1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_bo_evict.h" 27 #include "xe_debugfs.h" 28 #include "xe_devcoredump.h" 29 #include "xe_device_sysfs.h" 30 #include "xe_dma_buf.h" 31 #include "xe_drm_client.h" 32 #include "xe_drv.h" 33 #include "xe_exec.h" 34 #include "xe_exec_queue.h" 35 #include "xe_force_wake.h" 36 #include "xe_ggtt.h" 37 #include "xe_gsc_proxy.h" 38 #include "xe_gt.h" 39 #include "xe_gt_mcr.h" 40 #include "xe_gt_printk.h" 41 #include "xe_gt_sriov_vf.h" 42 #include "xe_guc.h" 43 #include "xe_hw_engine_group.h" 44 #include "xe_hwmon.h" 45 #include "xe_irq.h" 46 #include "xe_memirq.h" 47 #include "xe_mmio.h" 48 #include "xe_module.h" 49 #include "xe_oa.h" 50 #include "xe_observation.h" 51 #include "xe_pat.h" 52 #include "xe_pcode.h" 53 #include "xe_pm.h" 54 #include "xe_pmu.h" 55 #include "xe_pxp.h" 56 #include "xe_query.h" 57 #include "xe_shrinker.h" 58 #include "xe_survivability_mode.h" 59 #include "xe_sriov.h" 60 #include "xe_tile.h" 61 #include "xe_ttm_stolen_mgr.h" 62 #include "xe_ttm_sys_mgr.h" 63 #include "xe_vm.h" 64 #include "xe_vram.h" 65 #include "xe_vsec.h" 66 #include "xe_wait_user_fence.h" 67 #include "xe_wa.h" 68 69 #include <generated/xe_wa_oob.h> 70 71 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 72 { 73 struct xe_device *xe = to_xe_device(dev); 74 struct xe_drm_client *client; 75 struct xe_file *xef; 76 int ret = -ENOMEM; 77 struct task_struct *task = NULL; 78 79 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 80 if (!xef) 81 return ret; 82 83 client = xe_drm_client_alloc(); 84 if (!client) { 85 kfree(xef); 86 return ret; 87 } 88 89 xef->drm = file; 90 xef->client = client; 91 xef->xe = xe; 92 93 mutex_init(&xef->vm.lock); 94 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 95 96 mutex_init(&xef->exec_queue.lock); 97 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 98 99 file->driver_priv = xef; 100 kref_init(&xef->refcount); 101 102 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 103 if (task) { 104 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 105 xef->pid = task->pid; 106 put_task_struct(task); 107 } 108 109 return 0; 110 } 111 112 static void xe_file_destroy(struct kref *ref) 113 { 114 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 115 116 xa_destroy(&xef->exec_queue.xa); 117 mutex_destroy(&xef->exec_queue.lock); 118 xa_destroy(&xef->vm.xa); 119 mutex_destroy(&xef->vm.lock); 120 121 xe_drm_client_put(xef->client); 122 kfree(xef->process_name); 123 kfree(xef); 124 } 125 126 /** 127 * xe_file_get() - Take a reference to the xe file object 128 * @xef: Pointer to the xe file 129 * 130 * Anyone with a pointer to xef must take a reference to the xe file 131 * object using this call. 132 * 133 * Return: xe file pointer 134 */ 135 struct xe_file *xe_file_get(struct xe_file *xef) 136 { 137 kref_get(&xef->refcount); 138 return xef; 139 } 140 141 /** 142 * xe_file_put() - Drop a reference to the xe file object 143 * @xef: Pointer to the xe file 144 * 145 * Used to drop reference to the xef object 146 */ 147 void xe_file_put(struct xe_file *xef) 148 { 149 kref_put(&xef->refcount, xe_file_destroy); 150 } 151 152 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 153 { 154 struct xe_device *xe = to_xe_device(dev); 155 struct xe_file *xef = file->driver_priv; 156 struct xe_vm *vm; 157 struct xe_exec_queue *q; 158 unsigned long idx; 159 160 xe_pm_runtime_get(xe); 161 162 /* 163 * No need for exec_queue.lock here as there is no contention for it 164 * when FD is closing as IOCTLs presumably can't be modifying the 165 * xarray. Taking exec_queue.lock here causes undue dependency on 166 * vm->lock taken during xe_exec_queue_kill(). 167 */ 168 xa_for_each(&xef->exec_queue.xa, idx, q) { 169 if (q->vm && q->hwe->hw_engine_group) 170 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 171 xe_exec_queue_kill(q); 172 xe_exec_queue_put(q); 173 } 174 xa_for_each(&xef->vm.xa, idx, vm) 175 xe_vm_close_and_put(vm); 176 177 xe_file_put(xef); 178 179 xe_pm_runtime_put(xe); 180 } 181 182 static const struct drm_ioctl_desc xe_ioctls[] = { 183 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 186 DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 192 DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 198 DRM_RENDER_ALLOW), 199 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 200 }; 201 202 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 203 { 204 struct drm_file *file_priv = file->private_data; 205 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 206 long ret; 207 208 if (xe_device_wedged(xe)) 209 return -ECANCELED; 210 211 ret = xe_pm_runtime_get_ioctl(xe); 212 if (ret >= 0) 213 ret = drm_ioctl(file, cmd, arg); 214 xe_pm_runtime_put(xe); 215 216 return ret; 217 } 218 219 #ifdef CONFIG_COMPAT 220 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 221 { 222 struct drm_file *file_priv = file->private_data; 223 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 224 long ret; 225 226 if (xe_device_wedged(xe)) 227 return -ECANCELED; 228 229 ret = xe_pm_runtime_get_ioctl(xe); 230 if (ret >= 0) 231 ret = drm_compat_ioctl(file, cmd, arg); 232 xe_pm_runtime_put(xe); 233 234 return ret; 235 } 236 #else 237 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 238 #define xe_drm_compat_ioctl NULL 239 #endif 240 241 static void barrier_open(struct vm_area_struct *vma) 242 { 243 drm_dev_get(vma->vm_private_data); 244 } 245 246 static void barrier_close(struct vm_area_struct *vma) 247 { 248 drm_dev_put(vma->vm_private_data); 249 } 250 251 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 252 { 253 struct page *dummy_page = (struct page *)res; 254 255 __free_page(dummy_page); 256 } 257 258 static vm_fault_t barrier_fault(struct vm_fault *vmf) 259 { 260 struct drm_device *dev = vmf->vma->vm_private_data; 261 struct vm_area_struct *vma = vmf->vma; 262 vm_fault_t ret = VM_FAULT_NOPAGE; 263 pgprot_t prot; 264 int idx; 265 266 prot = vm_get_page_prot(vma->vm_flags); 267 268 if (drm_dev_enter(dev, &idx)) { 269 unsigned long pfn; 270 271 #define LAST_DB_PAGE_OFFSET 0x7ff001 272 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 273 LAST_DB_PAGE_OFFSET); 274 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 275 pgprot_noncached(prot)); 276 drm_dev_exit(idx); 277 } else { 278 struct page *page; 279 280 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 281 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 282 if (!page) 283 return VM_FAULT_OOM; 284 285 /* Set the page to be freed using drmm release action */ 286 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 287 return VM_FAULT_OOM; 288 289 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 290 prot); 291 } 292 293 return ret; 294 } 295 296 static const struct vm_operations_struct vm_ops_barrier = { 297 .open = barrier_open, 298 .close = barrier_close, 299 .fault = barrier_fault, 300 }; 301 302 static int xe_pci_barrier_mmap(struct file *filp, 303 struct vm_area_struct *vma) 304 { 305 struct drm_file *priv = filp->private_data; 306 struct drm_device *dev = priv->minor->dev; 307 struct xe_device *xe = to_xe_device(dev); 308 309 if (!IS_DGFX(xe)) 310 return -EINVAL; 311 312 if (vma->vm_end - vma->vm_start > SZ_4K) 313 return -EINVAL; 314 315 if (is_cow_mapping(vma->vm_flags)) 316 return -EINVAL; 317 318 if (vma->vm_flags & (VM_READ | VM_EXEC)) 319 return -EINVAL; 320 321 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 322 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 323 vma->vm_ops = &vm_ops_barrier; 324 vma->vm_private_data = dev; 325 drm_dev_get(vma->vm_private_data); 326 327 return 0; 328 } 329 330 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 331 { 332 struct drm_file *priv = filp->private_data; 333 struct drm_device *dev = priv->minor->dev; 334 335 if (drm_dev_is_unplugged(dev)) 336 return -ENODEV; 337 338 switch (vma->vm_pgoff) { 339 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 340 return xe_pci_barrier_mmap(filp, vma); 341 } 342 343 return drm_gem_mmap(filp, vma); 344 } 345 346 static const struct file_operations xe_driver_fops = { 347 .owner = THIS_MODULE, 348 .open = drm_open, 349 .release = drm_release_noglobal, 350 .unlocked_ioctl = xe_drm_ioctl, 351 .mmap = xe_mmap, 352 .poll = drm_poll, 353 .read = drm_read, 354 .compat_ioctl = xe_drm_compat_ioctl, 355 .llseek = noop_llseek, 356 #ifdef CONFIG_PROC_FS 357 .show_fdinfo = drm_show_fdinfo, 358 #endif 359 .fop_flags = FOP_UNSIGNED_OFFSET, 360 }; 361 362 static struct drm_driver driver = { 363 /* Don't use MTRRs here; the Xserver or userspace app should 364 * deal with them for Intel hardware. 365 */ 366 .driver_features = 367 DRIVER_GEM | 368 DRIVER_RENDER | DRIVER_SYNCOBJ | 369 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 370 .open = xe_file_open, 371 .postclose = xe_file_close, 372 373 .gem_prime_import = xe_gem_prime_import, 374 375 .dumb_create = xe_bo_dumb_create, 376 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 377 #ifdef CONFIG_PROC_FS 378 .show_fdinfo = xe_drm_client_fdinfo, 379 #endif 380 .ioctls = xe_ioctls, 381 .num_ioctls = ARRAY_SIZE(xe_ioctls), 382 .fops = &xe_driver_fops, 383 .name = DRIVER_NAME, 384 .desc = DRIVER_DESC, 385 .major = DRIVER_MAJOR, 386 .minor = DRIVER_MINOR, 387 .patchlevel = DRIVER_PATCHLEVEL, 388 }; 389 390 static void xe_device_destroy(struct drm_device *dev, void *dummy) 391 { 392 struct xe_device *xe = to_xe_device(dev); 393 394 xe_bo_dev_fini(&xe->bo_device); 395 396 if (xe->preempt_fence_wq) 397 destroy_workqueue(xe->preempt_fence_wq); 398 399 if (xe->ordered_wq) 400 destroy_workqueue(xe->ordered_wq); 401 402 if (xe->unordered_wq) 403 destroy_workqueue(xe->unordered_wq); 404 405 if (xe->destroy_wq) 406 destroy_workqueue(xe->destroy_wq); 407 408 ttm_device_fini(&xe->ttm); 409 } 410 411 struct xe_device *xe_device_create(struct pci_dev *pdev, 412 const struct pci_device_id *ent) 413 { 414 struct xe_device *xe; 415 int err; 416 417 xe_display_driver_set_hooks(&driver); 418 419 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 420 if (err) 421 return ERR_PTR(err); 422 423 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 424 if (IS_ERR(xe)) 425 return xe; 426 427 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 428 xe->drm.anon_inode->i_mapping, 429 xe->drm.vma_offset_manager, false, false); 430 if (WARN_ON(err)) 431 goto err; 432 433 xe_bo_dev_init(&xe->bo_device); 434 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 435 if (err) 436 goto err; 437 438 err = xe_shrinker_create(xe); 439 if (err) 440 goto err; 441 442 xe->info.devid = pdev->device; 443 xe->info.revid = pdev->revision; 444 xe->info.force_execlist = xe_modparam.force_execlist; 445 xe->atomic_svm_timeslice_ms = 5; 446 447 err = xe_irq_init(xe); 448 if (err) 449 goto err; 450 451 init_waitqueue_head(&xe->ufence_wq); 452 453 init_rwsem(&xe->usm.lock); 454 455 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 456 457 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 458 /* Trigger a large asid and an early asid wrap. */ 459 u32 asid; 460 461 BUILD_BUG_ON(XE_MAX_ASID < 2); 462 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 463 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 464 &xe->usm.next_asid, GFP_KERNEL); 465 drm_WARN_ON(&xe->drm, err); 466 if (err >= 0) 467 xa_erase(&xe->usm.asid_to_vm, asid); 468 } 469 470 err = xe_bo_pinned_init(xe); 471 if (err) 472 goto err; 473 474 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 475 WQ_MEM_RECLAIM); 476 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 477 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 478 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 479 if (!xe->ordered_wq || !xe->unordered_wq || 480 !xe->preempt_fence_wq || !xe->destroy_wq) { 481 /* 482 * Cleanup done in xe_device_destroy via 483 * drmm_add_action_or_reset register above 484 */ 485 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 486 err = -ENOMEM; 487 goto err; 488 } 489 490 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 491 if (err) 492 goto err; 493 494 err = xe_display_create(xe); 495 if (WARN_ON(err)) 496 goto err; 497 498 return xe; 499 500 err: 501 return ERR_PTR(err); 502 } 503 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 504 505 static bool xe_driver_flr_disabled(struct xe_device *xe) 506 { 507 if (IS_SRIOV_VF(xe)) 508 return true; 509 510 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 511 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 512 return true; 513 } 514 515 return false; 516 } 517 518 /* 519 * The driver-initiated FLR is the highest level of reset that we can trigger 520 * from within the driver. It is different from the PCI FLR in that it doesn't 521 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 522 * it doesn't require a re-enumeration of the PCI BARs. However, the 523 * driver-initiated FLR does still cause a reset of both GT and display and a 524 * memory wipe of local and stolen memory, so recovery would require a full HW 525 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 526 * perform the FLR as the very last action before releasing access to the HW 527 * during the driver release flow, we don't attempt recovery at all, because 528 * if/when a new instance of i915 is bound to the device it will do a full 529 * re-init anyway. 530 */ 531 static void __xe_driver_flr(struct xe_device *xe) 532 { 533 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 534 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 535 int ret; 536 537 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 538 539 /* 540 * Make sure any pending FLR requests have cleared by waiting for the 541 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 542 * to make sure it's not still set from a prior attempt (it's a write to 543 * clear bit). 544 * Note that we should never be in a situation where a previous attempt 545 * is still pending (unless the HW is totally dead), but better to be 546 * safe in case something unexpected happens 547 */ 548 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 549 if (ret) { 550 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 551 return; 552 } 553 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 554 555 /* Trigger the actual Driver-FLR */ 556 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 557 558 /* Wait for hardware teardown to complete */ 559 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 560 if (ret) { 561 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 562 return; 563 } 564 565 /* Wait for hardware/firmware re-init to complete */ 566 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 567 flr_timeout, NULL, false); 568 if (ret) { 569 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 570 return; 571 } 572 573 /* Clear sticky completion status */ 574 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 575 } 576 577 static void xe_driver_flr(struct xe_device *xe) 578 { 579 if (xe_driver_flr_disabled(xe)) 580 return; 581 582 __xe_driver_flr(xe); 583 } 584 585 static void xe_driver_flr_fini(void *arg) 586 { 587 struct xe_device *xe = arg; 588 589 if (xe->needs_flr_on_fini) 590 xe_driver_flr(xe); 591 } 592 593 static void xe_device_sanitize(void *arg) 594 { 595 struct xe_device *xe = arg; 596 struct xe_gt *gt; 597 u8 id; 598 599 for_each_gt(gt, xe, id) 600 xe_gt_sanitize(gt); 601 } 602 603 static int xe_set_dma_info(struct xe_device *xe) 604 { 605 unsigned int mask_size = xe->info.dma_mask_size; 606 int err; 607 608 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 609 610 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 611 if (err) 612 goto mask_err; 613 614 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 615 if (err) 616 goto mask_err; 617 618 return 0; 619 620 mask_err: 621 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 622 return err; 623 } 624 625 static bool verify_lmem_ready(struct xe_device *xe) 626 { 627 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 628 629 return !!val; 630 } 631 632 static int wait_for_lmem_ready(struct xe_device *xe) 633 { 634 unsigned long timeout, start; 635 636 if (!IS_DGFX(xe)) 637 return 0; 638 639 if (IS_SRIOV_VF(xe)) 640 return 0; 641 642 if (verify_lmem_ready(xe)) 643 return 0; 644 645 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 646 647 start = jiffies; 648 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 649 650 do { 651 if (signal_pending(current)) 652 return -EINTR; 653 654 /* 655 * The boot firmware initializes local memory and 656 * assesses its health. If memory training fails, 657 * the punit will have been instructed to keep the GT powered 658 * down.we won't be able to communicate with it 659 * 660 * If the status check is done before punit updates the register, 661 * it can lead to the system being unusable. 662 * use a timeout and defer the probe to prevent this. 663 */ 664 if (time_after(jiffies, timeout)) { 665 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 666 return -EPROBE_DEFER; 667 } 668 669 msleep(20); 670 671 } while (!verify_lmem_ready(xe)); 672 673 drm_dbg(&xe->drm, "lmem ready after %ums", 674 jiffies_to_msecs(jiffies - start)); 675 676 return 0; 677 } 678 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 679 680 static void sriov_update_device_info(struct xe_device *xe) 681 { 682 /* disable features that are not available/applicable to VFs */ 683 if (IS_SRIOV_VF(xe)) { 684 xe->info.probe_display = 0; 685 xe->info.has_heci_gscfi = 0; 686 xe->info.skip_guc_pc = 1; 687 xe->info.skip_pcode = 1; 688 } 689 } 690 691 /** 692 * xe_device_probe_early: Device early probe 693 * @xe: xe device instance 694 * 695 * Initialize MMIO resources that don't require any 696 * knowledge about tile count. Also initialize pcode and 697 * check vram initialization on root tile. 698 * 699 * Return: 0 on success, error code on failure 700 */ 701 int xe_device_probe_early(struct xe_device *xe) 702 { 703 int err; 704 705 err = xe_mmio_probe_early(xe); 706 if (err) 707 return err; 708 709 xe_sriov_probe_early(xe); 710 711 sriov_update_device_info(xe); 712 713 err = xe_pcode_probe_early(xe); 714 if (err || xe_survivability_mode_is_requested(xe)) { 715 int save_err = err; 716 717 /* 718 * Try to leave device in survivability mode if device is 719 * possible, but still return the previous error for error 720 * propagation 721 */ 722 err = xe_survivability_mode_enable(xe); 723 if (err) 724 return err; 725 726 return save_err; 727 } 728 729 err = wait_for_lmem_ready(xe); 730 if (err) 731 return err; 732 733 xe->wedged.mode = xe_modparam.wedged_mode; 734 735 return 0; 736 } 737 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 738 739 static int probe_has_flat_ccs(struct xe_device *xe) 740 { 741 struct xe_gt *gt; 742 unsigned int fw_ref; 743 u32 reg; 744 745 /* Always enabled/disabled, no runtime check to do */ 746 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 747 return 0; 748 749 gt = xe_root_mmio_gt(xe); 750 751 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 752 if (!fw_ref) 753 return -ETIMEDOUT; 754 755 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 756 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 757 758 if (!xe->info.has_flat_ccs) 759 drm_dbg(&xe->drm, 760 "Flat CCS has been disabled in bios, May lead to performance impact"); 761 762 xe_force_wake_put(gt_to_fw(gt), fw_ref); 763 764 return 0; 765 } 766 767 int xe_device_probe(struct xe_device *xe) 768 { 769 struct xe_tile *tile; 770 struct xe_gt *gt; 771 int err; 772 u8 id; 773 774 xe_pat_init_early(xe); 775 776 err = xe_sriov_init(xe); 777 if (err) 778 return err; 779 780 xe->info.mem_region_mask = 1; 781 782 err = xe_set_dma_info(xe); 783 if (err) 784 return err; 785 786 err = xe_mmio_probe_tiles(xe); 787 if (err) 788 return err; 789 790 err = xe_ttm_sys_mgr_init(xe); 791 if (err) 792 return err; 793 794 for_each_gt(gt, xe, id) { 795 err = xe_gt_init_early(gt); 796 if (err) 797 return err; 798 799 /* 800 * Only after this point can GT-specific MMIO operations 801 * (including things like communication with the GuC) 802 * be performed. 803 */ 804 xe_gt_mmio_init(gt); 805 806 if (IS_SRIOV_VF(xe)) { 807 xe_guc_comm_init_early(>->uc.guc); 808 err = xe_gt_sriov_vf_bootstrap(gt); 809 if (err) 810 return err; 811 err = xe_gt_sriov_vf_query_config(gt); 812 if (err) 813 return err; 814 } 815 } 816 817 for_each_tile(tile, xe, id) { 818 err = xe_ggtt_init_early(tile->mem.ggtt); 819 if (err) 820 return err; 821 err = xe_memirq_init(&tile->memirq); 822 if (err) 823 return err; 824 } 825 826 for_each_gt(gt, xe, id) { 827 err = xe_gt_init_hwconfig(gt); 828 if (err) 829 return err; 830 } 831 832 err = xe_devcoredump_init(xe); 833 if (err) 834 return err; 835 836 /* 837 * From here on, if a step fails, make sure a Driver-FLR is triggereed 838 */ 839 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 840 if (err) 841 return err; 842 843 err = probe_has_flat_ccs(xe); 844 if (err) 845 return err; 846 847 err = xe_vram_probe(xe); 848 if (err) 849 return err; 850 851 for_each_tile(tile, xe, id) { 852 err = xe_tile_init_noalloc(tile); 853 if (err) 854 return err; 855 } 856 857 /* Allocate and map stolen after potential VRAM resize */ 858 err = xe_ttm_stolen_mgr_init(xe); 859 if (err) 860 return err; 861 862 /* 863 * Now that GT is initialized (TTM in particular), 864 * we can try to init display, and inherit the initial fb. 865 * This is the reason the first allocation needs to be done 866 * inside display. 867 */ 868 err = xe_display_init_early(xe); 869 if (err) 870 return err; 871 872 for_each_tile(tile, xe, id) { 873 err = xe_tile_init(tile); 874 if (err) 875 return err; 876 } 877 878 err = xe_irq_install(xe); 879 if (err) 880 return err; 881 882 for_each_gt(gt, xe, id) { 883 err = xe_gt_init(gt); 884 if (err) 885 return err; 886 } 887 888 err = xe_heci_gsc_init(xe); 889 if (err) 890 return err; 891 892 err = xe_oa_init(xe); 893 if (err) 894 return err; 895 896 err = xe_display_init(xe); 897 if (err) 898 return err; 899 900 err = xe_pxp_init(xe); 901 if (err) 902 return err; 903 904 err = drm_dev_register(&xe->drm, 0); 905 if (err) 906 return err; 907 908 xe_display_register(xe); 909 910 err = xe_oa_register(xe); 911 if (err) 912 goto err_unregister_display; 913 914 err = xe_pmu_register(&xe->pmu); 915 if (err) 916 goto err_unregister_display; 917 918 err = xe_device_sysfs_init(xe); 919 if (err) 920 goto err_unregister_display; 921 922 xe_debugfs_register(xe); 923 924 err = xe_hwmon_register(xe); 925 if (err) 926 goto err_unregister_display; 927 928 for_each_gt(gt, xe, id) 929 xe_gt_sanitize_freq(gt); 930 931 xe_vsec_init(xe); 932 933 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 934 935 err_unregister_display: 936 xe_display_unregister(xe); 937 938 return err; 939 } 940 941 void xe_device_remove(struct xe_device *xe) 942 { 943 xe_display_unregister(xe); 944 945 drm_dev_unplug(&xe->drm); 946 947 xe_bo_pci_dev_remove_all(xe); 948 } 949 950 void xe_device_shutdown(struct xe_device *xe) 951 { 952 struct xe_gt *gt; 953 u8 id; 954 955 drm_dbg(&xe->drm, "Shutting down device\n"); 956 957 if (xe_driver_flr_disabled(xe)) { 958 xe_display_pm_shutdown(xe); 959 960 xe_irq_suspend(xe); 961 962 for_each_gt(gt, xe, id) 963 xe_gt_shutdown(gt); 964 965 xe_display_pm_shutdown_late(xe); 966 } else { 967 /* BOOM! */ 968 __xe_driver_flr(xe); 969 } 970 } 971 972 /** 973 * xe_device_wmb() - Device specific write memory barrier 974 * @xe: the &xe_device 975 * 976 * While wmb() is sufficient for a barrier if we use system memory, on discrete 977 * platforms with device memory we additionally need to issue a register write. 978 * Since it doesn't matter which register we write to, use the read-only VF_CAP 979 * register that is also marked as accessible by the VFs. 980 */ 981 void xe_device_wmb(struct xe_device *xe) 982 { 983 wmb(); 984 if (IS_DGFX(xe)) 985 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 986 } 987 988 /** 989 * xe_device_td_flush() - Flush transient L3 cache entries 990 * @xe: The device 991 * 992 * Display engine has direct access to memory and is never coherent with L3/L4 993 * caches (or CPU caches), however KMD is responsible for specifically flushing 994 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 995 * can happen from such a surface without seeing corruption. 996 * 997 * Display surfaces can be tagged as transient by mapping it using one of the 998 * various L3:XD PAT index modes on Xe2. 999 * 1000 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1001 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1002 * Media is not coherent with L3 and we want to support render-vs-media 1003 * usescases. For other engines like copy/blt the HW internally forces uncached 1004 * behaviour, hence why we can skip the TDF on such platforms. 1005 */ 1006 void xe_device_td_flush(struct xe_device *xe) 1007 { 1008 struct xe_gt *gt; 1009 unsigned int fw_ref; 1010 u8 id; 1011 1012 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1013 return; 1014 1015 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1016 xe_device_l2_flush(xe); 1017 return; 1018 } 1019 1020 for_each_gt(gt, xe, id) { 1021 if (xe_gt_is_media_type(gt)) 1022 continue; 1023 1024 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1025 if (!fw_ref) 1026 return; 1027 1028 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1029 /* 1030 * FIXME: We can likely do better here with our choice of 1031 * timeout. Currently we just assume the worst case, i.e. 150us, 1032 * which is believed to be sufficient to cover the worst case 1033 * scenario on current platforms if all cache entries are 1034 * transient and need to be flushed.. 1035 */ 1036 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1037 150, NULL, false)) 1038 xe_gt_err_once(gt, "TD flush timeout\n"); 1039 1040 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1041 } 1042 } 1043 1044 void xe_device_l2_flush(struct xe_device *xe) 1045 { 1046 struct xe_gt *gt; 1047 unsigned int fw_ref; 1048 1049 gt = xe_root_mmio_gt(xe); 1050 1051 if (!XE_WA(gt, 16023588340)) 1052 return; 1053 1054 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1055 if (!fw_ref) 1056 return; 1057 1058 spin_lock(>->global_invl_lock); 1059 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1060 1061 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1062 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1063 spin_unlock(>->global_invl_lock); 1064 1065 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1066 } 1067 1068 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1069 { 1070 return xe_device_has_flat_ccs(xe) ? 1071 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1072 } 1073 1074 /** 1075 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1076 * @xe: xe device instance 1077 * 1078 * To be used before any kind of memory access. It will splat a debug warning 1079 * if the device is currently sleeping. But it doesn't guarantee in any way 1080 * that the device is going to remain awake. Xe PM runtime get and put 1081 * functions might be added to the outer bound of the memory access, while 1082 * this check is intended for inner usage to splat some warning if the worst 1083 * case has just happened. 1084 */ 1085 void xe_device_assert_mem_access(struct xe_device *xe) 1086 { 1087 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1088 } 1089 1090 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1091 { 1092 struct xe_gt *gt; 1093 u8 id; 1094 1095 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1096 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1097 1098 for_each_gt(gt, xe, id) { 1099 drm_printf(p, "GT id: %u\n", id); 1100 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1101 drm_printf(p, "\tType: %s\n", 1102 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1103 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1104 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1105 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1106 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1107 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1108 } 1109 } 1110 1111 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1112 { 1113 return sign_extend64(address, xe->info.va_bits - 1); 1114 } 1115 1116 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1117 { 1118 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1119 } 1120 1121 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1122 { 1123 struct xe_device *xe = arg; 1124 1125 xe_pm_runtime_put(xe); 1126 } 1127 1128 /** 1129 * xe_device_declare_wedged - Declare device wedged 1130 * @xe: xe device instance 1131 * 1132 * This is a final state that can only be cleared with a module 1133 * re-probe (unbind + bind). 1134 * In this state every IOCTL will be blocked so the GT cannot be used. 1135 * In general it will be called upon any critical error such as gt reset 1136 * failure or guc loading failure. Userspace will be notified of this state 1137 * through device wedged uevent. 1138 * If xe.wedged module parameter is set to 2, this function will be called 1139 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1140 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1141 * the issue is preserved for further debugging. 1142 */ 1143 void xe_device_declare_wedged(struct xe_device *xe) 1144 { 1145 struct xe_gt *gt; 1146 u8 id; 1147 1148 if (xe->wedged.mode == 0) { 1149 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1150 return; 1151 } 1152 1153 xe_pm_runtime_get_noresume(xe); 1154 1155 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1156 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1157 return; 1158 } 1159 1160 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1161 xe->needs_flr_on_fini = true; 1162 drm_err(&xe->drm, 1163 "CRITICAL: Xe has declared device %s as wedged.\n" 1164 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1165 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1166 dev_name(xe->drm.dev)); 1167 1168 /* Notify userspace of wedged device */ 1169 drm_dev_wedged_event(&xe->drm, 1170 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET); 1171 } 1172 1173 for_each_gt(gt, xe, id) 1174 xe_gt_declare_wedged(gt); 1175 } 1176