1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_oa.h" 48 #include "xe_observation.h" 49 #include "xe_pat.h" 50 #include "xe_pcode.h" 51 #include "xe_pm.h" 52 #include "xe_pmu.h" 53 #include "xe_pxp.h" 54 #include "xe_query.h" 55 #include "xe_shrinker.h" 56 #include "xe_survivability_mode.h" 57 #include "xe_sriov.h" 58 #include "xe_tile.h" 59 #include "xe_ttm_stolen_mgr.h" 60 #include "xe_ttm_sys_mgr.h" 61 #include "xe_vm.h" 62 #include "xe_vram.h" 63 #include "xe_vsec.h" 64 #include "xe_wait_user_fence.h" 65 #include "xe_wa.h" 66 67 #include <generated/xe_wa_oob.h> 68 69 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 70 { 71 struct xe_device *xe = to_xe_device(dev); 72 struct xe_drm_client *client; 73 struct xe_file *xef; 74 int ret = -ENOMEM; 75 struct task_struct *task = NULL; 76 77 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 78 if (!xef) 79 return ret; 80 81 client = xe_drm_client_alloc(); 82 if (!client) { 83 kfree(xef); 84 return ret; 85 } 86 87 xef->drm = file; 88 xef->client = client; 89 xef->xe = xe; 90 91 mutex_init(&xef->vm.lock); 92 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 93 94 mutex_init(&xef->exec_queue.lock); 95 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 96 97 file->driver_priv = xef; 98 kref_init(&xef->refcount); 99 100 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 101 if (task) { 102 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 103 xef->pid = task->pid; 104 put_task_struct(task); 105 } 106 107 return 0; 108 } 109 110 static void xe_file_destroy(struct kref *ref) 111 { 112 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 113 114 xa_destroy(&xef->exec_queue.xa); 115 mutex_destroy(&xef->exec_queue.lock); 116 xa_destroy(&xef->vm.xa); 117 mutex_destroy(&xef->vm.lock); 118 119 xe_drm_client_put(xef->client); 120 kfree(xef->process_name); 121 kfree(xef); 122 } 123 124 /** 125 * xe_file_get() - Take a reference to the xe file object 126 * @xef: Pointer to the xe file 127 * 128 * Anyone with a pointer to xef must take a reference to the xe file 129 * object using this call. 130 * 131 * Return: xe file pointer 132 */ 133 struct xe_file *xe_file_get(struct xe_file *xef) 134 { 135 kref_get(&xef->refcount); 136 return xef; 137 } 138 139 /** 140 * xe_file_put() - Drop a reference to the xe file object 141 * @xef: Pointer to the xe file 142 * 143 * Used to drop reference to the xef object 144 */ 145 void xe_file_put(struct xe_file *xef) 146 { 147 kref_put(&xef->refcount, xe_file_destroy); 148 } 149 150 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 151 { 152 struct xe_device *xe = to_xe_device(dev); 153 struct xe_file *xef = file->driver_priv; 154 struct xe_vm *vm; 155 struct xe_exec_queue *q; 156 unsigned long idx; 157 158 xe_pm_runtime_get(xe); 159 160 /* 161 * No need for exec_queue.lock here as there is no contention for it 162 * when FD is closing as IOCTLs presumably can't be modifying the 163 * xarray. Taking exec_queue.lock here causes undue dependency on 164 * vm->lock taken during xe_exec_queue_kill(). 165 */ 166 xa_for_each(&xef->exec_queue.xa, idx, q) { 167 if (q->vm && q->hwe->hw_engine_group) 168 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 169 xe_exec_queue_kill(q); 170 xe_exec_queue_put(q); 171 } 172 xa_for_each(&xef->vm.xa, idx, vm) 173 xe_vm_close_and_put(vm); 174 175 xe_file_put(xef); 176 177 xe_pm_runtime_put(xe); 178 } 179 180 static const struct drm_ioctl_desc xe_ioctls[] = { 181 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 182 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 183 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 184 DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 190 DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 192 DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 198 }; 199 200 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 201 { 202 struct drm_file *file_priv = file->private_data; 203 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 204 long ret; 205 206 if (xe_device_wedged(xe)) 207 return -ECANCELED; 208 209 ret = xe_pm_runtime_get_ioctl(xe); 210 if (ret >= 0) 211 ret = drm_ioctl(file, cmd, arg); 212 xe_pm_runtime_put(xe); 213 214 return ret; 215 } 216 217 #ifdef CONFIG_COMPAT 218 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 219 { 220 struct drm_file *file_priv = file->private_data; 221 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 222 long ret; 223 224 if (xe_device_wedged(xe)) 225 return -ECANCELED; 226 227 ret = xe_pm_runtime_get_ioctl(xe); 228 if (ret >= 0) 229 ret = drm_compat_ioctl(file, cmd, arg); 230 xe_pm_runtime_put(xe); 231 232 return ret; 233 } 234 #else 235 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 236 #define xe_drm_compat_ioctl NULL 237 #endif 238 239 static void barrier_open(struct vm_area_struct *vma) 240 { 241 drm_dev_get(vma->vm_private_data); 242 } 243 244 static void barrier_close(struct vm_area_struct *vma) 245 { 246 drm_dev_put(vma->vm_private_data); 247 } 248 249 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 250 { 251 struct page *dummy_page = (struct page *)res; 252 253 __free_page(dummy_page); 254 } 255 256 static vm_fault_t barrier_fault(struct vm_fault *vmf) 257 { 258 struct drm_device *dev = vmf->vma->vm_private_data; 259 struct vm_area_struct *vma = vmf->vma; 260 vm_fault_t ret = VM_FAULT_NOPAGE; 261 pgprot_t prot; 262 int idx; 263 264 prot = vm_get_page_prot(vma->vm_flags); 265 266 if (drm_dev_enter(dev, &idx)) { 267 unsigned long pfn; 268 269 #define LAST_DB_PAGE_OFFSET 0x7ff001 270 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 271 LAST_DB_PAGE_OFFSET); 272 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 273 pgprot_noncached(prot)); 274 drm_dev_exit(idx); 275 } else { 276 struct page *page; 277 278 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 279 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 280 if (!page) 281 return VM_FAULT_OOM; 282 283 /* Set the page to be freed using drmm release action */ 284 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 285 return VM_FAULT_OOM; 286 287 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 288 prot); 289 } 290 291 return ret; 292 } 293 294 static const struct vm_operations_struct vm_ops_barrier = { 295 .open = barrier_open, 296 .close = barrier_close, 297 .fault = barrier_fault, 298 }; 299 300 static int xe_pci_barrier_mmap(struct file *filp, 301 struct vm_area_struct *vma) 302 { 303 struct drm_file *priv = filp->private_data; 304 struct drm_device *dev = priv->minor->dev; 305 struct xe_device *xe = to_xe_device(dev); 306 307 if (!IS_DGFX(xe)) 308 return -EINVAL; 309 310 if (vma->vm_end - vma->vm_start > SZ_4K) 311 return -EINVAL; 312 313 if (is_cow_mapping(vma->vm_flags)) 314 return -EINVAL; 315 316 if (vma->vm_flags & (VM_READ | VM_EXEC)) 317 return -EINVAL; 318 319 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 320 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 321 vma->vm_ops = &vm_ops_barrier; 322 vma->vm_private_data = dev; 323 drm_dev_get(vma->vm_private_data); 324 325 return 0; 326 } 327 328 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 329 { 330 struct drm_file *priv = filp->private_data; 331 struct drm_device *dev = priv->minor->dev; 332 333 if (drm_dev_is_unplugged(dev)) 334 return -ENODEV; 335 336 switch (vma->vm_pgoff) { 337 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 338 return xe_pci_barrier_mmap(filp, vma); 339 } 340 341 return drm_gem_mmap(filp, vma); 342 } 343 344 static const struct file_operations xe_driver_fops = { 345 .owner = THIS_MODULE, 346 .open = drm_open, 347 .release = drm_release_noglobal, 348 .unlocked_ioctl = xe_drm_ioctl, 349 .mmap = xe_mmap, 350 .poll = drm_poll, 351 .read = drm_read, 352 .compat_ioctl = xe_drm_compat_ioctl, 353 .llseek = noop_llseek, 354 #ifdef CONFIG_PROC_FS 355 .show_fdinfo = drm_show_fdinfo, 356 #endif 357 .fop_flags = FOP_UNSIGNED_OFFSET, 358 }; 359 360 static struct drm_driver driver = { 361 /* Don't use MTRRs here; the Xserver or userspace app should 362 * deal with them for Intel hardware. 363 */ 364 .driver_features = 365 DRIVER_GEM | 366 DRIVER_RENDER | DRIVER_SYNCOBJ | 367 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 368 .open = xe_file_open, 369 .postclose = xe_file_close, 370 371 .gem_prime_import = xe_gem_prime_import, 372 373 .dumb_create = xe_bo_dumb_create, 374 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 375 #ifdef CONFIG_PROC_FS 376 .show_fdinfo = xe_drm_client_fdinfo, 377 #endif 378 .ioctls = xe_ioctls, 379 .num_ioctls = ARRAY_SIZE(xe_ioctls), 380 .fops = &xe_driver_fops, 381 .name = DRIVER_NAME, 382 .desc = DRIVER_DESC, 383 .major = DRIVER_MAJOR, 384 .minor = DRIVER_MINOR, 385 .patchlevel = DRIVER_PATCHLEVEL, 386 }; 387 388 static void xe_device_destroy(struct drm_device *dev, void *dummy) 389 { 390 struct xe_device *xe = to_xe_device(dev); 391 392 xe_bo_dev_fini(&xe->bo_device); 393 394 if (xe->preempt_fence_wq) 395 destroy_workqueue(xe->preempt_fence_wq); 396 397 if (xe->ordered_wq) 398 destroy_workqueue(xe->ordered_wq); 399 400 if (xe->unordered_wq) 401 destroy_workqueue(xe->unordered_wq); 402 403 if (!IS_ERR_OR_NULL(xe->mem.shrinker)) 404 xe_shrinker_destroy(xe->mem.shrinker); 405 406 if (xe->destroy_wq) 407 destroy_workqueue(xe->destroy_wq); 408 409 ttm_device_fini(&xe->ttm); 410 } 411 412 struct xe_device *xe_device_create(struct pci_dev *pdev, 413 const struct pci_device_id *ent) 414 { 415 struct xe_device *xe; 416 int err; 417 418 xe_display_driver_set_hooks(&driver); 419 420 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 421 if (err) 422 return ERR_PTR(err); 423 424 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 425 if (IS_ERR(xe)) 426 return xe; 427 428 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 429 xe->drm.anon_inode->i_mapping, 430 xe->drm.vma_offset_manager, false, false); 431 if (WARN_ON(err)) 432 goto err; 433 434 xe_bo_dev_init(&xe->bo_device); 435 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 436 if (err) 437 goto err; 438 439 xe->mem.shrinker = xe_shrinker_create(xe); 440 if (IS_ERR(xe->mem.shrinker)) 441 return ERR_CAST(xe->mem.shrinker); 442 443 xe->info.devid = pdev->device; 444 xe->info.revid = pdev->revision; 445 xe->info.force_execlist = xe_modparam.force_execlist; 446 447 err = xe_irq_init(xe); 448 if (err) 449 goto err; 450 451 init_waitqueue_head(&xe->ufence_wq); 452 453 init_rwsem(&xe->usm.lock); 454 455 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 456 457 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 458 /* Trigger a large asid and an early asid wrap. */ 459 u32 asid; 460 461 BUILD_BUG_ON(XE_MAX_ASID < 2); 462 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 463 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 464 &xe->usm.next_asid, GFP_KERNEL); 465 drm_WARN_ON(&xe->drm, err); 466 if (err >= 0) 467 xa_erase(&xe->usm.asid_to_vm, asid); 468 } 469 470 spin_lock_init(&xe->pinned.lock); 471 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 472 INIT_LIST_HEAD(&xe->pinned.external_vram); 473 INIT_LIST_HEAD(&xe->pinned.evicted); 474 475 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 476 WQ_MEM_RECLAIM); 477 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 478 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 479 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 480 if (!xe->ordered_wq || !xe->unordered_wq || 481 !xe->preempt_fence_wq || !xe->destroy_wq) { 482 /* 483 * Cleanup done in xe_device_destroy via 484 * drmm_add_action_or_reset register above 485 */ 486 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 487 err = -ENOMEM; 488 goto err; 489 } 490 491 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 492 if (err) 493 goto err; 494 495 err = xe_display_create(xe); 496 if (WARN_ON(err)) 497 goto err; 498 499 return xe; 500 501 err: 502 return ERR_PTR(err); 503 } 504 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 505 506 static bool xe_driver_flr_disabled(struct xe_device *xe) 507 { 508 if (IS_SRIOV_VF(xe)) 509 return true; 510 511 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 512 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 513 return true; 514 } 515 516 return false; 517 } 518 519 /* 520 * The driver-initiated FLR is the highest level of reset that we can trigger 521 * from within the driver. It is different from the PCI FLR in that it doesn't 522 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 523 * it doesn't require a re-enumeration of the PCI BARs. However, the 524 * driver-initiated FLR does still cause a reset of both GT and display and a 525 * memory wipe of local and stolen memory, so recovery would require a full HW 526 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 527 * perform the FLR as the very last action before releasing access to the HW 528 * during the driver release flow, we don't attempt recovery at all, because 529 * if/when a new instance of i915 is bound to the device it will do a full 530 * re-init anyway. 531 */ 532 static void __xe_driver_flr(struct xe_device *xe) 533 { 534 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 535 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 536 int ret; 537 538 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 539 540 /* 541 * Make sure any pending FLR requests have cleared by waiting for the 542 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 543 * to make sure it's not still set from a prior attempt (it's a write to 544 * clear bit). 545 * Note that we should never be in a situation where a previous attempt 546 * is still pending (unless the HW is totally dead), but better to be 547 * safe in case something unexpected happens 548 */ 549 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 550 if (ret) { 551 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 552 return; 553 } 554 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 555 556 /* Trigger the actual Driver-FLR */ 557 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 558 559 /* Wait for hardware teardown to complete */ 560 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 561 if (ret) { 562 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 563 return; 564 } 565 566 /* Wait for hardware/firmware re-init to complete */ 567 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 568 flr_timeout, NULL, false); 569 if (ret) { 570 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 571 return; 572 } 573 574 /* Clear sticky completion status */ 575 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 576 } 577 578 static void xe_driver_flr(struct xe_device *xe) 579 { 580 if (xe_driver_flr_disabled(xe)) 581 return; 582 583 __xe_driver_flr(xe); 584 } 585 586 static void xe_driver_flr_fini(void *arg) 587 { 588 struct xe_device *xe = arg; 589 590 if (xe->needs_flr_on_fini) 591 xe_driver_flr(xe); 592 } 593 594 static void xe_device_sanitize(void *arg) 595 { 596 struct xe_device *xe = arg; 597 struct xe_gt *gt; 598 u8 id; 599 600 for_each_gt(gt, xe, id) 601 xe_gt_sanitize(gt); 602 } 603 604 static int xe_set_dma_info(struct xe_device *xe) 605 { 606 unsigned int mask_size = xe->info.dma_mask_size; 607 int err; 608 609 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 610 611 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 612 if (err) 613 goto mask_err; 614 615 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 616 if (err) 617 goto mask_err; 618 619 return 0; 620 621 mask_err: 622 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 623 return err; 624 } 625 626 static bool verify_lmem_ready(struct xe_device *xe) 627 { 628 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 629 630 return !!val; 631 } 632 633 static int wait_for_lmem_ready(struct xe_device *xe) 634 { 635 unsigned long timeout, start; 636 637 if (!IS_DGFX(xe)) 638 return 0; 639 640 if (IS_SRIOV_VF(xe)) 641 return 0; 642 643 if (verify_lmem_ready(xe)) 644 return 0; 645 646 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 647 648 start = jiffies; 649 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 650 651 do { 652 if (signal_pending(current)) 653 return -EINTR; 654 655 /* 656 * The boot firmware initializes local memory and 657 * assesses its health. If memory training fails, 658 * the punit will have been instructed to keep the GT powered 659 * down.we won't be able to communicate with it 660 * 661 * If the status check is done before punit updates the register, 662 * it can lead to the system being unusable. 663 * use a timeout and defer the probe to prevent this. 664 */ 665 if (time_after(jiffies, timeout)) { 666 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 667 return -EPROBE_DEFER; 668 } 669 670 msleep(20); 671 672 } while (!verify_lmem_ready(xe)); 673 674 drm_dbg(&xe->drm, "lmem ready after %ums", 675 jiffies_to_msecs(jiffies - start)); 676 677 return 0; 678 } 679 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 680 681 static void sriov_update_device_info(struct xe_device *xe) 682 { 683 /* disable features that are not available/applicable to VFs */ 684 if (IS_SRIOV_VF(xe)) { 685 xe->info.probe_display = 0; 686 xe->info.has_heci_gscfi = 0; 687 xe->info.skip_guc_pc = 1; 688 xe->info.skip_pcode = 1; 689 } 690 } 691 692 /** 693 * xe_device_probe_early: Device early probe 694 * @xe: xe device instance 695 * 696 * Initialize MMIO resources that don't require any 697 * knowledge about tile count. Also initialize pcode and 698 * check vram initialization on root tile. 699 * 700 * Return: 0 on success, error code on failure 701 */ 702 int xe_device_probe_early(struct xe_device *xe) 703 { 704 int err; 705 706 err = xe_mmio_probe_early(xe); 707 if (err) 708 return err; 709 710 xe_sriov_probe_early(xe); 711 712 sriov_update_device_info(xe); 713 714 err = xe_pcode_probe_early(xe); 715 if (err) { 716 int save_err = err; 717 718 /* 719 * Try to leave device in survivability mode if device is 720 * possible, but still return the previous error for error 721 * propagation 722 */ 723 err = xe_survivability_mode_enable(xe); 724 if (err) 725 return err; 726 727 return save_err; 728 } 729 730 err = wait_for_lmem_ready(xe); 731 if (err) 732 return err; 733 734 xe->wedged.mode = xe_modparam.wedged_mode; 735 736 return 0; 737 } 738 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 739 740 static int probe_has_flat_ccs(struct xe_device *xe) 741 { 742 struct xe_gt *gt; 743 unsigned int fw_ref; 744 u32 reg; 745 746 /* Always enabled/disabled, no runtime check to do */ 747 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 748 return 0; 749 750 gt = xe_root_mmio_gt(xe); 751 752 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 753 if (!fw_ref) 754 return -ETIMEDOUT; 755 756 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 757 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 758 759 if (!xe->info.has_flat_ccs) 760 drm_dbg(&xe->drm, 761 "Flat CCS has been disabled in bios, May lead to performance impact"); 762 763 xe_force_wake_put(gt_to_fw(gt), fw_ref); 764 765 return 0; 766 } 767 768 int xe_device_probe(struct xe_device *xe) 769 { 770 struct xe_tile *tile; 771 struct xe_gt *gt; 772 int err; 773 u8 id; 774 775 xe_pat_init_early(xe); 776 777 err = xe_sriov_init(xe); 778 if (err) 779 return err; 780 781 xe->info.mem_region_mask = 1; 782 783 err = xe_set_dma_info(xe); 784 if (err) 785 return err; 786 787 err = xe_mmio_probe_tiles(xe); 788 if (err) 789 return err; 790 791 err = xe_ttm_sys_mgr_init(xe); 792 if (err) 793 return err; 794 795 for_each_gt(gt, xe, id) { 796 err = xe_gt_init_early(gt); 797 if (err) 798 return err; 799 800 /* 801 * Only after this point can GT-specific MMIO operations 802 * (including things like communication with the GuC) 803 * be performed. 804 */ 805 xe_gt_mmio_init(gt); 806 } 807 808 for_each_tile(tile, xe, id) { 809 if (IS_SRIOV_VF(xe)) { 810 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 811 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 812 if (err) 813 return err; 814 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 815 if (err) 816 return err; 817 } 818 err = xe_ggtt_init_early(tile->mem.ggtt); 819 if (err) 820 return err; 821 err = xe_memirq_init(&tile->memirq); 822 if (err) 823 return err; 824 } 825 826 for_each_gt(gt, xe, id) { 827 err = xe_gt_init_hwconfig(gt); 828 if (err) 829 return err; 830 } 831 832 err = xe_devcoredump_init(xe); 833 if (err) 834 return err; 835 836 /* 837 * From here on, if a step fails, make sure a Driver-FLR is triggereed 838 */ 839 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 840 if (err) 841 return err; 842 843 err = probe_has_flat_ccs(xe); 844 if (err) 845 return err; 846 847 err = xe_vram_probe(xe); 848 if (err) 849 return err; 850 851 for_each_tile(tile, xe, id) { 852 err = xe_tile_init_noalloc(tile); 853 if (err) 854 return err; 855 } 856 857 /* Allocate and map stolen after potential VRAM resize */ 858 err = xe_ttm_stolen_mgr_init(xe); 859 if (err) 860 return err; 861 862 /* 863 * Now that GT is initialized (TTM in particular), 864 * we can try to init display, and inherit the initial fb. 865 * This is the reason the first allocation needs to be done 866 * inside display. 867 */ 868 err = xe_display_init_early(xe); 869 if (err) 870 return err; 871 872 for_each_tile(tile, xe, id) { 873 err = xe_tile_init(tile); 874 if (err) 875 return err; 876 } 877 878 err = xe_irq_install(xe); 879 if (err) 880 return err; 881 882 for_each_gt(gt, xe, id) { 883 err = xe_gt_init(gt); 884 if (err) 885 return err; 886 } 887 888 err = xe_heci_gsc_init(xe); 889 if (err) 890 return err; 891 892 err = xe_oa_init(xe); 893 if (err) 894 return err; 895 896 err = xe_display_init(xe); 897 if (err) 898 return err; 899 900 err = xe_pxp_init(xe); 901 if (err) 902 return err; 903 904 err = drm_dev_register(&xe->drm, 0); 905 if (err) 906 return err; 907 908 xe_display_register(xe); 909 910 err = xe_oa_register(xe); 911 if (err) 912 goto err_unregister_display; 913 914 err = xe_pmu_register(&xe->pmu); 915 if (err) 916 goto err_unregister_display; 917 918 xe_debugfs_register(xe); 919 920 err = xe_hwmon_register(xe); 921 if (err) 922 goto err_unregister_display; 923 924 for_each_gt(gt, xe, id) 925 xe_gt_sanitize_freq(gt); 926 927 xe_vsec_init(xe); 928 929 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 930 931 err_unregister_display: 932 xe_display_unregister(xe); 933 934 return err; 935 } 936 937 void xe_device_remove(struct xe_device *xe) 938 { 939 xe_display_unregister(xe); 940 941 drm_dev_unplug(&xe->drm); 942 } 943 944 void xe_device_shutdown(struct xe_device *xe) 945 { 946 struct xe_gt *gt; 947 u8 id; 948 949 drm_dbg(&xe->drm, "Shutting down device\n"); 950 951 if (xe_driver_flr_disabled(xe)) { 952 xe_display_pm_shutdown(xe); 953 954 xe_irq_suspend(xe); 955 956 for_each_gt(gt, xe, id) 957 xe_gt_shutdown(gt); 958 959 xe_display_pm_shutdown_late(xe); 960 } else { 961 /* BOOM! */ 962 __xe_driver_flr(xe); 963 } 964 } 965 966 /** 967 * xe_device_wmb() - Device specific write memory barrier 968 * @xe: the &xe_device 969 * 970 * While wmb() is sufficient for a barrier if we use system memory, on discrete 971 * platforms with device memory we additionally need to issue a register write. 972 * Since it doesn't matter which register we write to, use the read-only VF_CAP 973 * register that is also marked as accessible by the VFs. 974 */ 975 void xe_device_wmb(struct xe_device *xe) 976 { 977 wmb(); 978 if (IS_DGFX(xe)) 979 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 980 } 981 982 /** 983 * xe_device_td_flush() - Flush transient L3 cache entries 984 * @xe: The device 985 * 986 * Display engine has direct access to memory and is never coherent with L3/L4 987 * caches (or CPU caches), however KMD is responsible for specifically flushing 988 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 989 * can happen from such a surface without seeing corruption. 990 * 991 * Display surfaces can be tagged as transient by mapping it using one of the 992 * various L3:XD PAT index modes on Xe2. 993 * 994 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 995 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 996 * Media is not coherent with L3 and we want to support render-vs-media 997 * usescases. For other engines like copy/blt the HW internally forces uncached 998 * behaviour, hence why we can skip the TDF on such platforms. 999 */ 1000 void xe_device_td_flush(struct xe_device *xe) 1001 { 1002 struct xe_gt *gt; 1003 unsigned int fw_ref; 1004 u8 id; 1005 1006 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1007 return; 1008 1009 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1010 xe_device_l2_flush(xe); 1011 return; 1012 } 1013 1014 for_each_gt(gt, xe, id) { 1015 if (xe_gt_is_media_type(gt)) 1016 continue; 1017 1018 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1019 if (!fw_ref) 1020 return; 1021 1022 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1023 /* 1024 * FIXME: We can likely do better here with our choice of 1025 * timeout. Currently we just assume the worst case, i.e. 150us, 1026 * which is believed to be sufficient to cover the worst case 1027 * scenario on current platforms if all cache entries are 1028 * transient and need to be flushed.. 1029 */ 1030 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1031 150, NULL, false)) 1032 xe_gt_err_once(gt, "TD flush timeout\n"); 1033 1034 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1035 } 1036 } 1037 1038 void xe_device_l2_flush(struct xe_device *xe) 1039 { 1040 struct xe_gt *gt; 1041 unsigned int fw_ref; 1042 1043 gt = xe_root_mmio_gt(xe); 1044 1045 if (!XE_WA(gt, 16023588340)) 1046 return; 1047 1048 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1049 if (!fw_ref) 1050 return; 1051 1052 spin_lock(>->global_invl_lock); 1053 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1054 1055 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1056 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1057 spin_unlock(>->global_invl_lock); 1058 1059 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1060 } 1061 1062 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1063 { 1064 return xe_device_has_flat_ccs(xe) ? 1065 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1066 } 1067 1068 /** 1069 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1070 * @xe: xe device instance 1071 * 1072 * To be used before any kind of memory access. It will splat a debug warning 1073 * if the device is currently sleeping. But it doesn't guarantee in any way 1074 * that the device is going to remain awake. Xe PM runtime get and put 1075 * functions might be added to the outer bound of the memory access, while 1076 * this check is intended for inner usage to splat some warning if the worst 1077 * case has just happened. 1078 */ 1079 void xe_device_assert_mem_access(struct xe_device *xe) 1080 { 1081 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1082 } 1083 1084 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1085 { 1086 struct xe_gt *gt; 1087 u8 id; 1088 1089 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1090 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1091 1092 for_each_gt(gt, xe, id) { 1093 drm_printf(p, "GT id: %u\n", id); 1094 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1095 drm_printf(p, "\tType: %s\n", 1096 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1097 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1098 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1099 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1100 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1101 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1102 } 1103 } 1104 1105 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1106 { 1107 return sign_extend64(address, xe->info.va_bits - 1); 1108 } 1109 1110 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1111 { 1112 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1113 } 1114 1115 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1116 { 1117 struct xe_device *xe = arg; 1118 1119 xe_pm_runtime_put(xe); 1120 } 1121 1122 /** 1123 * xe_device_declare_wedged - Declare device wedged 1124 * @xe: xe device instance 1125 * 1126 * This is a final state that can only be cleared with a module 1127 * re-probe (unbind + bind). 1128 * In this state every IOCTL will be blocked so the GT cannot be used. 1129 * In general it will be called upon any critical error such as gt reset 1130 * failure or guc loading failure. Userspace will be notified of this state 1131 * through device wedged uevent. 1132 * If xe.wedged module parameter is set to 2, this function will be called 1133 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1134 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1135 * the issue is preserved for further debugging. 1136 */ 1137 void xe_device_declare_wedged(struct xe_device *xe) 1138 { 1139 struct xe_gt *gt; 1140 u8 id; 1141 1142 if (xe->wedged.mode == 0) { 1143 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1144 return; 1145 } 1146 1147 xe_pm_runtime_get_noresume(xe); 1148 1149 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1150 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1151 return; 1152 } 1153 1154 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1155 xe->needs_flr_on_fini = true; 1156 drm_err(&xe->drm, 1157 "CRITICAL: Xe has declared device %s as wedged.\n" 1158 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1159 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1160 dev_name(xe->drm.dev)); 1161 1162 /* Notify userspace of wedged device */ 1163 drm_dev_wedged_event(&xe->drm, 1164 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET); 1165 } 1166 1167 for_each_gt(gt, xe, id) 1168 xe_gt_declare_wedged(gt); 1169 } 1170