xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/delay.h>
9 #include <linux/units.h>
10 
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <drm/xe_drm.h>
19 
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_hwmon.h"
41 #include "xe_irq.h"
42 #include "xe_memirq.h"
43 #include "xe_mmio.h"
44 #include "xe_module.h"
45 #include "xe_observation.h"
46 #include "xe_pat.h"
47 #include "xe_pcode.h"
48 #include "xe_pm.h"
49 #include "xe_query.h"
50 #include "xe_sriov.h"
51 #include "xe_tile.h"
52 #include "xe_ttm_stolen_mgr.h"
53 #include "xe_ttm_sys_mgr.h"
54 #include "xe_vm.h"
55 #include "xe_vram.h"
56 #include "xe_wait_user_fence.h"
57 
58 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
59 {
60 	struct xe_device *xe = to_xe_device(dev);
61 	struct xe_drm_client *client;
62 	struct xe_file *xef;
63 	int ret = -ENOMEM;
64 
65 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
66 	if (!xef)
67 		return ret;
68 
69 	client = xe_drm_client_alloc();
70 	if (!client) {
71 		kfree(xef);
72 		return ret;
73 	}
74 
75 	xef->drm = file;
76 	xef->client = client;
77 	xef->xe = xe;
78 
79 	mutex_init(&xef->vm.lock);
80 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
81 
82 	mutex_init(&xef->exec_queue.lock);
83 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
84 
85 	spin_lock(&xe->clients.lock);
86 	xe->clients.count++;
87 	spin_unlock(&xe->clients.lock);
88 
89 	file->driver_priv = xef;
90 	kref_init(&xef->refcount);
91 
92 	return 0;
93 }
94 
95 static void xe_file_destroy(struct kref *ref)
96 {
97 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
98 	struct xe_device *xe = xef->xe;
99 
100 	xa_destroy(&xef->exec_queue.xa);
101 	mutex_destroy(&xef->exec_queue.lock);
102 	xa_destroy(&xef->vm.xa);
103 	mutex_destroy(&xef->vm.lock);
104 
105 	spin_lock(&xe->clients.lock);
106 	xe->clients.count--;
107 	spin_unlock(&xe->clients.lock);
108 
109 	xe_drm_client_put(xef->client);
110 	kfree(xef);
111 }
112 
113 /**
114  * xe_file_get() - Take a reference to the xe file object
115  * @xef: Pointer to the xe file
116  *
117  * Anyone with a pointer to xef must take a reference to the xe file
118  * object using this call.
119  *
120  * Return: xe file pointer
121  */
122 struct xe_file *xe_file_get(struct xe_file *xef)
123 {
124 	kref_get(&xef->refcount);
125 	return xef;
126 }
127 
128 /**
129  * xe_file_put() - Drop a reference to the xe file object
130  * @xef: Pointer to the xe file
131  *
132  * Used to drop reference to the xef object
133  */
134 void xe_file_put(struct xe_file *xef)
135 {
136 	kref_put(&xef->refcount, xe_file_destroy);
137 }
138 
139 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
140 {
141 	struct xe_device *xe = to_xe_device(dev);
142 	struct xe_file *xef = file->driver_priv;
143 	struct xe_vm *vm;
144 	struct xe_exec_queue *q;
145 	unsigned long idx;
146 
147 	xe_pm_runtime_get(xe);
148 
149 	/*
150 	 * No need for exec_queue.lock here as there is no contention for it
151 	 * when FD is closing as IOCTLs presumably can't be modifying the
152 	 * xarray. Taking exec_queue.lock here causes undue dependency on
153 	 * vm->lock taken during xe_exec_queue_kill().
154 	 */
155 	xa_for_each(&xef->exec_queue.xa, idx, q) {
156 		xe_exec_queue_kill(q);
157 		xe_exec_queue_put(q);
158 	}
159 	mutex_lock(&xef->vm.lock);
160 	xa_for_each(&xef->vm.xa, idx, vm)
161 		xe_vm_close_and_put(vm);
162 	mutex_unlock(&xef->vm.lock);
163 
164 	xe_file_put(xef);
165 
166 	xe_pm_runtime_put(xe);
167 }
168 
169 static const struct drm_ioctl_desc xe_ioctls[] = {
170 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
171 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
172 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
173 			  DRM_RENDER_ALLOW),
174 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
175 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
176 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
177 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
178 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
179 			  DRM_RENDER_ALLOW),
180 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
181 			  DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
183 			  DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
185 			  DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
187 };
188 
189 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
190 {
191 	struct drm_file *file_priv = file->private_data;
192 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
193 	long ret;
194 
195 	if (xe_device_wedged(xe))
196 		return -ECANCELED;
197 
198 	ret = xe_pm_runtime_get_ioctl(xe);
199 	if (ret >= 0)
200 		ret = drm_ioctl(file, cmd, arg);
201 	xe_pm_runtime_put(xe);
202 
203 	return ret;
204 }
205 
206 #ifdef CONFIG_COMPAT
207 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
208 {
209 	struct drm_file *file_priv = file->private_data;
210 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
211 	long ret;
212 
213 	if (xe_device_wedged(xe))
214 		return -ECANCELED;
215 
216 	ret = xe_pm_runtime_get_ioctl(xe);
217 	if (ret >= 0)
218 		ret = drm_compat_ioctl(file, cmd, arg);
219 	xe_pm_runtime_put(xe);
220 
221 	return ret;
222 }
223 #else
224 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
225 #define xe_drm_compat_ioctl NULL
226 #endif
227 
228 static const struct file_operations xe_driver_fops = {
229 	.owner = THIS_MODULE,
230 	.open = drm_open,
231 	.release = drm_release_noglobal,
232 	.unlocked_ioctl = xe_drm_ioctl,
233 	.mmap = drm_gem_mmap,
234 	.poll = drm_poll,
235 	.read = drm_read,
236 	.compat_ioctl = xe_drm_compat_ioctl,
237 	.llseek = noop_llseek,
238 #ifdef CONFIG_PROC_FS
239 	.show_fdinfo = drm_show_fdinfo,
240 #endif
241 };
242 
243 static struct drm_driver driver = {
244 	/* Don't use MTRRs here; the Xserver or userspace app should
245 	 * deal with them for Intel hardware.
246 	 */
247 	.driver_features =
248 	    DRIVER_GEM |
249 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
250 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
251 	.open = xe_file_open,
252 	.postclose = xe_file_close,
253 
254 	.gem_prime_import = xe_gem_prime_import,
255 
256 	.dumb_create = xe_bo_dumb_create,
257 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
258 #ifdef CONFIG_PROC_FS
259 	.show_fdinfo = xe_drm_client_fdinfo,
260 #endif
261 	.ioctls = xe_ioctls,
262 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
263 	.fops = &xe_driver_fops,
264 	.name = DRIVER_NAME,
265 	.desc = DRIVER_DESC,
266 	.date = DRIVER_DATE,
267 	.major = DRIVER_MAJOR,
268 	.minor = DRIVER_MINOR,
269 	.patchlevel = DRIVER_PATCHLEVEL,
270 };
271 
272 static void xe_device_destroy(struct drm_device *dev, void *dummy)
273 {
274 	struct xe_device *xe = to_xe_device(dev);
275 
276 	if (xe->preempt_fence_wq)
277 		destroy_workqueue(xe->preempt_fence_wq);
278 
279 	if (xe->ordered_wq)
280 		destroy_workqueue(xe->ordered_wq);
281 
282 	if (xe->unordered_wq)
283 		destroy_workqueue(xe->unordered_wq);
284 
285 	ttm_device_fini(&xe->ttm);
286 }
287 
288 struct xe_device *xe_device_create(struct pci_dev *pdev,
289 				   const struct pci_device_id *ent)
290 {
291 	struct xe_device *xe;
292 	int err;
293 
294 	xe_display_driver_set_hooks(&driver);
295 
296 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
297 	if (err)
298 		return ERR_PTR(err);
299 
300 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
301 	if (IS_ERR(xe))
302 		return xe;
303 
304 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
305 			      xe->drm.anon_inode->i_mapping,
306 			      xe->drm.vma_offset_manager, false, false);
307 	if (WARN_ON(err))
308 		goto err;
309 
310 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
311 	if (err)
312 		goto err;
313 
314 	xe->info.devid = pdev->device;
315 	xe->info.revid = pdev->revision;
316 	xe->info.force_execlist = xe_modparam.force_execlist;
317 
318 	spin_lock_init(&xe->irq.lock);
319 	spin_lock_init(&xe->clients.lock);
320 
321 	init_waitqueue_head(&xe->ufence_wq);
322 
323 	err = drmm_mutex_init(&xe->drm, &xe->usm.lock);
324 	if (err)
325 		goto err;
326 
327 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
328 
329 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
330 		/* Trigger a large asid and an early asid wrap. */
331 		u32 asid;
332 
333 		BUILD_BUG_ON(XE_MAX_ASID < 2);
334 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
335 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
336 				      &xe->usm.next_asid, GFP_KERNEL);
337 		drm_WARN_ON(&xe->drm, err);
338 		if (err >= 0)
339 			xa_erase(&xe->usm.asid_to_vm, asid);
340 	}
341 
342 	spin_lock_init(&xe->pinned.lock);
343 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
344 	INIT_LIST_HEAD(&xe->pinned.external_vram);
345 	INIT_LIST_HEAD(&xe->pinned.evicted);
346 
347 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
348 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
349 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
350 	if (!xe->ordered_wq || !xe->unordered_wq ||
351 	    !xe->preempt_fence_wq) {
352 		/*
353 		 * Cleanup done in xe_device_destroy via
354 		 * drmm_add_action_or_reset register above
355 		 */
356 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
357 		err = -ENOMEM;
358 		goto err;
359 	}
360 
361 	err = xe_display_create(xe);
362 	if (WARN_ON(err))
363 		goto err;
364 
365 	return xe;
366 
367 err:
368 	return ERR_PTR(err);
369 }
370 
371 /*
372  * The driver-initiated FLR is the highest level of reset that we can trigger
373  * from within the driver. It is different from the PCI FLR in that it doesn't
374  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
375  * it doesn't require a re-enumeration of the PCI BARs. However, the
376  * driver-initiated FLR does still cause a reset of both GT and display and a
377  * memory wipe of local and stolen memory, so recovery would require a full HW
378  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
379  * perform the FLR as the very last action before releasing access to the HW
380  * during the driver release flow, we don't attempt recovery at all, because
381  * if/when a new instance of i915 is bound to the device it will do a full
382  * re-init anyway.
383  */
384 static void xe_driver_flr(struct xe_device *xe)
385 {
386 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
387 	struct xe_gt *gt = xe_root_mmio_gt(xe);
388 	int ret;
389 
390 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
391 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
392 		return;
393 	}
394 
395 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
396 
397 	/*
398 	 * Make sure any pending FLR requests have cleared by waiting for the
399 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
400 	 * to make sure it's not still set from a prior attempt (it's a write to
401 	 * clear bit).
402 	 * Note that we should never be in a situation where a previous attempt
403 	 * is still pending (unless the HW is totally dead), but better to be
404 	 * safe in case something unexpected happens
405 	 */
406 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
407 	if (ret) {
408 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
409 		return;
410 	}
411 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
412 
413 	/* Trigger the actual Driver-FLR */
414 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
415 
416 	/* Wait for hardware teardown to complete */
417 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
418 	if (ret) {
419 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
420 		return;
421 	}
422 
423 	/* Wait for hardware/firmware re-init to complete */
424 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
425 			     flr_timeout, NULL, false);
426 	if (ret) {
427 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
428 		return;
429 	}
430 
431 	/* Clear sticky completion status */
432 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
433 }
434 
435 static void xe_driver_flr_fini(void *arg)
436 {
437 	struct xe_device *xe = arg;
438 
439 	if (xe->needs_flr_on_fini)
440 		xe_driver_flr(xe);
441 }
442 
443 static void xe_device_sanitize(void *arg)
444 {
445 	struct xe_device *xe = arg;
446 	struct xe_gt *gt;
447 	u8 id;
448 
449 	for_each_gt(gt, xe, id)
450 		xe_gt_sanitize(gt);
451 }
452 
453 static int xe_set_dma_info(struct xe_device *xe)
454 {
455 	unsigned int mask_size = xe->info.dma_mask_size;
456 	int err;
457 
458 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
459 
460 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
461 	if (err)
462 		goto mask_err;
463 
464 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
465 	if (err)
466 		goto mask_err;
467 
468 	return 0;
469 
470 mask_err:
471 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
472 	return err;
473 }
474 
475 static bool verify_lmem_ready(struct xe_gt *gt)
476 {
477 	u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
478 
479 	return !!val;
480 }
481 
482 static int wait_for_lmem_ready(struct xe_device *xe)
483 {
484 	struct xe_gt *gt = xe_root_mmio_gt(xe);
485 	unsigned long timeout, start;
486 
487 	if (!IS_DGFX(xe))
488 		return 0;
489 
490 	if (IS_SRIOV_VF(xe))
491 		return 0;
492 
493 	if (verify_lmem_ready(gt))
494 		return 0;
495 
496 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
497 
498 	start = jiffies;
499 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
500 
501 	do {
502 		if (signal_pending(current))
503 			return -EINTR;
504 
505 		/*
506 		 * The boot firmware initializes local memory and
507 		 * assesses its health. If memory training fails,
508 		 * the punit will have been instructed to keep the GT powered
509 		 * down.we won't be able to communicate with it
510 		 *
511 		 * If the status check is done before punit updates the register,
512 		 * it can lead to the system being unusable.
513 		 * use a timeout and defer the probe to prevent this.
514 		 */
515 		if (time_after(jiffies, timeout)) {
516 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
517 			return -EPROBE_DEFER;
518 		}
519 
520 		msleep(20);
521 
522 	} while (!verify_lmem_ready(gt));
523 
524 	drm_dbg(&xe->drm, "lmem ready after %ums",
525 		jiffies_to_msecs(jiffies - start));
526 
527 	return 0;
528 }
529 
530 static void update_device_info(struct xe_device *xe)
531 {
532 	/* disable features that are not available/applicable to VFs */
533 	if (IS_SRIOV_VF(xe)) {
534 		xe->info.enable_display = 0;
535 		xe->info.has_heci_gscfi = 0;
536 		xe->info.skip_guc_pc = 1;
537 		xe->info.skip_pcode = 1;
538 	}
539 }
540 
541 /**
542  * xe_device_probe_early: Device early probe
543  * @xe: xe device instance
544  *
545  * Initialize MMIO resources that don't require any
546  * knowledge about tile count. Also initialize pcode and
547  * check vram initialization on root tile.
548  *
549  * Return: 0 on success, error code on failure
550  */
551 int xe_device_probe_early(struct xe_device *xe)
552 {
553 	int err;
554 
555 	err = xe_mmio_init(xe);
556 	if (err)
557 		return err;
558 
559 	xe_sriov_probe_early(xe);
560 
561 	update_device_info(xe);
562 
563 	err = xe_pcode_probe_early(xe);
564 	if (err)
565 		return err;
566 
567 	err = wait_for_lmem_ready(xe);
568 	if (err)
569 		return err;
570 
571 	xe->wedged.mode = xe_modparam.wedged_mode;
572 
573 	return 0;
574 }
575 
576 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
577 {
578 	u32 reg;
579 	int err;
580 
581 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
582 		return 0;
583 
584 	struct xe_gt *gt = xe_root_mmio_gt(xe);
585 
586 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
587 	if (err)
588 		return err;
589 
590 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
591 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
592 
593 	if (!xe->info.has_flat_ccs)
594 		drm_dbg(&xe->drm,
595 			"Flat CCS has been disabled in bios, May lead to performance impact");
596 
597 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
598 }
599 
600 int xe_device_probe(struct xe_device *xe)
601 {
602 	struct xe_tile *tile;
603 	struct xe_gt *gt;
604 	int err;
605 	u8 last_gt;
606 	u8 id;
607 
608 	xe_pat_init_early(xe);
609 
610 	err = xe_sriov_init(xe);
611 	if (err)
612 		return err;
613 
614 	xe->info.mem_region_mask = 1;
615 	err = xe_display_init_nommio(xe);
616 	if (err)
617 		return err;
618 
619 	err = xe_set_dma_info(xe);
620 	if (err)
621 		return err;
622 
623 	err = xe_mmio_probe_tiles(xe);
624 	if (err)
625 		return err;
626 
627 	xe_ttm_sys_mgr_init(xe);
628 
629 	for_each_gt(gt, xe, id) {
630 		err = xe_gt_init_early(gt);
631 		if (err)
632 			return err;
633 	}
634 
635 	for_each_tile(tile, xe, id) {
636 		if (IS_SRIOV_VF(xe)) {
637 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
638 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
639 			if (err)
640 				return err;
641 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
642 			if (err)
643 				return err;
644 		}
645 		err = xe_ggtt_init_early(tile->mem.ggtt);
646 		if (err)
647 			return err;
648 		if (IS_SRIOV_VF(xe)) {
649 			err = xe_memirq_init(&tile->sriov.vf.memirq);
650 			if (err)
651 				return err;
652 		}
653 	}
654 
655 	for_each_gt(gt, xe, id) {
656 		err = xe_gt_init_hwconfig(gt);
657 		if (err)
658 			return err;
659 	}
660 
661 	err = xe_devcoredump_init(xe);
662 	if (err)
663 		return err;
664 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
665 	if (err)
666 		return err;
667 
668 	err = xe_display_init_noirq(xe);
669 	if (err)
670 		return err;
671 
672 	err = xe_irq_install(xe);
673 	if (err)
674 		goto err;
675 
676 	err = xe_device_set_has_flat_ccs(xe);
677 	if (err)
678 		goto err;
679 
680 	err = xe_vram_probe(xe);
681 	if (err)
682 		goto err;
683 
684 	for_each_tile(tile, xe, id) {
685 		err = xe_tile_init_noalloc(tile);
686 		if (err)
687 			goto err;
688 	}
689 
690 	/* Allocate and map stolen after potential VRAM resize */
691 	xe_ttm_stolen_mgr_init(xe);
692 
693 	/*
694 	 * Now that GT is initialized (TTM in particular),
695 	 * we can try to init display, and inherit the initial fb.
696 	 * This is the reason the first allocation needs to be done
697 	 * inside display.
698 	 */
699 	err = xe_display_init_noaccel(xe);
700 	if (err)
701 		goto err;
702 
703 	for_each_gt(gt, xe, id) {
704 		last_gt = id;
705 
706 		err = xe_gt_init(gt);
707 		if (err)
708 			goto err_fini_gt;
709 	}
710 
711 	xe_heci_gsc_init(xe);
712 
713 	err = xe_oa_init(xe);
714 	if (err)
715 		goto err_fini_gt;
716 
717 	err = xe_display_init(xe);
718 	if (err)
719 		goto err_fini_oa;
720 
721 	err = drm_dev_register(&xe->drm, 0);
722 	if (err)
723 		goto err_fini_display;
724 
725 	xe_display_register(xe);
726 
727 	xe_oa_register(xe);
728 
729 	xe_debugfs_register(xe);
730 
731 	xe_hwmon_register(xe);
732 
733 	for_each_gt(gt, xe, id)
734 		xe_gt_sanitize_freq(gt);
735 
736 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
737 
738 err_fini_display:
739 	xe_display_driver_remove(xe);
740 
741 err_fini_oa:
742 	xe_oa_fini(xe);
743 
744 err_fini_gt:
745 	for_each_gt(gt, xe, id) {
746 		if (id < last_gt)
747 			xe_gt_remove(gt);
748 		else
749 			break;
750 	}
751 
752 err:
753 	xe_display_fini(xe);
754 	return err;
755 }
756 
757 static void xe_device_remove_display(struct xe_device *xe)
758 {
759 	xe_display_unregister(xe);
760 
761 	drm_dev_unplug(&xe->drm);
762 	xe_display_driver_remove(xe);
763 }
764 
765 void xe_device_remove(struct xe_device *xe)
766 {
767 	struct xe_gt *gt;
768 	u8 id;
769 
770 	xe_oa_unregister(xe);
771 
772 	xe_device_remove_display(xe);
773 
774 	xe_display_fini(xe);
775 
776 	xe_oa_fini(xe);
777 
778 	xe_heci_gsc_fini(xe);
779 
780 	for_each_gt(gt, xe, id)
781 		xe_gt_remove(gt);
782 }
783 
784 void xe_device_shutdown(struct xe_device *xe)
785 {
786 }
787 
788 void xe_device_wmb(struct xe_device *xe)
789 {
790 	struct xe_gt *gt = xe_root_mmio_gt(xe);
791 
792 	wmb();
793 	if (IS_DGFX(xe))
794 		xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0);
795 }
796 
797 /**
798  * xe_device_td_flush() - Flush transient L3 cache entries
799  * @xe: The device
800  *
801  * Display engine has direct access to memory and is never coherent with L3/L4
802  * caches (or CPU caches), however KMD is responsible for specifically flushing
803  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
804  * can happen from such a surface without seeing corruption.
805  *
806  * Display surfaces can be tagged as transient by mapping it using one of the
807  * various L3:XD PAT index modes on Xe2.
808  *
809  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
810  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
811  * Media is not coherent with L3 and we want to support render-vs-media
812  * usescases. For other engines like copy/blt the HW internally forces uncached
813  * behaviour, hence why we can skip the TDF on such platforms.
814  */
815 void xe_device_td_flush(struct xe_device *xe)
816 {
817 	struct xe_gt *gt;
818 	u8 id;
819 
820 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
821 		return;
822 
823 	for_each_gt(gt, xe, id) {
824 		if (xe_gt_is_media_type(gt))
825 			continue;
826 
827 		if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
828 			return;
829 
830 		xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
831 		/*
832 		 * FIXME: We can likely do better here with our choice of
833 		 * timeout. Currently we just assume the worst case, i.e. 150us,
834 		 * which is believed to be sufficient to cover the worst case
835 		 * scenario on current platforms if all cache entries are
836 		 * transient and need to be flushed..
837 		 */
838 		if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
839 				   150, NULL, false))
840 			xe_gt_err_once(gt, "TD flush timeout\n");
841 
842 		xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
843 	}
844 }
845 
846 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
847 {
848 	return xe_device_has_flat_ccs(xe) ?
849 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
850 }
851 
852 /**
853  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
854  * @xe: xe device instance
855  *
856  * To be used before any kind of memory access. It will splat a debug warning
857  * if the device is currently sleeping. But it doesn't guarantee in any way
858  * that the device is going to remain awake. Xe PM runtime get and put
859  * functions might be added to the outer bound of the memory access, while
860  * this check is intended for inner usage to splat some warning if the worst
861  * case has just happened.
862  */
863 void xe_device_assert_mem_access(struct xe_device *xe)
864 {
865 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
866 }
867 
868 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
869 {
870 	struct xe_gt *gt;
871 	u8 id;
872 
873 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
874 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
875 
876 	for_each_gt(gt, xe, id) {
877 		drm_printf(p, "GT id: %u\n", id);
878 		drm_printf(p, "\tType: %s\n",
879 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
880 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
881 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
882 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
883 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
884 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
885 	}
886 }
887 
888 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
889 {
890 	return sign_extend64(address, xe->info.va_bits - 1);
891 }
892 
893 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
894 {
895 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
896 }
897 
898 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
899 {
900 	struct xe_device *xe = arg;
901 
902 	xe_pm_runtime_put(xe);
903 }
904 
905 /**
906  * xe_device_declare_wedged - Declare device wedged
907  * @xe: xe device instance
908  *
909  * This is a final state that can only be cleared with a mudule
910  * re-probe (unbind + bind).
911  * In this state every IOCTL will be blocked so the GT cannot be used.
912  * In general it will be called upon any critical error such as gt reset
913  * failure or guc loading failure.
914  * If xe.wedged module parameter is set to 2, this function will be called
915  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
916  * snapshot capture. In this mode, GT reset won't be attempted so the state of
917  * the issue is preserved for further debugging.
918  */
919 void xe_device_declare_wedged(struct xe_device *xe)
920 {
921 	struct xe_gt *gt;
922 	u8 id;
923 
924 	if (xe->wedged.mode == 0) {
925 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
926 		return;
927 	}
928 
929 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
930 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
931 		return;
932 	}
933 
934 	xe_pm_runtime_get_noresume(xe);
935 
936 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
937 		xe->needs_flr_on_fini = true;
938 		drm_err(&xe->drm,
939 			"CRITICAL: Xe has declared device %s as wedged.\n"
940 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
941 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
942 			dev_name(xe->drm.dev));
943 	}
944 
945 	for_each_gt(gt, xe, id)
946 		xe_gt_declare_wedged(gt);
947 }
948