1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt_printk.h" 19 #include "xe_gt_types.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_pm.h" 26 #include "xe_sched_job.h" 27 #include "xe_vm.h" 28 29 /** 30 * DOC: Xe device coredump 31 * 32 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 33 * standardized way. Once a crash occurs, devcoredump exposes a temporary 34 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 35 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 36 * ``failing_device`` symlink points to the device that crashed and created the 37 * coredump. 38 * 39 * The following characteristics are observed by xe when creating a device 40 * coredump: 41 * 42 * **Snapshot at hang**: 43 * The 'data' file contains a snapshot of the HW and driver states at the time 44 * the hang happened. Due to the driver recovering from resets/crashes, it may 45 * not correspond to the state of the system when the file is read by 46 * userspace. 47 * 48 * **Coredump release**: 49 * After a coredump is generated, it stays in kernel memory until released by 50 * userspace by writing anything to it, or after an internal timer expires. The 51 * exact timeout may vary and should not be relied upon. Example to release 52 * a coredump: 53 * 54 * .. code-block:: shell 55 * 56 * $ > /sys/class/drm/card0/device/devcoredump/data 57 * 58 * **First failure only**: 59 * In general, the first hang is the most critical one since the following 60 * hangs can be a consequence of the initial hang. For this reason a snapshot 61 * is taken only for the first failure. Until the devcoredump is released by 62 * userspace or kernel, all subsequent hangs do not override the snapshot nor 63 * create new ones. Devcoredump has a delayed work queue that will eventually 64 * delete the file node and free all the dump information. 65 */ 66 67 #ifdef CONFIG_DEV_COREDUMP 68 69 /* 1 hour timeout */ 70 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 71 72 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 73 { 74 return container_of(coredump, struct xe_device, devcoredump); 75 } 76 77 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 78 { 79 return &q->gt->uc.guc; 80 } 81 82 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count, 83 ssize_t start, 84 struct xe_devcoredump *coredump) 85 { 86 struct xe_device *xe; 87 struct xe_devcoredump_snapshot *ss; 88 struct drm_printer p; 89 struct drm_print_iterator iter; 90 struct timespec64 ts; 91 int i; 92 93 xe = coredump_to_xe(coredump); 94 ss = &coredump->snapshot; 95 96 iter.data = buffer; 97 iter.start = start; 98 iter.remain = count; 99 100 p = drm_coredump_printer(&iter); 101 102 drm_puts(&p, "**** Xe Device Coredump ****\n"); 103 drm_printf(&p, "Reason: %s\n", ss->reason); 104 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 105 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 106 107 ts = ktime_to_timespec64(ss->snapshot_time); 108 drm_printf(&p, "Snapshot time: %ptSp\n", &ts); 109 ts = ktime_to_timespec64(ss->boot_time); 110 drm_printf(&p, "Uptime: %ptSp\n", &ts); 111 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 112 xe_device_snapshot_print(xe, &p); 113 114 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 115 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 116 117 drm_puts(&p, "\n**** GuC Log ****\n"); 118 xe_guc_log_snapshot_print(ss->guc.log, &p); 119 drm_puts(&p, "\n**** GuC CT ****\n"); 120 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 121 122 drm_puts(&p, "\n**** Contexts ****\n"); 123 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 124 125 drm_puts(&p, "\n**** Job ****\n"); 126 xe_sched_job_snapshot_print(ss->job, &p); 127 128 drm_puts(&p, "\n**** HW Engines ****\n"); 129 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 130 if (ss->hwe[i]) 131 xe_engine_snapshot_print(ss->hwe[i], &p); 132 133 drm_puts(&p, "\n**** VM state ****\n"); 134 xe_vm_snapshot_print(ss->vm, &p); 135 136 return count - iter.remain; 137 } 138 139 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 140 { 141 int i; 142 143 kfree(ss->reason); 144 ss->reason = NULL; 145 146 xe_guc_log_snapshot_free(ss->guc.log); 147 ss->guc.log = NULL; 148 149 xe_guc_ct_snapshot_free(ss->guc.ct); 150 ss->guc.ct = NULL; 151 152 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 153 ss->matched_node = NULL; 154 155 xe_guc_exec_queue_snapshot_free(ss->ge); 156 ss->ge = NULL; 157 158 xe_sched_job_snapshot_free(ss->job); 159 ss->job = NULL; 160 161 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 162 if (ss->hwe[i]) { 163 xe_hw_engine_snapshot_free(ss->hwe[i]); 164 ss->hwe[i] = NULL; 165 } 166 167 xe_vm_snapshot_free(ss->vm); 168 ss->vm = NULL; 169 } 170 171 #define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G) 172 173 /** 174 * xe_devcoredump_read() - Read data from the Xe device coredump snapshot 175 * @buffer: Destination buffer to copy the coredump data into 176 * @offset: Offset in the coredump data to start reading from 177 * @count: Number of bytes to read 178 * @data: Pointer to the xe_devcoredump structure 179 * @datalen: Length of the data (unused) 180 * 181 * Reads a chunk of the coredump snapshot data into the provided buffer. 182 * If the devcoredump is smaller than 1.5 GB (XE_DEVCOREDUMP_CHUNK_MAX), 183 * it is read directly from a pre-written buffer. For larger devcoredumps, 184 * the pre-written buffer must be periodically repopulated from the snapshot 185 * state due to kmalloc size limitations. 186 * 187 * Return: Number of bytes copied on success, or a negative error code on failure. 188 */ 189 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 190 size_t count, void *data, size_t datalen) 191 { 192 struct xe_devcoredump *coredump = data; 193 struct xe_devcoredump_snapshot *ss; 194 ssize_t byte_copied = 0; 195 u32 chunk_offset; 196 ssize_t new_chunk_position; 197 bool pm_needed = false; 198 int ret = 0; 199 200 if (!coredump) 201 return -ENODEV; 202 203 ss = &coredump->snapshot; 204 205 /* Ensure delayed work is captured before continuing */ 206 flush_work(&ss->work); 207 208 pm_needed = ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX; 209 if (pm_needed) 210 xe_pm_runtime_get(gt_to_xe(ss->gt)); 211 212 mutex_lock(&coredump->lock); 213 214 if (!ss->read.buffer) { 215 ret = -ENODEV; 216 goto unlock; 217 } 218 219 if (offset >= ss->read.size) 220 goto unlock; 221 222 new_chunk_position = div_u64_rem(offset, 223 XE_DEVCOREDUMP_CHUNK_MAX, 224 &chunk_offset); 225 226 if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX || 227 offset < ss->read.chunk_position) { 228 ss->read.chunk_position = new_chunk_position * 229 XE_DEVCOREDUMP_CHUNK_MAX; 230 231 __xe_devcoredump_read(ss->read.buffer, 232 XE_DEVCOREDUMP_CHUNK_MAX, 233 ss->read.chunk_position, coredump); 234 } 235 236 byte_copied = count < ss->read.size - offset ? count : 237 ss->read.size - offset; 238 memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied); 239 240 unlock: 241 mutex_unlock(&coredump->lock); 242 243 if (pm_needed) 244 xe_pm_runtime_put(gt_to_xe(ss->gt)); 245 246 return byte_copied ? byte_copied : ret; 247 } 248 249 static void xe_devcoredump_free(void *data) 250 { 251 struct xe_devcoredump *coredump = data; 252 253 /* Our device is gone. Nothing to do... */ 254 if (!data || !coredump_to_xe(coredump)) 255 return; 256 257 cancel_work_sync(&coredump->snapshot.work); 258 259 mutex_lock(&coredump->lock); 260 261 xe_devcoredump_snapshot_free(&coredump->snapshot); 262 kvfree(coredump->snapshot.read.buffer); 263 264 /* To prevent stale data on next snapshot, clear everything */ 265 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 266 coredump->captured = false; 267 drm_info(&coredump_to_xe(coredump)->drm, 268 "Xe device coredump has been deleted.\n"); 269 270 mutex_unlock(&coredump->lock); 271 } 272 273 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 274 { 275 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 276 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 277 struct xe_device *xe = coredump_to_xe(coredump); 278 279 /* 280 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 281 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker 282 * thread and not in the initial capture call. 283 */ 284 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 285 xe_devcoredump_read, xe_devcoredump_free, 286 XE_COREDUMP_TIMEOUT_JIFFIES); 287 288 guard(xe_pm_runtime)(xe); 289 290 /* keep going if fw fails as we still want to save the memory and SW data */ 291 xe_with_force_wake(fw_ref, gt_to_fw(ss->gt), XE_FORCEWAKE_ALL) { 292 if (!xe_force_wake_ref_has_domain(fw_ref.domains, XE_FORCEWAKE_ALL)) 293 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 294 xe_vm_snapshot_capture_delayed(ss->vm); 295 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 296 } 297 298 ss->read.chunk_position = 0; 299 300 /* Calculate devcoredump size */ 301 ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump); 302 303 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) { 304 ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX, 305 GFP_USER); 306 if (!ss->read.buffer) 307 return; 308 309 __xe_devcoredump_read(ss->read.buffer, 310 XE_DEVCOREDUMP_CHUNK_MAX, 311 0, coredump); 312 } else { 313 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 314 if (!ss->read.buffer) 315 return; 316 317 __xe_devcoredump_read(ss->read.buffer, ss->read.size, 0, 318 coredump); 319 xe_devcoredump_snapshot_free(ss); 320 } 321 } 322 323 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 324 struct xe_exec_queue *q, 325 struct xe_sched_job *job) 326 { 327 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 328 struct xe_guc *guc = exec_queue_to_guc(q); 329 const char *process_name = "no process"; 330 bool cookie; 331 332 ss->snapshot_time = ktime_get_real(); 333 ss->boot_time = ktime_get_boottime(); 334 335 if (q->vm && q->vm->xef) { 336 process_name = q->vm->xef->process_name; 337 ss->pid = q->vm->xef->pid; 338 } 339 340 strscpy(ss->process_name, process_name); 341 342 ss->gt = q->gt; 343 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 344 345 /* keep going if fw fails as we still want to save the memory and SW data */ 346 CLASS(xe_force_wake, fw_ref)(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 347 348 cookie = dma_fence_begin_signalling(); 349 350 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 351 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 352 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 353 if (job) 354 ss->job = xe_sched_job_snapshot_capture(job); 355 ss->vm = xe_vm_snapshot_capture(q->vm); 356 357 xe_engine_snapshot_capture_for_queue(q); 358 359 queue_work(system_unbound_wq, &ss->work); 360 361 dma_fence_end_signalling(cookie); 362 } 363 364 /** 365 * xe_devcoredump - Take the required snapshots and initialize coredump device. 366 * @q: The faulty xe_exec_queue, where the issue was detected. 367 * @job: The faulty xe_sched_job, where the issue was detected. 368 * @fmt: Printf format + args to describe the reason for the core dump 369 * 370 * This function should be called at the crash time within the serialized 371 * gt_reset. It is skipped if we still have the core dump device available 372 * with the information of the 'first' snapshot. 373 */ 374 __printf(3, 4) 375 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 376 { 377 struct xe_device *xe = gt_to_xe(q->gt); 378 struct xe_devcoredump *coredump = &xe->devcoredump; 379 va_list varg; 380 381 mutex_lock(&coredump->lock); 382 383 if (coredump->captured) { 384 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 385 mutex_unlock(&coredump->lock); 386 return; 387 } 388 389 coredump->captured = true; 390 391 va_start(varg, fmt); 392 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 393 va_end(varg); 394 395 devcoredump_snapshot(coredump, q, job); 396 397 drm_info(&xe->drm, "Xe device coredump has been created\n"); 398 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 399 xe->drm.primary->index); 400 401 mutex_unlock(&coredump->lock); 402 } 403 404 static void xe_driver_devcoredump_fini(void *arg) 405 { 406 struct drm_device *drm = arg; 407 408 dev_coredump_put(drm->dev); 409 } 410 411 int xe_devcoredump_init(struct xe_device *xe) 412 { 413 int err; 414 415 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 416 if (err) 417 return err; 418 419 if (IS_ENABLED(CONFIG_LOCKDEP)) { 420 fs_reclaim_acquire(GFP_KERNEL); 421 might_lock(&xe->devcoredump.lock); 422 fs_reclaim_release(GFP_KERNEL); 423 } 424 425 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 426 } 427 428 #endif 429 430 /** 431 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 432 * 433 * The output is split into multiple calls to drm_puts() because some print 434 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may 435 * add newlines, as is the case with dmesg: each drm_puts() call creates a 436 * separate line. 437 * 438 * There is also a scheduler yield call to prevent the 'task has been stuck for 439 * 120s' kernel hang check feature from firing when printing to a slow target 440 * such as dmesg over a serial port. 441 * 442 * @p: the printer object to output to 443 * @prefix: optional prefix to add to output string 444 * @suffix: optional suffix to add at the end. 0 disables it and is 445 * not added to the output, which is useful when using multiple calls 446 * to dump data to @p 447 * @blob: the Binary Large OBject to dump out 448 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 449 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 450 */ 451 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix, 452 const void *blob, size_t offset, size_t size) 453 { 454 const u32 *blob32 = (const u32 *)blob; 455 char buff[ASCII85_BUFSZ], *line_buff; 456 size_t line_pos = 0; 457 458 #define DMESG_MAX_LINE_LEN 800 459 /* Always leave space for the suffix char and the \0 */ 460 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */ 461 462 if (size & 3) 463 drm_printf(p, "Size not word aligned: %zu", size); 464 if (offset & 3) 465 drm_printf(p, "Offset not word aligned: %zu", offset); 466 467 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC); 468 if (!line_buff) { 469 drm_printf(p, "Failed to allocate line buffer\n"); 470 return; 471 } 472 473 blob32 += offset / sizeof(*blob32); 474 size /= sizeof(*blob32); 475 476 if (prefix) { 477 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 478 line_pos = strlen(line_buff); 479 480 line_buff[line_pos++] = ':'; 481 line_buff[line_pos++] = ' '; 482 } 483 484 while (size--) { 485 u32 val = *(blob32++); 486 487 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 488 DMESG_MAX_LINE_LEN - line_pos); 489 line_pos += strlen(line_buff + line_pos); 490 491 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 492 line_buff[line_pos++] = 0; 493 494 drm_puts(p, line_buff); 495 496 line_pos = 0; 497 498 /* Prevent 'stuck thread' time out errors */ 499 cond_resched(); 500 } 501 } 502 503 if (suffix) 504 line_buff[line_pos++] = suffix; 505 506 if (line_pos) { 507 line_buff[line_pos++] = 0; 508 drm_puts(p, line_buff); 509 } 510 511 kfree(line_buff); 512 513 #undef MIN_SPACE 514 #undef DMESG_MAX_LINE_LEN 515 } 516