1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt.h" 19 #include "xe_gt_printk.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_module.h" 26 #include "xe_pm.h" 27 #include "xe_sched_job.h" 28 #include "xe_vm.h" 29 30 /** 31 * DOC: Xe device coredump 32 * 33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 34 * standardized way. Once a crash occurs, devcoredump exposes a temporary 35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 37 * ``failing_device`` symlink points to the device that crashed and created the 38 * coredump. 39 * 40 * The following characteristics are observed by xe when creating a device 41 * coredump: 42 * 43 * **Snapshot at hang**: 44 * The 'data' file contains a snapshot of the HW and driver states at the time 45 * the hang happened. Due to the driver recovering from resets/crashes, it may 46 * not correspond to the state of the system when the file is read by 47 * userspace. 48 * 49 * **Coredump release**: 50 * After a coredump is generated, it stays in kernel memory until released by 51 * userspace by writing anything to it, or after an internal timer expires. The 52 * exact timeout may vary and should not be relied upon. Example to release 53 * a coredump: 54 * 55 * .. code-block:: shell 56 * 57 * $ > /sys/class/drm/card0/device/devcoredump/data 58 * 59 * **First failure only**: 60 * In general, the first hang is the most critical one since the following 61 * hangs can be a consequence of the initial hang. For this reason a snapshot 62 * is taken only for the first failure. Until the devcoredump is released by 63 * userspace or kernel, all subsequent hangs do not override the snapshot nor 64 * create new ones. Devcoredump has a delayed work queue that will eventually 65 * delete the file node and free all the dump information. 66 */ 67 68 #ifdef CONFIG_DEV_COREDUMP 69 70 /* 1 hour timeout */ 71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 72 73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 74 { 75 return container_of(coredump, struct xe_device, devcoredump); 76 } 77 78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 79 { 80 return &q->gt->uc.guc; 81 } 82 83 static ssize_t __xe_devcoredump_read(char *buffer, size_t count, 84 struct xe_devcoredump *coredump) 85 { 86 struct xe_device *xe; 87 struct xe_devcoredump_snapshot *ss; 88 struct drm_printer p; 89 struct drm_print_iterator iter; 90 struct timespec64 ts; 91 int i; 92 93 xe = coredump_to_xe(coredump); 94 ss = &coredump->snapshot; 95 96 iter.data = buffer; 97 iter.start = 0; 98 iter.remain = count; 99 100 p = drm_coredump_printer(&iter); 101 102 drm_puts(&p, "**** Xe Device Coredump ****\n"); 103 drm_printf(&p, "Reason: %s\n", ss->reason); 104 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 105 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 106 107 ts = ktime_to_timespec64(ss->snapshot_time); 108 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 109 ts = ktime_to_timespec64(ss->boot_time); 110 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 111 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 112 xe_device_snapshot_print(xe, &p); 113 114 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 115 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 116 117 drm_puts(&p, "\n**** GuC Log ****\n"); 118 xe_guc_log_snapshot_print(ss->guc.log, &p); 119 drm_puts(&p, "\n**** GuC CT ****\n"); 120 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 121 122 /* 123 * Don't add a new section header here because the mesa debug decoder 124 * tool expects the context information to be in the 'GuC CT' section. 125 */ 126 /* drm_puts(&p, "\n**** Contexts ****\n"); */ 127 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 128 129 drm_puts(&p, "\n**** Job ****\n"); 130 xe_sched_job_snapshot_print(ss->job, &p); 131 132 drm_puts(&p, "\n**** HW Engines ****\n"); 133 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 134 if (ss->hwe[i]) 135 xe_engine_snapshot_print(ss->hwe[i], &p); 136 137 drm_puts(&p, "\n**** VM state ****\n"); 138 xe_vm_snapshot_print(ss->vm, &p); 139 140 return count - iter.remain; 141 } 142 143 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 144 { 145 int i; 146 147 kfree(ss->reason); 148 ss->reason = NULL; 149 150 xe_guc_log_snapshot_free(ss->guc.log); 151 ss->guc.log = NULL; 152 153 xe_guc_ct_snapshot_free(ss->guc.ct); 154 ss->guc.ct = NULL; 155 156 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 157 ss->matched_node = NULL; 158 159 xe_guc_exec_queue_snapshot_free(ss->ge); 160 ss->ge = NULL; 161 162 xe_sched_job_snapshot_free(ss->job); 163 ss->job = NULL; 164 165 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 166 if (ss->hwe[i]) { 167 xe_hw_engine_snapshot_free(ss->hwe[i]); 168 ss->hwe[i] = NULL; 169 } 170 171 xe_vm_snapshot_free(ss->vm); 172 ss->vm = NULL; 173 } 174 175 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 176 size_t count, void *data, size_t datalen) 177 { 178 struct xe_devcoredump *coredump = data; 179 struct xe_devcoredump_snapshot *ss; 180 ssize_t byte_copied; 181 182 if (!coredump) 183 return -ENODEV; 184 185 ss = &coredump->snapshot; 186 187 /* Ensure delayed work is captured before continuing */ 188 flush_work(&ss->work); 189 190 mutex_lock(&coredump->lock); 191 192 if (!ss->read.buffer) { 193 mutex_unlock(&coredump->lock); 194 return -ENODEV; 195 } 196 197 if (offset >= ss->read.size) { 198 mutex_unlock(&coredump->lock); 199 return 0; 200 } 201 202 byte_copied = count < ss->read.size - offset ? count : 203 ss->read.size - offset; 204 memcpy(buffer, ss->read.buffer + offset, byte_copied); 205 206 mutex_unlock(&coredump->lock); 207 208 return byte_copied; 209 } 210 211 static void xe_devcoredump_free(void *data) 212 { 213 struct xe_devcoredump *coredump = data; 214 215 /* Our device is gone. Nothing to do... */ 216 if (!data || !coredump_to_xe(coredump)) 217 return; 218 219 cancel_work_sync(&coredump->snapshot.work); 220 221 mutex_lock(&coredump->lock); 222 223 xe_devcoredump_snapshot_free(&coredump->snapshot); 224 kvfree(coredump->snapshot.read.buffer); 225 226 /* To prevent stale data on next snapshot, clear everything */ 227 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 228 coredump->captured = false; 229 drm_info(&coredump_to_xe(coredump)->drm, 230 "Xe device coredump has been deleted.\n"); 231 232 mutex_unlock(&coredump->lock); 233 } 234 235 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 236 { 237 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 238 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 239 struct xe_device *xe = coredump_to_xe(coredump); 240 unsigned int fw_ref; 241 242 /* 243 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 244 * internally using GFP_KERNEL expliictly. Hence this call must be in the worker 245 * thread and not in the initial capture call. 246 */ 247 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 248 xe_devcoredump_read, xe_devcoredump_free, 249 XE_COREDUMP_TIMEOUT_JIFFIES); 250 251 xe_pm_runtime_get(xe); 252 253 /* keep going if fw fails as we still want to save the memory and SW data */ 254 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); 255 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 256 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 257 xe_vm_snapshot_capture_delayed(ss->vm); 258 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 259 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref); 260 261 xe_pm_runtime_put(xe); 262 263 /* Calculate devcoredump size */ 264 ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump); 265 266 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 267 if (!ss->read.buffer) 268 return; 269 270 __xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump); 271 xe_devcoredump_snapshot_free(ss); 272 } 273 274 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 275 struct xe_exec_queue *q, 276 struct xe_sched_job *job) 277 { 278 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 279 struct xe_guc *guc = exec_queue_to_guc(q); 280 u32 adj_logical_mask = q->logical_mask; 281 u32 width_mask = (0x1 << q->width) - 1; 282 const char *process_name = "no process"; 283 284 unsigned int fw_ref; 285 bool cookie; 286 int i; 287 288 ss->snapshot_time = ktime_get_real(); 289 ss->boot_time = ktime_get_boottime(); 290 291 if (q->vm && q->vm->xef) { 292 process_name = q->vm->xef->process_name; 293 ss->pid = q->vm->xef->pid; 294 } 295 296 strscpy(ss->process_name, process_name); 297 298 ss->gt = q->gt; 299 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 300 301 cookie = dma_fence_begin_signalling(); 302 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) { 303 if (adj_logical_mask & BIT(i)) { 304 adj_logical_mask |= width_mask << i; 305 i += q->width; 306 } else { 307 ++i; 308 } 309 } 310 311 /* keep going if fw fails as we still want to save the memory and SW data */ 312 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 313 314 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 315 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 316 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 317 if (job) 318 ss->job = xe_sched_job_snapshot_capture(job); 319 ss->vm = xe_vm_snapshot_capture(q->vm); 320 321 xe_engine_snapshot_capture_for_queue(q); 322 323 queue_work(system_unbound_wq, &ss->work); 324 325 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 326 dma_fence_end_signalling(cookie); 327 } 328 329 /** 330 * xe_devcoredump - Take the required snapshots and initialize coredump device. 331 * @q: The faulty xe_exec_queue, where the issue was detected. 332 * @job: The faulty xe_sched_job, where the issue was detected. 333 * @fmt: Printf format + args to describe the reason for the core dump 334 * 335 * This function should be called at the crash time within the serialized 336 * gt_reset. It is skipped if we still have the core dump device available 337 * with the information of the 'first' snapshot. 338 */ 339 __printf(3, 4) 340 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 341 { 342 struct xe_device *xe = gt_to_xe(q->gt); 343 struct xe_devcoredump *coredump = &xe->devcoredump; 344 va_list varg; 345 346 mutex_lock(&coredump->lock); 347 348 if (coredump->captured) { 349 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 350 mutex_unlock(&coredump->lock); 351 return; 352 } 353 354 coredump->captured = true; 355 356 va_start(varg, fmt); 357 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 358 va_end(varg); 359 360 devcoredump_snapshot(coredump, q, job); 361 362 drm_info(&xe->drm, "Xe device coredump has been created\n"); 363 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 364 xe->drm.primary->index); 365 366 mutex_unlock(&coredump->lock); 367 } 368 369 static void xe_driver_devcoredump_fini(void *arg) 370 { 371 struct drm_device *drm = arg; 372 373 dev_coredump_put(drm->dev); 374 } 375 376 int xe_devcoredump_init(struct xe_device *xe) 377 { 378 int err; 379 380 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 381 if (err) 382 return err; 383 384 if (IS_ENABLED(CONFIG_LOCKDEP)) { 385 fs_reclaim_acquire(GFP_KERNEL); 386 might_lock(&xe->devcoredump.lock); 387 fs_reclaim_release(GFP_KERNEL); 388 } 389 390 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 391 } 392 393 #endif 394 395 /** 396 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 397 * 398 * The output is split to multiple lines because some print targets, e.g. dmesg 399 * cannot handle arbitrarily long lines. Note also that printing to dmesg in 400 * piece-meal fashion is not possible, each separate call to drm_puts() has a 401 * line-feed automatically added! Therefore, the entire output line must be 402 * constructed in a local buffer first, then printed in one atomic output call. 403 * 404 * There is also a scheduler yield call to prevent the 'task has been stuck for 405 * 120s' kernel hang check feature from firing when printing to a slow target 406 * such as dmesg over a serial port. 407 * 408 * TODO: Add compression prior to the ASCII85 encoding to shrink huge buffers down. 409 * 410 * @p: the printer object to output to 411 * @prefix: optional prefix to add to output string 412 * @blob: the Binary Large OBject to dump out 413 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 414 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 415 */ 416 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, 417 const void *blob, size_t offset, size_t size) 418 { 419 const u32 *blob32 = (const u32 *)blob; 420 char buff[ASCII85_BUFSZ], *line_buff; 421 size_t line_pos = 0; 422 423 /* 424 * Splitting blobs across multiple lines is not compatible with the mesa 425 * debug decoder tool. Note that even dropping the explicit '\n' below 426 * doesn't help because the GuC log is so big some underlying implementation 427 * still splits the lines at 512K characters. So just bail completely for 428 * the moment. 429 */ 430 return; 431 432 #define DMESG_MAX_LINE_LEN 800 433 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "\n\0" */ 434 435 if (size & 3) 436 drm_printf(p, "Size not word aligned: %zu", size); 437 if (offset & 3) 438 drm_printf(p, "Offset not word aligned: %zu", size); 439 440 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL); 441 if (IS_ERR_OR_NULL(line_buff)) { 442 drm_printf(p, "Failed to allocate line buffer: %pe", line_buff); 443 return; 444 } 445 446 blob32 += offset / sizeof(*blob32); 447 size /= sizeof(*blob32); 448 449 if (prefix) { 450 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 451 line_pos = strlen(line_buff); 452 453 line_buff[line_pos++] = ':'; 454 line_buff[line_pos++] = ' '; 455 } 456 457 while (size--) { 458 u32 val = *(blob32++); 459 460 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 461 DMESG_MAX_LINE_LEN - line_pos); 462 line_pos += strlen(line_buff + line_pos); 463 464 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 465 line_buff[line_pos++] = '\n'; 466 line_buff[line_pos++] = 0; 467 468 drm_puts(p, line_buff); 469 470 line_pos = 0; 471 472 /* Prevent 'stuck thread' time out errors */ 473 cond_resched(); 474 } 475 } 476 477 if (line_pos) { 478 line_buff[line_pos++] = '\n'; 479 line_buff[line_pos++] = 0; 480 481 drm_puts(p, line_buff); 482 } 483 484 kfree(line_buff); 485 486 #undef MIN_SPACE 487 #undef DMESG_MAX_LINE_LEN 488 } 489