1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt.h" 19 #include "xe_gt_printk.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_module.h" 26 #include "xe_pm.h" 27 #include "xe_sched_job.h" 28 #include "xe_vm.h" 29 30 /** 31 * DOC: Xe device coredump 32 * 33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 34 * standardized way. Once a crash occurs, devcoredump exposes a temporary 35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 37 * ``failing_device`` symlink points to the device that crashed and created the 38 * coredump. 39 * 40 * The following characteristics are observed by xe when creating a device 41 * coredump: 42 * 43 * **Snapshot at hang**: 44 * The 'data' file contains a snapshot of the HW and driver states at the time 45 * the hang happened. Due to the driver recovering from resets/crashes, it may 46 * not correspond to the state of the system when the file is read by 47 * userspace. 48 * 49 * **Coredump release**: 50 * After a coredump is generated, it stays in kernel memory until released by 51 * userspace by writing anything to it, or after an internal timer expires. The 52 * exact timeout may vary and should not be relied upon. Example to release 53 * a coredump: 54 * 55 * .. code-block:: shell 56 * 57 * $ > /sys/class/drm/card0/device/devcoredump/data 58 * 59 * **First failure only**: 60 * In general, the first hang is the most critical one since the following 61 * hangs can be a consequence of the initial hang. For this reason a snapshot 62 * is taken only for the first failure. Until the devcoredump is released by 63 * userspace or kernel, all subsequent hangs do not override the snapshot nor 64 * create new ones. Devcoredump has a delayed work queue that will eventually 65 * delete the file node and free all the dump information. 66 */ 67 68 #ifdef CONFIG_DEV_COREDUMP 69 70 /* 1 hour timeout */ 71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 72 73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 74 { 75 return container_of(coredump, struct xe_device, devcoredump); 76 } 77 78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 79 { 80 return &q->gt->uc.guc; 81 } 82 83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count, 84 ssize_t start, 85 struct xe_devcoredump *coredump) 86 { 87 struct xe_device *xe; 88 struct xe_devcoredump_snapshot *ss; 89 struct drm_printer p; 90 struct drm_print_iterator iter; 91 struct timespec64 ts; 92 int i; 93 94 xe = coredump_to_xe(coredump); 95 ss = &coredump->snapshot; 96 97 iter.data = buffer; 98 iter.start = start; 99 iter.remain = count; 100 101 p = drm_coredump_printer(&iter); 102 103 drm_puts(&p, "**** Xe Device Coredump ****\n"); 104 drm_printf(&p, "Reason: %s\n", ss->reason); 105 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 106 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 107 108 ts = ktime_to_timespec64(ss->snapshot_time); 109 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 110 ts = ktime_to_timespec64(ss->boot_time); 111 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 112 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 113 xe_device_snapshot_print(xe, &p); 114 115 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 116 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 117 118 drm_puts(&p, "\n**** GuC Log ****\n"); 119 xe_guc_log_snapshot_print(ss->guc.log, &p); 120 drm_puts(&p, "\n**** GuC CT ****\n"); 121 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 122 123 drm_puts(&p, "\n**** Contexts ****\n"); 124 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 125 126 drm_puts(&p, "\n**** Job ****\n"); 127 xe_sched_job_snapshot_print(ss->job, &p); 128 129 drm_puts(&p, "\n**** HW Engines ****\n"); 130 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 131 if (ss->hwe[i]) 132 xe_engine_snapshot_print(ss->hwe[i], &p); 133 134 drm_puts(&p, "\n**** VM state ****\n"); 135 xe_vm_snapshot_print(ss->vm, &p); 136 137 return count - iter.remain; 138 } 139 140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 141 { 142 int i; 143 144 kfree(ss->reason); 145 ss->reason = NULL; 146 147 xe_guc_log_snapshot_free(ss->guc.log); 148 ss->guc.log = NULL; 149 150 xe_guc_ct_snapshot_free(ss->guc.ct); 151 ss->guc.ct = NULL; 152 153 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 154 ss->matched_node = NULL; 155 156 xe_guc_exec_queue_snapshot_free(ss->ge); 157 ss->ge = NULL; 158 159 xe_sched_job_snapshot_free(ss->job); 160 ss->job = NULL; 161 162 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 163 if (ss->hwe[i]) { 164 xe_hw_engine_snapshot_free(ss->hwe[i]); 165 ss->hwe[i] = NULL; 166 } 167 168 xe_vm_snapshot_free(ss->vm); 169 ss->vm = NULL; 170 } 171 172 #define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G) 173 174 /** 175 * xe_devcoredump_read() - Read data from the Xe device coredump snapshot 176 * @buffer: Destination buffer to copy the coredump data into 177 * @offset: Offset in the coredump data to start reading from 178 * @count: Number of bytes to read 179 * @data: Pointer to the xe_devcoredump structure 180 * @datalen: Length of the data (unused) 181 * 182 * Reads a chunk of the coredump snapshot data into the provided buffer. 183 * If the devcoredump is smaller than 1.5 GB (XE_DEVCOREDUMP_CHUNK_MAX), 184 * it is read directly from a pre-written buffer. For larger devcoredumps, 185 * the pre-written buffer must be periodically repopulated from the snapshot 186 * state due to kmalloc size limitations. 187 * 188 * Return: Number of bytes copied on success, or a negative error code on failure. 189 */ 190 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 191 size_t count, void *data, size_t datalen) 192 { 193 struct xe_devcoredump *coredump = data; 194 struct xe_devcoredump_snapshot *ss; 195 ssize_t byte_copied = 0; 196 u32 chunk_offset; 197 ssize_t new_chunk_position; 198 bool pm_needed = false; 199 int ret = 0; 200 201 if (!coredump) 202 return -ENODEV; 203 204 ss = &coredump->snapshot; 205 206 /* Ensure delayed work is captured before continuing */ 207 flush_work(&ss->work); 208 209 pm_needed = ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX; 210 if (pm_needed) 211 xe_pm_runtime_get(gt_to_xe(ss->gt)); 212 213 mutex_lock(&coredump->lock); 214 215 if (!ss->read.buffer) { 216 ret = -ENODEV; 217 goto unlock; 218 } 219 220 if (offset >= ss->read.size) 221 goto unlock; 222 223 new_chunk_position = div_u64_rem(offset, 224 XE_DEVCOREDUMP_CHUNK_MAX, 225 &chunk_offset); 226 227 if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX || 228 offset < ss->read.chunk_position) { 229 ss->read.chunk_position = new_chunk_position * 230 XE_DEVCOREDUMP_CHUNK_MAX; 231 232 __xe_devcoredump_read(ss->read.buffer, 233 XE_DEVCOREDUMP_CHUNK_MAX, 234 ss->read.chunk_position, coredump); 235 } 236 237 byte_copied = count < ss->read.size - offset ? count : 238 ss->read.size - offset; 239 memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied); 240 241 unlock: 242 mutex_unlock(&coredump->lock); 243 244 if (pm_needed) 245 xe_pm_runtime_put(gt_to_xe(ss->gt)); 246 247 return byte_copied ? byte_copied : ret; 248 } 249 250 static void xe_devcoredump_free(void *data) 251 { 252 struct xe_devcoredump *coredump = data; 253 254 /* Our device is gone. Nothing to do... */ 255 if (!data || !coredump_to_xe(coredump)) 256 return; 257 258 cancel_work_sync(&coredump->snapshot.work); 259 260 mutex_lock(&coredump->lock); 261 262 xe_devcoredump_snapshot_free(&coredump->snapshot); 263 kvfree(coredump->snapshot.read.buffer); 264 265 /* To prevent stale data on next snapshot, clear everything */ 266 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 267 coredump->captured = false; 268 drm_info(&coredump_to_xe(coredump)->drm, 269 "Xe device coredump has been deleted.\n"); 270 271 mutex_unlock(&coredump->lock); 272 } 273 274 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 275 { 276 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 277 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 278 struct xe_device *xe = coredump_to_xe(coredump); 279 unsigned int fw_ref; 280 281 /* 282 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 283 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker 284 * thread and not in the initial capture call. 285 */ 286 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 287 xe_devcoredump_read, xe_devcoredump_free, 288 XE_COREDUMP_TIMEOUT_JIFFIES); 289 290 xe_pm_runtime_get(xe); 291 292 /* keep going if fw fails as we still want to save the memory and SW data */ 293 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); 294 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 295 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 296 xe_vm_snapshot_capture_delayed(ss->vm); 297 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 298 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref); 299 300 ss->read.chunk_position = 0; 301 302 /* Calculate devcoredump size */ 303 ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump); 304 305 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) { 306 ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX, 307 GFP_USER); 308 if (!ss->read.buffer) 309 goto put_pm; 310 311 __xe_devcoredump_read(ss->read.buffer, 312 XE_DEVCOREDUMP_CHUNK_MAX, 313 0, coredump); 314 } else { 315 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 316 if (!ss->read.buffer) 317 goto put_pm; 318 319 __xe_devcoredump_read(ss->read.buffer, ss->read.size, 0, 320 coredump); 321 xe_devcoredump_snapshot_free(ss); 322 } 323 324 put_pm: 325 xe_pm_runtime_put(xe); 326 } 327 328 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 329 struct xe_exec_queue *q, 330 struct xe_sched_job *job) 331 { 332 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 333 struct xe_guc *guc = exec_queue_to_guc(q); 334 const char *process_name = "no process"; 335 unsigned int fw_ref; 336 bool cookie; 337 338 ss->snapshot_time = ktime_get_real(); 339 ss->boot_time = ktime_get_boottime(); 340 341 if (q->vm && q->vm->xef) { 342 process_name = q->vm->xef->process_name; 343 ss->pid = q->vm->xef->pid; 344 } 345 346 strscpy(ss->process_name, process_name); 347 348 ss->gt = q->gt; 349 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 350 351 cookie = dma_fence_begin_signalling(); 352 353 /* keep going if fw fails as we still want to save the memory and SW data */ 354 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 355 356 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 357 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 358 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 359 if (job) 360 ss->job = xe_sched_job_snapshot_capture(job); 361 ss->vm = xe_vm_snapshot_capture(q->vm); 362 363 xe_engine_snapshot_capture_for_queue(q); 364 365 queue_work(system_unbound_wq, &ss->work); 366 367 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 368 dma_fence_end_signalling(cookie); 369 } 370 371 /** 372 * xe_devcoredump - Take the required snapshots and initialize coredump device. 373 * @q: The faulty xe_exec_queue, where the issue was detected. 374 * @job: The faulty xe_sched_job, where the issue was detected. 375 * @fmt: Printf format + args to describe the reason for the core dump 376 * 377 * This function should be called at the crash time within the serialized 378 * gt_reset. It is skipped if we still have the core dump device available 379 * with the information of the 'first' snapshot. 380 */ 381 __printf(3, 4) 382 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 383 { 384 struct xe_device *xe = gt_to_xe(q->gt); 385 struct xe_devcoredump *coredump = &xe->devcoredump; 386 va_list varg; 387 388 mutex_lock(&coredump->lock); 389 390 if (coredump->captured) { 391 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 392 mutex_unlock(&coredump->lock); 393 return; 394 } 395 396 coredump->captured = true; 397 398 va_start(varg, fmt); 399 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 400 va_end(varg); 401 402 devcoredump_snapshot(coredump, q, job); 403 404 drm_info(&xe->drm, "Xe device coredump has been created\n"); 405 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 406 xe->drm.primary->index); 407 408 mutex_unlock(&coredump->lock); 409 } 410 411 static void xe_driver_devcoredump_fini(void *arg) 412 { 413 struct drm_device *drm = arg; 414 415 dev_coredump_put(drm->dev); 416 } 417 418 int xe_devcoredump_init(struct xe_device *xe) 419 { 420 int err; 421 422 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 423 if (err) 424 return err; 425 426 if (IS_ENABLED(CONFIG_LOCKDEP)) { 427 fs_reclaim_acquire(GFP_KERNEL); 428 might_lock(&xe->devcoredump.lock); 429 fs_reclaim_release(GFP_KERNEL); 430 } 431 432 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 433 } 434 435 #endif 436 437 /** 438 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 439 * 440 * The output is split into multiple calls to drm_puts() because some print 441 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may 442 * add newlines, as is the case with dmesg: each drm_puts() call creates a 443 * separate line. 444 * 445 * There is also a scheduler yield call to prevent the 'task has been stuck for 446 * 120s' kernel hang check feature from firing when printing to a slow target 447 * such as dmesg over a serial port. 448 * 449 * @p: the printer object to output to 450 * @prefix: optional prefix to add to output string 451 * @suffix: optional suffix to add at the end. 0 disables it and is 452 * not added to the output, which is useful when using multiple calls 453 * to dump data to @p 454 * @blob: the Binary Large OBject to dump out 455 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 456 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 457 */ 458 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix, 459 const void *blob, size_t offset, size_t size) 460 { 461 const u32 *blob32 = (const u32 *)blob; 462 char buff[ASCII85_BUFSZ], *line_buff; 463 size_t line_pos = 0; 464 465 #define DMESG_MAX_LINE_LEN 800 466 /* Always leave space for the suffix char and the \0 */ 467 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */ 468 469 if (size & 3) 470 drm_printf(p, "Size not word aligned: %zu", size); 471 if (offset & 3) 472 drm_printf(p, "Offset not word aligned: %zu", offset); 473 474 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC); 475 if (!line_buff) { 476 drm_printf(p, "Failed to allocate line buffer\n"); 477 return; 478 } 479 480 blob32 += offset / sizeof(*blob32); 481 size /= sizeof(*blob32); 482 483 if (prefix) { 484 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 485 line_pos = strlen(line_buff); 486 487 line_buff[line_pos++] = ':'; 488 line_buff[line_pos++] = ' '; 489 } 490 491 while (size--) { 492 u32 val = *(blob32++); 493 494 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 495 DMESG_MAX_LINE_LEN - line_pos); 496 line_pos += strlen(line_buff + line_pos); 497 498 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 499 line_buff[line_pos++] = 0; 500 501 drm_puts(p, line_buff); 502 503 line_pos = 0; 504 505 /* Prevent 'stuck thread' time out errors */ 506 cond_resched(); 507 } 508 } 509 510 if (suffix) 511 line_buff[line_pos++] = suffix; 512 513 if (line_pos) { 514 line_buff[line_pos++] = 0; 515 drm_puts(p, line_buff); 516 } 517 518 kfree(line_buff); 519 520 #undef MIN_SPACE 521 #undef DMESG_MAX_LINE_LEN 522 } 523