying the
171 	 * xarray. Taking exec_queue.lock here causes undue dependency on
172 	 * vm->lock taken during xe_exec_queue_kill().
173 	 */
174 	xa_for_each(&xef->exec_queue.xa, idx, q) {
175 		if (q->vm && q->hwe->hw_engine_group)
176 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
177 		xe_exec_queue_kill(q);
178 		xe_exec_queue_put(q);
179 	}
180 	xa_for_each(&xef->vm.xa, idx, vm)
181 		xe_vm_close_and_put(vm);
182 
183 	xe_file_put(xef);
184 
185 	xe_pm_runtime_put(xe);
186 }
187 
188 static const struct drm_ioctl_desc xe_ioctls[] = {
189 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
192 			  DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
200 			  DRM_RENDER_ALLOW),
201 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
202 			  DRM_RENDER_ALLOW),
203 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
204 			  DRM_RENDER_ALLOW),
205 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
206 	DRM_IOCTL_DEF_DRV(XE_MADVISE, xe_vm_madvise_ioctl, DRM_RENDER_ALLOW),
207 	DRM_IOCTL_DEF_DRV(XE_VM_QUERY_MEM_RANGE_ATTRS, xe_vm_query_vmas_attrs_ioctl,
208 			  DRM_RENDER_ALLOW),
209 };
210 
211 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
212 {
213 	struct drm_file *file_priv = file->private_data;
214 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
215 	long ret;
216 
217 	if (xe_device_wedged(xe))
218 		return -ECANCELED;
219 
220 	ret = xe_pm_runtime_get_ioctl(xe);
221 	if (ret >= 0)
222 		ret = drm_ioctl(file, cmd, arg);
223 	xe_pm_runtime_put(xe);
224 
225 	return ret;
226 }
227 
228 #ifdef CONFIG_COMPAT
229 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
230 {
231 	struct drm_file *file_priv = file->private_data;
232 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
233 	long ret;
234 
235 	if (xe_device_wedged(xe))
236 		return -ECANCELED;
237 
238 	ret = xe_pm_runtime_get_ioctl(xe);
239 	if (ret >= 0)
240 		ret = drm_compat_ioctl(file, cmd, arg);
241 	xe_pm_runtime_put(xe);
242 
243 	return ret;
244 }
245 #else
246 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
247 #define xe_drm_compat_ioctl NULL
248 #endif
249 
250 static void barrier_open(struct vm_area_struct *vma)
251 {
252 	drm_dev_get(vma->vm_private_data);
253 }
254 
255 static void barrier_close(struct vm_area_struct *vma)
256 {
257 	drm_dev_put(vma->vm_private_data);
258 }
259 
260 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
261 {
262 	struct page *dummy_page = (struct page *)res;
263 
264 	__free_page(dummy_page);
265 }
266 
267 static vm_fault_t barrier_fault(struct vm_fault *vmf)
268 {
269 	struct drm_device *dev = vmf->vma->vm_private_data;
270 	struct vm_area_struct *vma = vmf->vma;
271 	vm_fault_t ret = VM_FAULT_NOPAGE;
272 	pgprot_t prot;
273 	int idx;
274 
275 	prot = vm_get_page_prot(vma->vm_flags);
276 
277 	if (drm_dev_enter(dev, &idx)) {
278 		unsigned long pfn;
279 
280 #define LAST_DB_PAGE_OFFSET 0x7ff001
281 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
282 				LAST_DB_PAGE_OFFSET);
283 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
284 					  pgprot_noncached(prot));
285 		drm_dev_exit(idx);
286 	} else {
287 		struct page *page;
288 
289 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
290 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
291 		if (!page)
292 			return VM_FAULT_OOM;
293 
294 		/* Set the page to be freed using drmm release action */
295 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
296 			return VM_FAULT_OOM;
297 
298 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
299 					  prot);
300 	}
301 
302 	return ret;
303 }
304 
305 static const struct vm_operations_struct vm_ops_barrier = {
306 	.open = barrier_open,
307 	.close = barrier_close,
308 	.fault = barrier_fault,
309 };
310 
311 static int xe_pci_barrier_mmap(struct file *filp,
312 			       struct vm_area_struct *vma)
313 {
314 	struct drm_file *priv = filp->private_data;
315 	struct drm_device *dev = priv->minor->dev;
316 	struct xe_device *xe = to_xe_device(dev);
317 
318 	if (!IS_DGFX(xe))
319 		return -EINVAL;
320 
321 	if (vma->vm_end - vma->vm_start > SZ_4K)
322 		return -EINVAL;
323 
324 	if (is_cow_mapping(vma->vm_flags))
325 		return -EINVAL;
326 
327 	if (vma->vm_flags & (VM_READ | VM_EXEC))
328 		return -EINVAL;
329 
330 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
331 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
332 	vma->vm_ops = &vm_ops_barrier;
333 	vma->vm_private_data = dev;
334 	drm_dev_get(vma->vm_private_data);
335 
336 	return 0;
337 }
338 
339 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
340 {
341 	struct drm_file *priv = filp->private_data;
342 	struct drm_device *dev = priv->minor->dev;
343 
344 	if (drm_dev_is_unplugged(dev))
345 		return -ENODEV;
346 
347 	switch (vma->vm_pgoff) {
348 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
349 		return xe_pci_barrier_mmap(filp, vma);
350 	}
351 
352 	return drm_gem_mmap(filp, vma);
353 }
354 
355 static const struct file_operations xe_driver_fops = {
356 	.owner = THIS_MODULE,
357 	.open = drm_open,
358 	.release = drm_release_noglobal,
359 	.unlocked_ioctl = xe_drm_ioctl,
360 	.mmap = xe_mmap,
361 	.poll = drm_poll,
362 	.read = drm_read,
363 	.compat_ioctl = xe_drm_compat_ioctl,
364 	.llseek = noop_llseek,
365 #ifdef CONFIG_PROC_FS
366 	.show_fdinfo = drm_show_fdinfo,
367 #endif
368 	.fop_flags = FOP_UNSIGNED_OFFSET,
369 };
370 
371 static struct drm_driver driver = {
372 	/* Don't use MTRRs here; the Xserver or userspace app should
373 	 * deal with them for Intel hardware.
374 	 */
375 	.driver_features =
376 	    DRIVER_GEM |
377 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
378 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
379 	.open = xe_file_open,
380 	.postclose = xe_file_close,
381 
382 	.gem_prime_import = xe_gem_prime_import,
383 
384 	.dumb_create = xe_bo_dumb_create,
385 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
386 #ifdef CONFIG_PROC_FS
387 	.show_fdinfo = xe_drm_client_fdinfo,
388 #endif
389 	.ioctls = xe_ioctls,
390 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
391 	.fops = &xe_driver_fops,
392 	.name = DRIVER_NAME,
393 	.desc = DRIVER_DESC,
394 	.major = DRIVER_MAJOR,
395 	.minor = DRIVER_MINOR,
396 	.patchlevel = DRIVER_PATCHLEVEL,
397 };
398 
399 static void xe_device_destroy(struct drm_device *dev, void *dummy)
400 {
401 	struct xe_device *xe = to_xe_device(dev);
402 
403 	xe_bo_dev_fini(&xe->bo_device);
404 
405 	if (xe->preempt_fence_wq)
406 		destroy_workqueue(xe->preempt_fence_wq);
407 
408 	if (xe->ordered_wq)
409 		destroy_workqueue(xe->ordered_wq);
410 
411 	if (xe->unordered_wq)
412 		destroy_workqueue(xe->unordered_wq);
413 
414 	if (xe->destroy_wq)
415 		destroy_workqueue(xe->destroy_wq);
416 
417 	ttm_device_fini(&xe->ttm);
418 }
419 
420 struct xe_device *xe_device_create(struct pci_dev *pdev,
421 				   const struct pci_device_id *ent)
422 {
423 	struct xe_device *xe;
424 	int err;
425 
426 	xe_display_driver_set_hooks(&driver);
427 
428 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
429 	if (err)
430 		return ERR_PTR(err);
431 
432 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
433 	if (IS_ERR(xe))
434 		return xe;
435 
436 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
437 			      xe->drm.anon_inode->i_mapping,
438 			      xe->drm.vma_offset_manager, false, false);
439 	if (WARN_ON(err))
440 		goto err;
441 
442 	xe_bo_dev_init(&xe->bo_device);
443 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
444 	if (err)
445 		goto err;
446 
447 	err = xe_shrinker_create(xe);
448 	if (err)
449 		goto err;
450 
451 	xe->info.devid = pdev->device;
452 	xe->info.revid = pdev->revision;
453 	xe->info.force_execlist = xe_modparam.force_execlist;
454 	xe->atomic_svm_timeslice_ms = 5;
455 
456 	err = xe_irq_init(xe);
457 	if (err)
458 		goto err;
459 
460 	init_waitqueue_head(&xe->ufence_wq);
461 
462 	init_rwsem(&xe->usm.lock);
463 
464 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
465 
466 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
467 		/* Trigger a large asid and an early asid wrap. */
468 		u32 asid;
469 
470 		BUILD_BUG_ON(XE_MAX_ASID < 2);
471 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
472 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
473 				      &xe->usm.next_asid, GFP_KERNEL);
474 		drm_WARN_ON(&xe->drm, err);
475 		if (err >= 0)
476 			xa_erase(&xe->usm.asid_to_vm, asid);
477 	}
478 
479 	err = xe_bo_pinned_init(xe);
480 	if (err)
481 		goto err;
482 
483 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
484 						       WQ_MEM_RECLAIM);
485 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
486 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
487 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
488 	if (!xe->ordered_wq || !xe->unordered_wq ||
489 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
490 		/*
491 		 * Cleanup done in xe_device_destroy via
492 		 * drmm_add_action_or_reset register above
493 		 */
494 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
495 		err = -ENOMEM;
496 		goto err;
497 	}
498 
499 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
500 	if (err)
501 		goto err;
502 
503 	return xe;
504 
505 err:
506 	return ERR_PTR(err);
507 }
508 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
509 
510 static bool xe_driver_flr_disabled(struct xe_device *xe)
511 {
512 	if (IS_SRIOV_VF(xe))
513 		return true;
514 
515 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
516 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
517 		return true;
518 	}
519 
520 	return false;
521 }
522 
523 /*
524  * The driver-initiated FLR is the highest level of reset that we can trigger
525  * from within the driver. It is different from the PCI FLR in that it doesn't
526  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
527  * it doesn't require a re-enumeration of the PCI BARs. However, the
528  * driver-initiated FLR does still cause a reset of both GT and display and a
529  * memory wipe of local and stolen memory, so recovery would require a full HW
530  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
531  * perform the FLR as the very last action before releasing access to the HW
532  * during the driver release flow, we don't attempt recovery at all, because
533  * if/when a new instance of i915 is bound to the device it will do a full
534  * re-init anyway.
535  */
536 static void __xe_driver_flr(struct xe_device *xe)
537 {
538 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
539 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
540 	int ret;
541 
542 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
543 
544 	/*
545 	 * Make sure any pending FLR requests have cleared by waiting for the
546 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
547 	 * to make sure it's not still set from a prior attempt (it's a write to
548 	 * clear bit).
549 	 * Note that we should never be in a situation where a previous attempt
550 	 * is still pending (unless the HW is totally dead), but better to be
551 	 * safe in case something unexpected happens
552 	 */
553 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
554 	if (ret) {
555 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
556 		return;
557 	}
558 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
559 
560 	/* Trigger the actual Driver-FLR */
561 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
562 
563 	/* Wait for hardware teardown to complete */
564 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
565 	if (ret) {
566 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
567 		return;
568 	}
569 
570 	/* Wait for hardware/firmware re-init to complete */
571 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
572 			     flr_timeout, NULL, false);
573 	if (ret) {
574 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
575 		return;
576 	}
577 
578 	/* Clear sticky completion status */
579 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
580 }
581 
582 static void xe_driver_flr(struct xe_device *xe)
583 {
584 	if (xe_driver_flr_disabled(xe))
585 		return;
586 
587 	__xe_driver_flr(xe);
588 }
589 
590 static void xe_driver_flr_fini(void *arg)
591 {
592 	struct xe_device *xe = arg;
593 
594 	if (xe->needs_flr_on_fini)
595 		xe_driver_flr(xe);
596 }
597 
598 static void xe_device_sanitize(void *arg)
599 {
600 	struct xe_device *xe = arg;
601 	struct xe_gt *gt;
602 	u8 id;
603 
604 	for_each_gt(gt, xe, id)
605 		xe_gt_sanitize(gt);
606 }
607 
608 static int xe_set_dma_info(struct xe_device *xe)
609 {
610 	unsigned int mask_size = xe->info.dma_mask_size;
611 	int err;
612 
613 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
614 
615 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
616 	if (err)
617 		goto mask_err;
618 
619 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
620 	if (err)
621 		goto mask_err;
622 
623 	return 0;
624 
625 mask_err:
626 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
627 	return err;
628 }
629 
630 static bool verify_lmem_ready(struct xe_device *xe)
631 {
632 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
633 
634 	return !!val;
635 }
636 
637 static int wait_for_lmem_ready(struct xe_device *xe)
638 {
639 	unsigned long timeout, start;
640 
641 	if (!IS_DGFX(xe))
642 		return 0;
643 
644 	if (IS_SRIOV_VF(xe))
645 		return 0;
646 
647 	if (verify_lmem_ready(xe))
648 		return 0;
649 
650 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
651 
652 	start = jiffies;
653 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
654 
655 	do {
656 		if (signal_pending(current))
657 			return -EINTR;
658 
659 		/*
660 		 * The boot firmware initializes local memory and
661 		 * assesses its health. If memory training fails,
662 		 * the punit will have been instructed to keep the GT powered
663 		 * down.we won't be able to communicate with it
664 		 *
665 		 * If the status check is done before punit updates the register,
666 		 * it can lead to the system being unusable.
667 		 * use a timeout and defer the probe to prevent this.
668 		 */
669 		if (time_after(jiffies, timeout)) {
670 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
671 			return -EPROBE_DEFER;
672 		}
673 
674 		msleep(20);
675 
676 	} while (!verify_lmem_ready(xe));
677 
678 	drm_dbg(&xe->drm, "lmem ready after %ums",
679 		jiffies_to_msecs(jiffies - start));
680 
681 	return 0;
682 }
683 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
684 
685 static void sriov_update_device_info(struct xe_device *xe)
686 {
687 	/* disable features that are not available/applicable to VFs */
688 	if (IS_SRIOV_VF(xe)) {
689 		xe->info.probe_display = 0;
690 		xe->info.has_heci_cscfi = 0;
691 		xe->info.has_heci_gscfi = 0;
692 		xe->info.skip_guc_pc = 1;
693 		xe->info.skip_pcode = 1;
694 	}
695 }
696 
697 static int xe_device_vram_alloc(struct xe_device *xe)
698 {
699 	struct xe_vram_region *vram;
700 
701 	if (!IS_DGFX(xe))
702 		return 0;
703 
704 	vram = drmm_kzalloc(&xe->drm, sizeof(*vram), GFP_KERNEL);
705 	if (!vram)
706 		return -ENOMEM;
707 
708 	xe->mem.vram = vram;
709 	return 0;
710 }
711 
712 /**
713  * xe_device_probe_early: Device early probe
714  * @xe: xe device instance
715  *
716  * Initialize MMIO resources that don't require any
717  * knowledge about tile count. Also initialize pcode and
718  * check vram initialization on root tile.
719  *
720  * Return: 0 on success, error code on failure
721  */
722 int xe_device_probe_early(struct xe_device *xe)
723 {
724 	int err;
725 
726 	xe_wa_device_init(xe);
727 	xe_wa_process_device_oob(xe);
728 
729 	err = xe_mmio_probe_early(xe);
730 	if (err)
731 		return err;
732 
733 	xe_sriov_probe_early(xe);
734 
735 	sriov_update_device_info(xe);
736 
737 	err = xe_pcode_probe_early(xe);
738 	if (err || xe_survivability_mode_is_requested(xe)) {
739 		int save_err = err;
740 
741 		/*
742 		 * Try to leave device in survivability mode if device is
743 		 * possible, but still return the previous error for error
744 		 * propagation
745 		 */
746 		err = xe_survivability_mode_boot_enable(xe);
747 		if (err)
748 			return err;
749 
750 		return save_err;
751 	}
752 
753 	err = wait_for_lmem_ready(xe);
754 	if (err)
755 		return err;
756 
757 	xe->wedged.mode = xe_modparam.wedged_mode;
758 
759 	err = xe_device_vram_alloc(xe);
760 	if (err)
761 		return err;
762 
763 	return 0;
764 }
765 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
766 
767 static int probe_has_flat_ccs(struct xe_device *xe)
768 {
769 	struct xe_gt *gt;
770 	unsigned int fw_ref;
771 	u32 reg;
772 
773 	/* Always enabled/disabled, no runtime check to do */
774 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
775 		return 0;
776 
777 	gt = xe_root_mmio_gt(xe);
778 
779 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
780 	if (!fw_ref)
781 		return -ETIMEDOUT;
782 
783 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
784 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
785 
786 	if (!xe->info.has_flat_ccs)
787 		drm_dbg(&xe->drm,
788 			"Flat CCS has been disabled in bios, May lead to performance impact");
789 
790 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
791 
792 	return 0;
793 }
794 
795 int xe_device_probe(struct xe_device *xe)
796 {
797 	struct xe_tile *tile;
798 	struct xe_gt *gt;
799 	int err;
800 	u8 id;
801 
802 	xe_pat_init_early(xe);
803 
804 	err = xe_sriov_init(xe);
805 	if (err)
806 		return err;
807 
808 	xe->info.mem_region_mask = 1;
809 
810 	err = xe_set_dma_info(xe);
811 	if (err)
812 		return err;
813 
814 	err = xe_mmio_probe_tiles(xe);
815 	if (err)
816 		return err;
817 
818 	for_each_gt(gt, xe, id) {
819 		err = xe_gt_init_early(gt);
820 		if (err)
821 			return err;
822 	}
823 
824 	for_each_tile(tile, xe, id) {
825 		err = xe_ggtt_init_early(tile->mem.ggtt);
826 		if (err)
827 			return err;
828 	}
829 
830 	/*
831 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
832 	 */
833 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
834 	if (err)
835 		return err;
836 
837 	err = probe_has_flat_ccs(xe);
838 	if (err)
839 		return err;
840 
841 	err = xe_vram_probe(xe);
842 	if (err)
843 		return err;
844 
845 	for_each_tile(tile, xe, id) {
846 		err = xe_tile_init_noalloc(tile);
847 		if (err)
848 			return err;
849 	}
850 
851 	/*
852 	 * Allow allocations only now to ensure xe_display_init_early()
853 	 * is the first to allocate, always.
854 	 */
855 	err = xe_ttm_sys_mgr_init(xe);
856 	if (err)
857 		return err;
858 
859 	/* Allocate and map stolen after potential VRAM resize */
860 	err = xe_ttm_stolen_mgr_init(xe);
861 	if (err)
862 		return err;
863 
864 	/*
865 	 * Now that GT is initialized (TTM in particular),
866 	 * we can try to init display, and inherit the initial fb.
867 	 * This is the reason the first allocation needs to be done
868 	 * inside display.
869 	 */
870 	err = xe_display_init_early(xe);
871 	if (err)
872 		return err;
873 
874 	for_each_tile(tile, xe, id) {
875 		err = xe_tile_init(tile);
876 		if (err)
877 			return err;
878 	}
879 
880 	err = xe_irq_install(xe);
881 	if (err)
882 		return err;
883 
884 	for_each_gt(gt, xe, id) {
885 		err = xe_gt_init(gt);
886 		if (err)
887 			return err;
888 	}
889 
890 	if (xe->tiles->media_gt &&
891 	    XE_GT_WA(xe->tiles->media_gt, 15015404425_disable))
892 		XE_DEVICE_WA_DISABLE(xe, 15015404425);
893 
894 	err = xe_devcoredump_init(xe);
895 	if (err)
896 		return err;
897 
898 	xe_nvm_init(xe);
899 
900 	err = xe_heci_gsc_init(xe);
901 	if (err)
902 		return err;
903 
904 	err = xe_oa_init(xe);
905 	if (err)
906 		return err;
907 
908 	err = xe_display_init(xe);
909 	if (err)
910 		return err;
911 
912 	err = xe_pxp_init(xe);
913 	if (err)
914 		return err;
915 
916 	err = xe_psmi_init(xe);
917 	if (err)
918 		return err;
919 
920 	err = drm_dev_register(&xe->drm, 0);
921 	if (err)
922 		return err;
923 
924 	xe_display_register(xe);
925 
926 	err = xe_oa_register(xe);
927 	if (err)
928 		goto err_unregister_display;
929 
930 	err = xe_pmu_register(&xe->pmu);
931 	if (err)
932 		goto err_unregister_display;
933 
934 	err = xe_device_sysfs_init(xe);
935 	if (err)
936 		goto err_unregister_display;
937 
938 	xe_debugfs_register(xe);
939 
940 	err = xe_hwmon_register(xe);
941 	if (err)
942 		goto err_unregister_display;
943 
944 	err = xe_i2c_probe(xe);
945 	if (err)
946 		goto err_unregister_display;
947 
948 	for_each_gt(gt, xe, id)
949 		xe_gt_sanitize_freq(gt);
950 
951 	xe_vsec_init(xe);
952 
953 	err = xe_sriov_late_init(xe);
954 	if (err)
955 		goto err_unregister_display;
956 
957 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
958 
959 err_unregister_display:
960 	xe_display_unregister(xe);
961 
962 	return err;
963 }
964 
965 void xe_device_remove(struct xe_device *xe)
966 {
967 	xe_display_unregister(xe);
968 
969 	xe_nvm_fini(xe);
970 
971 	drm_dev_unplug(&xe->drm);
972 
973 	xe_bo_pci_dev_remove_all(xe);
974 }
975 
976 void xe_device_shutdown(struct xe_device *xe)
977 {
978 	struct xe_gt *gt;
979 	u8 id;
980 
981 	drm_dbg(&xe->drm, "Shutting down device\n");
982 
983 	if (xe_driver_flr_disabled(xe)) {
984 		xe_display_pm_shutdown(xe);
985 
986 		xe_irq_suspend(xe);
987 
988 		for_each_gt(gt, xe, id)
989 			xe_gt_shutdown(gt);
990 
991 		xe_display_pm_shutdown_late(xe);
992 	} else {
993 		/* BOOM! */
994 		__xe_driver_flr(xe);
995 	}
996 }
997 
998 /**
999  * xe_device_wmb() - Device specific write memory barrier
1000  * @xe: the &xe_device
1001  *
1002  * While wmb() is sufficient for a barrier if we use system memory, on discrete
1003  * platforms with device memory we additionally need to issue a register write.
1004  * Since it doesn't matter which register we write to, use the read-only VF_CAP
1005  * register that is also marked as accessible by the VFs.
1006  */
1007 void xe_device_wmb(struct xe_device *xe)
1008 {
1009 	wmb();
1010 	if (IS_DGFX(xe))
1011 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
1012 }
1013 
1014 /*
1015  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
1016  */
1017 static void tdf_request_sync(struct xe_device *xe)
1018 {
1019 	unsigned int fw_ref;
1020 	struct xe_gt *gt;
1021 	u8 id;
1022 
1023 	for_each_gt(gt, xe, id) {
1024 		if (xe_gt_is_media_type(gt))
1025 			continue;
1026 
1027 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1028 		if (!fw_ref)
1029 			return;
1030 
1031 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1032 
1033 		/*
1034 		 * FIXME: We can likely do better here with our choice of
1035 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1036 		 * which is believed to be sufficient to cover the worst case
1037 		 * scenario on current platforms if all cache entries are
1038 		 * transient and need to be flushed..
1039 		 */
1040 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1041 				   150, NULL, false))
1042 			xe_gt_err_once(gt, "TD flush timeout\n");
1043 
1044 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1045 	}
1046 }
1047 
1048 void xe_device_l2_flush(struct xe_device *xe)
1049 {
1050 	struct xe_gt *gt;
1051 	unsigned int fw_ref;
1052 
1053 	gt = xe_root_mmio_gt(xe);
1054 
1055 	if (!XE_GT_WA(gt, 16023588340))
1056 		return;
1057 
1058 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1059 	if (!fw_ref)
1060 		return;
1061 
1062 	spin_lock(&gt->global_invl_lock);
1063 
1064 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1065 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1066 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1067 
1068 	spin_unlock(&gt->global_invl_lock);
1069 
1070 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1071 }
1072 
1073 /**
1074  * xe_device_td_flush() - Flush transient L3 cache entries
1075  * @xe: The device
1076  *
1077  * Display engine has direct access to memory and is never coherent with L3/L4
1078  * caches (or CPU caches), however KMD is responsible for specifically flushing
1079  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1080  * can happen from such a surface without seeing corruption.
1081  *
1082  * Display surfaces can be tagged as transient by mapping it using one of the
1083  * various L3:XD PAT index modes on Xe2.
1084  *
1085  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1086  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1087  * Media is not coherent with L3 and we want to support render-vs-media
1088  * usescases. For other engines like copy/blt the HW internally forces uncached
1089  * behaviour, hence why we can skip the TDF on such platforms.
1090  */
1091 void xe_device_td_flush(struct xe_device *xe)
1092 {
1093 	struct xe_gt *root_gt;
1094 
1095 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1096 		return;
1097 
1098 	root_gt = xe_root_mmio_gt(xe);
1099 	if (XE_GT_WA(root_gt, 16023588340)) {
1100 		/* A transient flush is not sufficient: flush the L2 */
1101 		xe_device_l2_flush(xe);
1102 	} else {
1103 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1104 		tdf_request_sync(xe);
1105 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1106 	}
1107 }
1108 
1109 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1110 {
1111 	return xe_device_has_flat_ccs(xe) ?
1112 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1113 }
1114 
1115 /**
1116  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1117  * @xe: xe device instance
1118  *
1119  * To be used before any kind of memory access. It will splat a debug warning
1120  * if the device is currently sleeping. But it doesn't guarantee in any way
1121  * that the device is going to remain awake. Xe PM runtime get and put
1122  * functions might be added to the outer bound of the memory access, while
1123  * this check is intended for inner usage to splat some warning if the worst
1124  * case has just happened.
1125  */
1126 void xe_device_assert_mem_access(struct xe_device *xe)
1127 {
1128 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1129 }
1130 
1131 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1132 {
1133 	struct xe_gt *gt;
1134 	u8 id;
1135 
1136 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1137 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1138 
1139 	for_each_gt(gt, xe, id) {
1140 		drm_printf(p, "GT id: %u\n", id);
1141 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1142 		drm_printf(p, "\tType: %s\n",
1143 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1144 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1145 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1146 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1147 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1148 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1149 	}
1150 }
1151 
1152 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1153 {
1154 	return sign_extend64(address, xe->info.va_bits - 1);
1155 }
1156 
1157 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1158 {
1159 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1160 }
1161 
1162 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1163 {
1164 	struct xe_device *xe = arg;
1165 
1166 	xe_pm_runtime_put(xe);
1167 }
1168 
1169 /**
1170  * DOC: Xe Device Wedging
1171  *
1172  * Xe driver uses drm device wedged uevent as documented in Documentation/gpu/drm-uapi.rst.
1173  * When device is in wedged state, every IOCTL will be blocked and GT cannot be
1174  * used. Certain critical errors like gt reset failure, firmware failures can cause
1175  * the device to be wedged. The default recovery method for a wedged state
1176  * is rebind/bus-reset.
1177  *
1178  * Another recovery method is vendor-specific. Below are the cases that send
1179  * ``WEDGED=vendor-specific`` recovery method in drm device wedged uevent.
1180  *
1181  * Case: Firmware Flash
1182  * --------------------
1183  *
1184  * Identification Hint
1185  * +++++++++++++++++++
1186  *
1187  * ``WEDGED=vendor-specific`` drm device wedged uevent with
1188  * :ref:`Runtime Survivability mode <xe-survivability-mode>` is used to notify
1189  * admin/userspace consumer about the need for a firmware flash.
1190  *
1191  * Recovery Procedure
1192  * ++++++++++++++++++
1193  *
1194  * Once ``WEDGED=vendor-specific`` drm device wedged uevent is received, follow
1195  * the below steps
1196  *
1197  * - Check Runtime Survivability mode sysfs.
1198  *   If enabled, firmware flash is required to recover the device.
1199  *
1200  *   /sys/bus/pci/devices/<device>/survivability_mode
1201  *
1202  * - Admin/userpsace consumer can use firmware flashing tools like fwupd to flash
1203  *   firmware and restore device to normal operation.
1204  */
1205 
1206 /**
1207  * xe_device_set_wedged_method - Set wedged recovery method
1208  * @xe: xe device instance
1209  * @method: recovery method to set
1210  *
1211  * Set wedged recovery method to be sent in drm wedged uevent.
1212  */
1213 void xe_device_set_wedged_method(struct xe_device *xe, unsigned long method)
1214 {
1215 	xe->wedged.method = method;
1216 }
1217 
1218 /**
1219  * xe_device_declare_wedged - Declare device wedged
1220  * @xe: xe device instance
1221  *
1222  * This is a final state that can only be cleared with the recovery method
1223  * specified in the drm wedged uevent. The method can be set using
1224  * xe_device_set_wedged_method before declaring the device as wedged. If no method
1225  * is set, reprobe (unbind/re-bind) will be sent by default.
1226  *
1227  * In this state every IOCTL will be blocked so the GT cannot be used.
1228  * In general it will be called upon any critical error such as gt reset
1229  * failure or guc loading failure. Userspace will be notified of this state
1230  * through device wedged uevent.
1231  * If xe.wedged module parameter is set to 2, this function will be called
1232  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1233  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1234  * the issue is preserved for further debugging.
1235  */
1236 void xe_device_declare_wedged(struct xe_device *xe)
1237 {
1238 	struct xe_gt *gt;
1239 	u8 id;
1240 
1241 	if (xe->wedged.mode == 0) {
1242 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1243 		return;
1244 	}
1245 
1246 	xe_pm_runtime_get_noresume(xe);
1247 
1248 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1249 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1250 		return;
1251 	}
1252 
1253 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1254 		xe->needs_flr_on_fini = true;
1255 		drm_err(&xe->drm,
1256 			"CRITICAL: Xe has declared device %s as wedged.\n"
1257 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1258 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1259 			dev_name(xe->drm.dev));
1260 	}
1261 
1262 	for_each_gt(gt, xe, id)
1263 		xe_gt_declare_wedged(gt);
1264 
1265 	if (xe_device_wedged(xe)) {
1266 		/* If no wedge recovery method is set, use default */
1267 		if (!xe->wedged.method)
1268 			xe_device_set_wedged_method(xe, DRM_WEDGE_RECOVERY_REBIND |
1269 						    DRM_WEDGE_RECOVERY_BUS_RESET);
1270 
1271 		/* Notify userspace of wedged device */
1272 		drm_dev_wedged_event(&xe->drm, xe->wedged.method, NULL);
1273 	}
1274 }
1275