1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_bo_evict.h" 27 #include "xe_debugfs.h" 28 #include "xe_devcoredump.h" 29 #include "xe_device_sysfs.h" 30 #include "xe_dma_buf.h" 31 #include "xe_drm_client.h" 32 #include "xe_drv.h" 33 #include "xe_exec.h" 34 #include "xe_exec_queue.h" 35 #include "xe_force_wake.h" 36 #include "xe_ggtt.h" 37 #include "xe_gsc_proxy.h" 38 #include "xe_gt.h" 39 #include "xe_gt_mcr.h" 40 #include "xe_gt_printk.h" 41 #include "xe_gt_sriov_vf.h" 42 #include "xe_guc.h" 43 #include "xe_guc_pc.h" 44 #include "xe_hw_engine_group.h" 45 #include "xe_hwmon.h" 46 #include "xe_i2c.h" 47 #include "xe_irq.h" 48 #include "xe_mmio.h" 49 #include "xe_module.h" 50 #include "xe_nvm.h" 51 #include "xe_oa.h" 52 #include "xe_observation.h" 53 #include "xe_pat.h" 54 #include "xe_pcode.h" 55 #include "xe_pm.h" 56 #include "xe_pmu.h" 57 #include "xe_psmi.h" 58 #include "xe_pxp.h" 59 #include "xe_query.h" 60 #include "xe_shrinker.h" 61 #include "xe_survivability_mode.h" 62 #include "xe_sriov.h" 63 #include "xe_tile.h" 64 #include "xe_ttm_stolen_mgr.h" 65 #include "xe_ttm_sys_mgr.h" 66 #include "xe_vm.h" 67 #include "xe_vram.h" 68 #include "xe_vram_types.h" 69 #include "xe_vsec.h" 70 #include "xe_wait_user_fence.h" 71 #include "xe_wa.h" 72 73 #include <generated/xe_device_wa_oob.h> 74 #include <generated/xe_wa_oob.h> 75 76 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 77 { 78 struct xe_device *xe = to_xe_device(dev); 79 struct xe_drm_client *client; 80 struct xe_file *xef; 81 int ret = -ENOMEM; 82 struct task_struct *task = NULL; 83 84 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 85 if (!xef) 86 return ret; 87 88 client = xe_drm_client_alloc(); 89 if (!client) { 90 kfree(xef); 91 return ret; 92 } 93 94 xef->drm = file; 95 xef->client = client; 96 xef->xe = xe; 97 98 mutex_init(&xef->vm.lock); 99 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 100 101 mutex_init(&xef->exec_queue.lock); 102 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 103 104 file->driver_priv = xef; 105 kref_init(&xef->refcount); 106 107 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 108 if (task) { 109 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 110 xef->pid = task->pid; 111 put_task_struct(task); 112 } 113 114 return 0; 115 } 116 117 static void xe_file_destroy(struct kref *ref) 118 { 119 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 120 121 xa_destroy(&xef->exec_queue.xa); 122 mutex_destroy(&xef->exec_queue.lock); 123 xa_destroy(&xef->vm.xa); 124 mutex_destroy(&xef->vm.lock); 125 126 xe_drm_client_put(xef->client); 127 kfree(xef->process_name); 128 kfree(xef); 129 } 130 131 /** 132 * xe_file_get() - Take a reference to the xe file object 133 * @xef: Pointer to the xe file 134 * 135 * Anyone with a pointer to xef must take a reference to the xe file 136 * object using this call. 137 * 138 * Return: xe file pointer 139 */ 140 struct xe_file *xe_file_get(struct xe_file *xef) 141 { 142 kref_get(&xef->refcount); 143 return xef; 144 } 145 146 /** 147 * xe_file_put() - Drop a reference to the xe file object 148 * @xef: Pointer to the xe file 149 * 150 * Used to drop reference to the xef object 151 */ 152 void xe_file_put(struct xe_file *xef) 153 { 154 kref_put(&xef->refcount, xe_file_destroy); 155 } 156 157 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 158 { 159 struct xe_device *xe = to_xe_device(dev); 160 struct xe_file *xef = file->driver_priv; 161 struct xe_vm *vm; 162 struct xe_exec_queue *q; 163 unsigned long idx; 164 165 xe_pm_runtime_get(xe); 166 167 /* 168 * No need for exec_queue.lock here as there is no contention for it 169 * when FD is closing as IOCTLs presumably can't be modifying the 170 * xarray. Taking exec_queue.lock here causes undue dependency on 171 * vm->lock taken during xe_exec_queue_kill(). 172 */ 173 xa_for_each(&xef->exec_queue.xa, idx, q) { 174 if (q->vm && q->hwe->hw_engine_group) 175 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 176 xe_exec_queue_kill(q); 177 xe_exec_queue_put(q); 178 } 179 xa_for_each(&xef->vm.xa, idx, vm) 180 xe_vm_close_and_put(vm); 181 182 xe_file_put(xef); 183 184 xe_pm_runtime_put(xe); 185 } 186 187 static const struct drm_ioctl_desc xe_ioctls[] = { 188 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 191 DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 194 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 196 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 197 DRM_RENDER_ALLOW), 198 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 199 DRM_RENDER_ALLOW), 200 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 201 DRM_RENDER_ALLOW), 202 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 203 DRM_RENDER_ALLOW), 204 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 205 }; 206 207 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 208 { 209 struct drm_file *file_priv = file->private_data; 210 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 211 long ret; 212 213 if (xe_device_wedged(xe)) 214 return -ECANCELED; 215 216 ret = xe_pm_runtime_get_ioctl(xe); 217 if (ret >= 0) 218 ret = drm_ioctl(file, cmd, arg); 219 xe_pm_runtime_put(xe); 220 221 return ret; 222 } 223 224 #ifdef CONFIG_COMPAT 225 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 226 { 227 struct drm_file *file_priv = file->private_data; 228 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 229 long ret; 230 231 if (xe_device_wedged(xe)) 232 return -ECANCELED; 233 234 ret = xe_pm_runtime_get_ioctl(xe); 235 if (ret >= 0) 236 ret = drm_compat_ioctl(file, cmd, arg); 237 xe_pm_runtime_put(xe); 238 239 return ret; 240 } 241 #else 242 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 243 #define xe_drm_compat_ioctl NULL 244 #endif 245 246 static void barrier_open(struct vm_area_struct *vma) 247 { 248 drm_dev_get(vma->vm_private_data); 249 } 250 251 static void barrier_close(struct vm_area_struct *vma) 252 { 253 drm_dev_put(vma->vm_private_data); 254 } 255 256 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 257 { 258 struct page *dummy_page = (struct page *)res; 259 260 __free_page(dummy_page); 261 } 262 263 static vm_fault_t barrier_fault(struct vm_fault *vmf) 264 { 265 struct drm_device *dev = vmf->vma->vm_private_data; 266 struct vm_area_struct *vma = vmf->vma; 267 vm_fault_t ret = VM_FAULT_NOPAGE; 268 pgprot_t prot; 269 int idx; 270 271 prot = vm_get_page_prot(vma->vm_flags); 272 273 if (drm_dev_enter(dev, &idx)) { 274 unsigned long pfn; 275 276 #define LAST_DB_PAGE_OFFSET 0x7ff001 277 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 278 LAST_DB_PAGE_OFFSET); 279 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 280 pgprot_noncached(prot)); 281 drm_dev_exit(idx); 282 } else { 283 struct page *page; 284 285 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 286 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 287 if (!page) 288 return VM_FAULT_OOM; 289 290 /* Set the page to be freed using drmm release action */ 291 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 292 return VM_FAULT_OOM; 293 294 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 295 prot); 296 } 297 298 return ret; 299 } 300 301 static const struct vm_operations_struct vm_ops_barrier = { 302 .open = barrier_open, 303 .close = barrier_close, 304 .fault = barrier_fault, 305 }; 306 307 static int xe_pci_barrier_mmap(struct file *filp, 308 struct vm_area_struct *vma) 309 { 310 struct drm_file *priv = filp->private_data; 311 struct drm_device *dev = priv->minor->dev; 312 struct xe_device *xe = to_xe_device(dev); 313 314 if (!IS_DGFX(xe)) 315 return -EINVAL; 316 317 if (vma->vm_end - vma->vm_start > SZ_4K) 318 return -EINVAL; 319 320 if (is_cow_mapping(vma->vm_flags)) 321 return -EINVAL; 322 323 if (vma->vm_flags & (VM_READ | VM_EXEC)) 324 return -EINVAL; 325 326 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 327 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 328 vma->vm_ops = &vm_ops_barrier; 329 vma->vm_private_data = dev; 330 drm_dev_get(vma->vm_private_data); 331 332 return 0; 333 } 334 335 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 336 { 337 struct drm_file *priv = filp->private_data; 338 struct drm_device *dev = priv->minor->dev; 339 340 if (drm_dev_is_unplugged(dev)) 341 return -ENODEV; 342 343 switch (vma->vm_pgoff) { 344 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 345 return xe_pci_barrier_mmap(filp, vma); 346 } 347 348 return drm_gem_mmap(filp, vma); 349 } 350 351 static const struct file_operations xe_driver_fops = { 352 .owner = THIS_MODULE, 353 .open = drm_open, 354 .release = drm_release_noglobal, 355 .unlocked_ioctl = xe_drm_ioctl, 356 .mmap = xe_mmap, 357 .poll = drm_poll, 358 .read = drm_read, 359 .compat_ioctl = xe_drm_compat_ioctl, 360 .llseek = noop_llseek, 361 #ifdef CONFIG_PROC_FS 362 .show_fdinfo = drm_show_fdinfo, 363 #endif 364 .fop_flags = FOP_UNSIGNED_OFFSET, 365 }; 366 367 static struct drm_driver driver = { 368 /* Don't use MTRRs here; the Xserver or userspace app should 369 * deal with them for Intel hardware. 370 */ 371 .driver_features = 372 DRIVER_GEM | 373 DRIVER_RENDER | DRIVER_SYNCOBJ | 374 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 375 .open = xe_file_open, 376 .postclose = xe_file_close, 377 378 .gem_prime_import = xe_gem_prime_import, 379 380 .dumb_create = xe_bo_dumb_create, 381 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 382 #ifdef CONFIG_PROC_FS 383 .show_fdinfo = xe_drm_client_fdinfo, 384 #endif 385 .ioctls = xe_ioctls, 386 .num_ioctls = ARRAY_SIZE(xe_ioctls), 387 .fops = &xe_driver_fops, 388 .name = DRIVER_NAME, 389 .desc = DRIVER_DESC, 390 .major = DRIVER_MAJOR, 391 .minor = DRIVER_MINOR, 392 .patchlevel = DRIVER_PATCHLEVEL, 393 }; 394 395 static void xe_device_destroy(struct drm_device *dev, void *dummy) 396 { 397 struct xe_device *xe = to_xe_device(dev); 398 399 xe_bo_dev_fini(&xe->bo_device); 400 401 if (xe->preempt_fence_wq) 402 destroy_workqueue(xe->preempt_fence_wq); 403 404 if (xe->ordered_wq) 405 destroy_workqueue(xe->ordered_wq); 406 407 if (xe->unordered_wq) 408 destroy_workqueue(xe->unordered_wq); 409 410 if (xe->destroy_wq) 411 destroy_workqueue(xe->destroy_wq); 412 413 ttm_device_fini(&xe->ttm); 414 } 415 416 struct xe_device *xe_device_create(struct pci_dev *pdev, 417 const struct pci_device_id *ent) 418 { 419 struct xe_device *xe; 420 int err; 421 422 xe_display_driver_set_hooks(&driver); 423 424 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 425 if (err) 426 return ERR_PTR(err); 427 428 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 429 if (IS_ERR(xe)) 430 return xe; 431 432 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 433 xe->drm.anon_inode->i_mapping, 434 xe->drm.vma_offset_manager, false, false); 435 if (WARN_ON(err)) 436 goto err; 437 438 xe_bo_dev_init(&xe->bo_device); 439 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 440 if (err) 441 goto err; 442 443 err = xe_shrinker_create(xe); 444 if (err) 445 goto err; 446 447 xe->info.devid = pdev->device; 448 xe->info.revid = pdev->revision; 449 xe->info.force_execlist = xe_modparam.force_execlist; 450 xe->atomic_svm_timeslice_ms = 5; 451 452 err = xe_irq_init(xe); 453 if (err) 454 goto err; 455 456 init_waitqueue_head(&xe->ufence_wq); 457 458 init_rwsem(&xe->usm.lock); 459 460 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 461 462 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 463 /* Trigger a large asid and an early asid wrap. */ 464 u32 asid; 465 466 BUILD_BUG_ON(XE_MAX_ASID < 2); 467 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 468 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 469 &xe->usm.next_asid, GFP_KERNEL); 470 drm_WARN_ON(&xe->drm, err); 471 if (err >= 0) 472 xa_erase(&xe->usm.asid_to_vm, asid); 473 } 474 475 err = xe_bo_pinned_init(xe); 476 if (err) 477 goto err; 478 479 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 480 WQ_MEM_RECLAIM); 481 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 482 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 483 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 484 if (!xe->ordered_wq || !xe->unordered_wq || 485 !xe->preempt_fence_wq || !xe->destroy_wq) { 486 /* 487 * Cleanup done in xe_device_destroy via 488 * drmm_add_action_or_reset register above 489 */ 490 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 491 err = -ENOMEM; 492 goto err; 493 } 494 495 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 496 if (err) 497 goto err; 498 499 return xe; 500 501 err: 502 return ERR_PTR(err); 503 } 504 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 505 506 static bool xe_driver_flr_disabled(struct xe_device *xe) 507 { 508 if (IS_SRIOV_VF(xe)) 509 return true; 510 511 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 512 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 513 return true; 514 } 515 516 return false; 517 } 518 519 /* 520 * The driver-initiated FLR is the highest level of reset that we can trigger 521 * from within the driver. It is different from the PCI FLR in that it doesn't 522 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 523 * it doesn't require a re-enumeration of the PCI BARs. However, the 524 * driver-initiated FLR does still cause a reset of both GT and display and a 525 * memory wipe of local and stolen memory, so recovery would require a full HW 526 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 527 * perform the FLR as the very last action before releasing access to the HW 528 * during the driver release flow, we don't attempt recovery at all, because 529 * if/when a new instance of i915 is bound to the device it will do a full 530 * re-init anyway. 531 */ 532 static void __xe_driver_flr(struct xe_device *xe) 533 { 534 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 535 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 536 int ret; 537 538 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 539 540 /* 541 * Make sure any pending FLR requests have cleared by waiting for the 542 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 543 * to make sure it's not still set from a prior attempt (it's a write to 544 * clear bit). 545 * Note that we should never be in a situation where a previous attempt 546 * is still pending (unless the HW is totally dead), but better to be 547 * safe in case something unexpected happens 548 */ 549 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 550 if (ret) { 551 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 552 return; 553 } 554 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 555 556 /* Trigger the actual Driver-FLR */ 557 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 558 559 /* Wait for hardware teardown to complete */ 560 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 561 if (ret) { 562 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 563 return; 564 } 565 566 /* Wait for hardware/firmware re-init to complete */ 567 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 568 flr_timeout, NULL, false); 569 if (ret) { 570 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 571 return; 572 } 573 574 /* Clear sticky completion status */ 575 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 576 } 577 578 static void xe_driver_flr(struct xe_device *xe) 579 { 580 if (xe_driver_flr_disabled(xe)) 581 return; 582 583 __xe_driver_flr(xe); 584 } 585 586 static void xe_driver_flr_fini(void *arg) 587 { 588 struct xe_device *xe = arg; 589 590 if (xe->needs_flr_on_fini) 591 xe_driver_flr(xe); 592 } 593 594 static void xe_device_sanitize(void *arg) 595 { 596 struct xe_device *xe = arg; 597 struct xe_gt *gt; 598 u8 id; 599 600 for_each_gt(gt, xe, id) 601 xe_gt_sanitize(gt); 602 } 603 604 static int xe_set_dma_info(struct xe_device *xe) 605 { 606 unsigned int mask_size = xe->info.dma_mask_size; 607 int err; 608 609 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 610 611 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 612 if (err) 613 goto mask_err; 614 615 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 616 if (err) 617 goto mask_err; 618 619 return 0; 620 621 mask_err: 622 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 623 return err; 624 } 625 626 static bool verify_lmem_ready(struct xe_device *xe) 627 { 628 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 629 630 return !!val; 631 } 632 633 static int wait_for_lmem_ready(struct xe_device *xe) 634 { 635 unsigned long timeout, start; 636 637 if (!IS_DGFX(xe)) 638 return 0; 639 640 if (IS_SRIOV_VF(xe)) 641 return 0; 642 643 if (verify_lmem_ready(xe)) 644 return 0; 645 646 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 647 648 start = jiffies; 649 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 650 651 do { 652 if (signal_pending(current)) 653 return -EINTR; 654 655 /* 656 * The boot firmware initializes local memory and 657 * assesses its health. If memory training fails, 658 * the punit will have been instructed to keep the GT powered 659 * down.we won't be able to communicate with it 660 * 661 * If the status check is done before punit updates the register, 662 * it can lead to the system being unusable. 663 * use a timeout and defer the probe to prevent this. 664 */ 665 if (time_after(jiffies, timeout)) { 666 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 667 return -EPROBE_DEFER; 668 } 669 670 msleep(20); 671 672 } while (!verify_lmem_ready(xe)); 673 674 drm_dbg(&xe->drm, "lmem ready after %ums", 675 jiffies_to_msecs(jiffies - start)); 676 677 return 0; 678 } 679 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 680 681 static void sriov_update_device_info(struct xe_device *xe) 682 { 683 /* disable features that are not available/applicable to VFs */ 684 if (IS_SRIOV_VF(xe)) { 685 xe->info.probe_display = 0; 686 xe->info.has_heci_cscfi = 0; 687 xe->info.has_heci_gscfi = 0; 688 xe->info.skip_guc_pc = 1; 689 xe->info.skip_pcode = 1; 690 } 691 } 692 693 static int xe_device_vram_alloc(struct xe_device *xe) 694 { 695 struct xe_vram_region *vram; 696 697 if (!IS_DGFX(xe)) 698 return 0; 699 700 vram = drmm_kzalloc(&xe->drm, sizeof(*vram), GFP_KERNEL); 701 if (!vram) 702 return -ENOMEM; 703 704 xe->mem.vram = vram; 705 return 0; 706 } 707 708 /** 709 * xe_device_probe_early: Device early probe 710 * @xe: xe device instance 711 * 712 * Initialize MMIO resources that don't require any 713 * knowledge about tile count. Also initialize pcode and 714 * check vram initialization on root tile. 715 * 716 * Return: 0 on success, error code on failure 717 */ 718 int xe_device_probe_early(struct xe_device *xe) 719 { 720 int err; 721 722 xe_wa_device_init(xe); 723 xe_wa_process_device_oob(xe); 724 725 err = xe_mmio_probe_early(xe); 726 if (err) 727 return err; 728 729 xe_sriov_probe_early(xe); 730 731 sriov_update_device_info(xe); 732 733 err = xe_pcode_probe_early(xe); 734 if (err || xe_survivability_mode_is_requested(xe)) { 735 int save_err = err; 736 737 /* 738 * Try to leave device in survivability mode if device is 739 * possible, but still return the previous error for error 740 * propagation 741 */ 742 err = xe_survivability_mode_enable(xe); 743 if (err) 744 return err; 745 746 return save_err; 747 } 748 749 err = wait_for_lmem_ready(xe); 750 if (err) 751 return err; 752 753 xe->wedged.mode = xe_modparam.wedged_mode; 754 755 err = xe_device_vram_alloc(xe); 756 if (err) 757 return err; 758 759 return 0; 760 } 761 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 762 763 static int probe_has_flat_ccs(struct xe_device *xe) 764 { 765 struct xe_gt *gt; 766 unsigned int fw_ref; 767 u32 reg; 768 769 /* Always enabled/disabled, no runtime check to do */ 770 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 771 return 0; 772 773 gt = xe_root_mmio_gt(xe); 774 775 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 776 if (!fw_ref) 777 return -ETIMEDOUT; 778 779 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 780 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 781 782 if (!xe->info.has_flat_ccs) 783 drm_dbg(&xe->drm, 784 "Flat CCS has been disabled in bios, May lead to performance impact"); 785 786 xe_force_wake_put(gt_to_fw(gt), fw_ref); 787 788 return 0; 789 } 790 791 int xe_device_probe(struct xe_device *xe) 792 { 793 struct xe_tile *tile; 794 struct xe_gt *gt; 795 int err; 796 u8 id; 797 798 xe_pat_init_early(xe); 799 800 err = xe_sriov_init(xe); 801 if (err) 802 return err; 803 804 xe->info.mem_region_mask = 1; 805 806 err = xe_set_dma_info(xe); 807 if (err) 808 return err; 809 810 err = xe_mmio_probe_tiles(xe); 811 if (err) 812 return err; 813 814 for_each_gt(gt, xe, id) { 815 err = xe_gt_init_early(gt); 816 if (err) 817 return err; 818 } 819 820 for_each_tile(tile, xe, id) { 821 err = xe_ggtt_init_early(tile->mem.ggtt); 822 if (err) 823 return err; 824 } 825 826 /* 827 * From here on, if a step fails, make sure a Driver-FLR is triggereed 828 */ 829 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 830 if (err) 831 return err; 832 833 err = probe_has_flat_ccs(xe); 834 if (err) 835 return err; 836 837 err = xe_vram_probe(xe); 838 if (err) 839 return err; 840 841 for_each_tile(tile, xe, id) { 842 err = xe_tile_init_noalloc(tile); 843 if (err) 844 return err; 845 } 846 847 /* 848 * Allow allocations only now to ensure xe_display_init_early() 849 * is the first to allocate, always. 850 */ 851 err = xe_ttm_sys_mgr_init(xe); 852 if (err) 853 return err; 854 855 /* Allocate and map stolen after potential VRAM resize */ 856 err = xe_ttm_stolen_mgr_init(xe); 857 if (err) 858 return err; 859 860 /* 861 * Now that GT is initialized (TTM in particular), 862 * we can try to init display, and inherit the initial fb. 863 * This is the reason the first allocation needs to be done 864 * inside display. 865 */ 866 err = xe_display_init_early(xe); 867 if (err) 868 return err; 869 870 for_each_tile(tile, xe, id) { 871 err = xe_tile_init(tile); 872 if (err) 873 return err; 874 } 875 876 err = xe_irq_install(xe); 877 if (err) 878 return err; 879 880 for_each_gt(gt, xe, id) { 881 err = xe_gt_init(gt); 882 if (err) 883 return err; 884 } 885 886 if (xe->tiles->media_gt && 887 XE_GT_WA(xe->tiles->media_gt, 15015404425_disable)) 888 XE_DEVICE_WA_DISABLE(xe, 15015404425); 889 890 err = xe_devcoredump_init(xe); 891 if (err) 892 return err; 893 894 xe_nvm_init(xe); 895 896 err = xe_heci_gsc_init(xe); 897 if (err) 898 return err; 899 900 err = xe_oa_init(xe); 901 if (err) 902 return err; 903 904 err = xe_display_init(xe); 905 if (err) 906 return err; 907 908 err = xe_pxp_init(xe); 909 if (err) 910 return err; 911 912 err = xe_psmi_init(xe); 913 if (err) 914 return err; 915 916 err = drm_dev_register(&xe->drm, 0); 917 if (err) 918 return err; 919 920 xe_display_register(xe); 921 922 err = xe_oa_register(xe); 923 if (err) 924 goto err_unregister_display; 925 926 err = xe_pmu_register(&xe->pmu); 927 if (err) 928 goto err_unregister_display; 929 930 err = xe_device_sysfs_init(xe); 931 if (err) 932 goto err_unregister_display; 933 934 xe_debugfs_register(xe); 935 936 err = xe_hwmon_register(xe); 937 if (err) 938 goto err_unregister_display; 939 940 err = xe_i2c_probe(xe); 941 if (err) 942 goto err_unregister_display; 943 944 for_each_gt(gt, xe, id) 945 xe_gt_sanitize_freq(gt); 946 947 xe_vsec_init(xe); 948 949 err = xe_sriov_late_init(xe); 950 if (err) 951 goto err_unregister_display; 952 953 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 954 955 err_unregister_display: 956 xe_display_unregister(xe); 957 958 return err; 959 } 960 961 void xe_device_remove(struct xe_device *xe) 962 { 963 xe_display_unregister(xe); 964 965 xe_nvm_fini(xe); 966 967 drm_dev_unplug(&xe->drm); 968 969 xe_bo_pci_dev_remove_all(xe); 970 } 971 972 void xe_device_shutdown(struct xe_device *xe) 973 { 974 struct xe_gt *gt; 975 u8 id; 976 977 drm_dbg(&xe->drm, "Shutting down device\n"); 978 979 if (xe_driver_flr_disabled(xe)) { 980 xe_display_pm_shutdown(xe); 981 982 xe_irq_suspend(xe); 983 984 for_each_gt(gt, xe, id) 985 xe_gt_shutdown(gt); 986 987 xe_display_pm_shutdown_late(xe); 988 } else { 989 /* BOOM! */ 990 __xe_driver_flr(xe); 991 } 992 } 993 994 /** 995 * xe_device_wmb() - Device specific write memory barrier 996 * @xe: the &xe_device 997 * 998 * While wmb() is sufficient for a barrier if we use system memory, on discrete 999 * platforms with device memory we additionally need to issue a register write. 1000 * Since it doesn't matter which register we write to, use the read-only VF_CAP 1001 * register that is also marked as accessible by the VFs. 1002 */ 1003 void xe_device_wmb(struct xe_device *xe) 1004 { 1005 wmb(); 1006 if (IS_DGFX(xe)) 1007 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 1008 } 1009 1010 /* 1011 * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt. 1012 */ 1013 static void tdf_request_sync(struct xe_device *xe) 1014 { 1015 unsigned int fw_ref; 1016 struct xe_gt *gt; 1017 u8 id; 1018 1019 for_each_gt(gt, xe, id) { 1020 if (xe_gt_is_media_type(gt)) 1021 continue; 1022 1023 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1024 if (!fw_ref) 1025 return; 1026 1027 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1028 1029 /* 1030 * FIXME: We can likely do better here with our choice of 1031 * timeout. Currently we just assume the worst case, i.e. 150us, 1032 * which is believed to be sufficient to cover the worst case 1033 * scenario on current platforms if all cache entries are 1034 * transient and need to be flushed.. 1035 */ 1036 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1037 150, NULL, false)) 1038 xe_gt_err_once(gt, "TD flush timeout\n"); 1039 1040 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1041 } 1042 } 1043 1044 void xe_device_l2_flush(struct xe_device *xe) 1045 { 1046 struct xe_gt *gt; 1047 unsigned int fw_ref; 1048 1049 gt = xe_root_mmio_gt(xe); 1050 1051 if (!XE_GT_WA(gt, 16023588340)) 1052 return; 1053 1054 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1055 if (!fw_ref) 1056 return; 1057 1058 spin_lock(>->global_invl_lock); 1059 1060 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1061 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1062 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1063 1064 spin_unlock(>->global_invl_lock); 1065 1066 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1067 } 1068 1069 /** 1070 * xe_device_td_flush() - Flush transient L3 cache entries 1071 * @xe: The device 1072 * 1073 * Display engine has direct access to memory and is never coherent with L3/L4 1074 * caches (or CPU caches), however KMD is responsible for specifically flushing 1075 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 1076 * can happen from such a surface without seeing corruption. 1077 * 1078 * Display surfaces can be tagged as transient by mapping it using one of the 1079 * various L3:XD PAT index modes on Xe2. 1080 * 1081 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1082 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1083 * Media is not coherent with L3 and we want to support render-vs-media 1084 * usescases. For other engines like copy/blt the HW internally forces uncached 1085 * behaviour, hence why we can skip the TDF on such platforms. 1086 */ 1087 void xe_device_td_flush(struct xe_device *xe) 1088 { 1089 struct xe_gt *root_gt; 1090 1091 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1092 return; 1093 1094 root_gt = xe_root_mmio_gt(xe); 1095 if (XE_GT_WA(root_gt, 16023588340)) { 1096 /* A transient flush is not sufficient: flush the L2 */ 1097 xe_device_l2_flush(xe); 1098 } else { 1099 xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc); 1100 tdf_request_sync(xe); 1101 xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc); 1102 } 1103 } 1104 1105 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1106 { 1107 return xe_device_has_flat_ccs(xe) ? 1108 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1109 } 1110 1111 /** 1112 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1113 * @xe: xe device instance 1114 * 1115 * To be used before any kind of memory access. It will splat a debug warning 1116 * if the device is currently sleeping. But it doesn't guarantee in any way 1117 * that the device is going to remain awake. Xe PM runtime get and put 1118 * functions might be added to the outer bound of the memory access, while 1119 * this check is intended for inner usage to splat some warning if the worst 1120 * case has just happened. 1121 */ 1122 void xe_device_assert_mem_access(struct xe_device *xe) 1123 { 1124 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1125 } 1126 1127 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1128 { 1129 struct xe_gt *gt; 1130 u8 id; 1131 1132 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1133 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1134 1135 for_each_gt(gt, xe, id) { 1136 drm_printf(p, "GT id: %u\n", id); 1137 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1138 drm_printf(p, "\tType: %s\n", 1139 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1140 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1141 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1142 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1143 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1144 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1145 } 1146 } 1147 1148 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1149 { 1150 return sign_extend64(address, xe->info.va_bits - 1); 1151 } 1152 1153 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1154 { 1155 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1156 } 1157 1158 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1159 { 1160 struct xe_device *xe = arg; 1161 1162 xe_pm_runtime_put(xe); 1163 } 1164 1165 /** 1166 * xe_device_declare_wedged - Declare device wedged 1167 * @xe: xe device instance 1168 * 1169 * This is a final state that can only be cleared with a module 1170 * re-probe (unbind + bind). 1171 * In this state every IOCTL will be blocked so the GT cannot be used. 1172 * In general it will be called upon any critical error such as gt reset 1173 * failure or guc loading failure. Userspace will be notified of this state 1174 * through device wedged uevent. 1175 * If xe.wedged module parameter is set to 2, this function will be called 1176 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1177 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1178 * the issue is preserved for further debugging. 1179 */ 1180 void xe_device_declare_wedged(struct xe_device *xe) 1181 { 1182 struct xe_gt *gt; 1183 u8 id; 1184 1185 if (xe->wedged.mode == 0) { 1186 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1187 return; 1188 } 1189 1190 xe_pm_runtime_get_noresume(xe); 1191 1192 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1193 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1194 return; 1195 } 1196 1197 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1198 xe->needs_flr_on_fini = true; 1199 drm_err(&xe->drm, 1200 "CRITICAL: Xe has declared device %s as wedged.\n" 1201 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1202 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1203 dev_name(xe->drm.dev)); 1204 1205 /* Notify userspace of wedged device */ 1206 drm_dev_wedged_event(&xe->drm, 1207 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET, 1208 NULL); 1209 } 1210 1211 for_each_gt(gt, xe, id) 1212 xe_gt_declare_wedged(gt); 1213 } 1214