xref: /linux/drivers/gpu/drm/xe/xe_devcoredump.c (revision a8f6035aebe768780abd730bd1ac61e460f43970)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "xe_devcoredump.h"
7 #include "xe_devcoredump_types.h"
8 
9 #include <linux/ascii85.h>
10 #include <linux/devcoredump.h>
11 #include <generated/utsrelease.h>
12 
13 #include <drm/drm_managed.h>
14 
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_force_wake.h"
18 #include "xe_gt.h"
19 #include "xe_gt_printk.h"
20 #include "xe_guc_capture.h"
21 #include "xe_guc_ct.h"
22 #include "xe_guc_log.h"
23 #include "xe_guc_submit.h"
24 #include "xe_hw_engine.h"
25 #include "xe_module.h"
26 #include "xe_sched_job.h"
27 #include "xe_vm.h"
28 
29 /**
30  * DOC: Xe device coredump
31  *
32  * Xe uses dev_coredump infrastructure for exposing the crash errors in a
33  * standardized way. Once a crash occurs, devcoredump exposes a temporary
34  * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
35  * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
36  * ``failing_device`` symlink points to the device that crashed and created the
37  * coredump.
38  *
39  * The following characteristics are observed by xe when creating a device
40  * coredump:
41  *
42  * **Snapshot at hang**:
43  *   The 'data' file contains a snapshot of the HW and driver states at the time
44  *   the hang happened. Due to the driver recovering from resets/crashes, it may
45  *   not correspond to the state of the system when the file is read by
46  *   userspace.
47  *
48  * **Coredump release**:
49  *   After a coredump is generated, it stays in kernel memory until released by
50  *   userpace by writing anything to it, or after an internal timer expires. The
51  *   exact timeout may vary and should not be relied upon. Example to release
52  *   a coredump:
53  *
54  *   .. code-block:: shell
55  *
56  *	$ > /sys/class/drm/card0/device/devcoredump/data
57  *
58  * **First failure only**:
59  *   In general, the first hang is the most critical one since the following
60  *   hangs can be a consequence of the initial hang. For this reason a snapshot
61  *   is taken only for the first failure. Until the devcoredump is released by
62  *   userspace or kernel, all subsequent hangs do not override the snapshot nor
63  *   create new ones. Devcoredump has a delayed work queue that will eventually
64  *   delete the file node and free all the dump information.
65  */
66 
67 #ifdef CONFIG_DEV_COREDUMP
68 
69 /* 1 hour timeout */
70 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
71 
72 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
73 {
74 	return container_of(coredump, struct xe_device, devcoredump);
75 }
76 
77 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
78 {
79 	return &q->gt->uc.guc;
80 }
81 
82 static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
83 				     struct xe_devcoredump *coredump)
84 {
85 	struct xe_device *xe;
86 	struct xe_devcoredump_snapshot *ss;
87 	struct drm_printer p;
88 	struct drm_print_iterator iter;
89 	struct timespec64 ts;
90 	int i;
91 
92 	xe = coredump_to_xe(coredump);
93 	ss = &coredump->snapshot;
94 
95 	iter.data = buffer;
96 	iter.start = 0;
97 	iter.remain = count;
98 
99 	p = drm_coredump_printer(&iter);
100 
101 	drm_puts(&p, "**** Xe Device Coredump ****\n");
102 	drm_puts(&p, "kernel: " UTS_RELEASE "\n");
103 	drm_puts(&p, "module: " KBUILD_MODNAME "\n");
104 
105 	ts = ktime_to_timespec64(ss->snapshot_time);
106 	drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
107 	ts = ktime_to_timespec64(ss->boot_time);
108 	drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
109 	drm_printf(&p, "Process: %s\n", ss->process_name);
110 	xe_device_snapshot_print(xe, &p);
111 
112 	drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
113 	drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
114 
115 	drm_puts(&p, "\n**** GuC Log ****\n");
116 	xe_guc_log_snapshot_print(ss->guc.log, &p);
117 	drm_puts(&p, "\n**** GuC CT ****\n");
118 	xe_guc_ct_snapshot_print(ss->guc.ct, &p);
119 
120 	drm_puts(&p, "\n**** Contexts ****\n");
121 	xe_guc_exec_queue_snapshot_print(ss->ge, &p);
122 
123 	drm_puts(&p, "\n**** Job ****\n");
124 	xe_sched_job_snapshot_print(ss->job, &p);
125 
126 	drm_puts(&p, "\n**** HW Engines ****\n");
127 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
128 		if (ss->hwe[i])
129 			xe_engine_snapshot_print(ss->hwe[i], &p);
130 
131 	drm_puts(&p, "\n**** VM state ****\n");
132 	xe_vm_snapshot_print(ss->vm, &p);
133 
134 	return count - iter.remain;
135 }
136 
137 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
138 {
139 	int i;
140 
141 	xe_guc_log_snapshot_free(ss->guc.log);
142 	ss->guc.log = NULL;
143 
144 	xe_guc_ct_snapshot_free(ss->guc.ct);
145 	ss->guc.ct = NULL;
146 
147 	xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
148 	ss->matched_node = NULL;
149 
150 	xe_guc_exec_queue_snapshot_free(ss->ge);
151 	ss->ge = NULL;
152 
153 	xe_sched_job_snapshot_free(ss->job);
154 	ss->job = NULL;
155 
156 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
157 		if (ss->hwe[i]) {
158 			xe_hw_engine_snapshot_free(ss->hwe[i]);
159 			ss->hwe[i] = NULL;
160 		}
161 
162 	xe_vm_snapshot_free(ss->vm);
163 	ss->vm = NULL;
164 }
165 
166 static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
167 {
168 	struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
169 	struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
170 	unsigned int fw_ref;
171 
172 	/* keep going if fw fails as we still want to save the memory and SW data */
173 	fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
174 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
175 		xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
176 	xe_vm_snapshot_capture_delayed(ss->vm);
177 	xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
178 	xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
179 
180 	/* Calculate devcoredump size */
181 	ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
182 
183 	ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
184 	if (!ss->read.buffer)
185 		return;
186 
187 	__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
188 	xe_devcoredump_snapshot_free(ss);
189 }
190 
191 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
192 				   size_t count, void *data, size_t datalen)
193 {
194 	struct xe_devcoredump *coredump = data;
195 	struct xe_devcoredump_snapshot *ss;
196 	ssize_t byte_copied;
197 
198 	if (!coredump)
199 		return -ENODEV;
200 
201 	ss = &coredump->snapshot;
202 
203 	/* Ensure delayed work is captured before continuing */
204 	flush_work(&ss->work);
205 
206 	if (!ss->read.buffer)
207 		return -ENODEV;
208 
209 	if (offset >= ss->read.size)
210 		return 0;
211 
212 	byte_copied = count < ss->read.size - offset ? count :
213 		ss->read.size - offset;
214 	memcpy(buffer, ss->read.buffer + offset, byte_copied);
215 
216 	return byte_copied;
217 }
218 
219 static void xe_devcoredump_free(void *data)
220 {
221 	struct xe_devcoredump *coredump = data;
222 
223 	/* Our device is gone. Nothing to do... */
224 	if (!data || !coredump_to_xe(coredump))
225 		return;
226 
227 	cancel_work_sync(&coredump->snapshot.work);
228 
229 	xe_devcoredump_snapshot_free(&coredump->snapshot);
230 	kvfree(coredump->snapshot.read.buffer);
231 
232 	/* To prevent stale data on next snapshot, clear everything */
233 	memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
234 	coredump->captured = false;
235 	coredump->job = NULL;
236 	drm_info(&coredump_to_xe(coredump)->drm,
237 		 "Xe device coredump has been deleted.\n");
238 }
239 
240 static void devcoredump_snapshot(struct xe_devcoredump *coredump,
241 				 struct xe_sched_job *job)
242 {
243 	struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
244 	struct xe_exec_queue *q = job->q;
245 	struct xe_guc *guc = exec_queue_to_guc(q);
246 	u32 adj_logical_mask = q->logical_mask;
247 	u32 width_mask = (0x1 << q->width) - 1;
248 	const char *process_name = "no process";
249 
250 	unsigned int fw_ref;
251 	bool cookie;
252 	int i;
253 
254 	ss->snapshot_time = ktime_get_real();
255 	ss->boot_time = ktime_get_boottime();
256 
257 	if (q->vm && q->vm->xef)
258 		process_name = q->vm->xef->process_name;
259 	strscpy(ss->process_name, process_name);
260 
261 	ss->gt = q->gt;
262 	coredump->job = job;
263 	INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
264 
265 	cookie = dma_fence_begin_signalling();
266 	for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
267 		if (adj_logical_mask & BIT(i)) {
268 			adj_logical_mask |= width_mask << i;
269 			i += q->width;
270 		} else {
271 			++i;
272 		}
273 	}
274 
275 	/* keep going if fw fails as we still want to save the memory and SW data */
276 	fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
277 
278 	ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
279 	ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
280 	ss->ge = xe_guc_exec_queue_snapshot_capture(q);
281 	ss->job = xe_sched_job_snapshot_capture(job);
282 	ss->vm = xe_vm_snapshot_capture(q->vm);
283 
284 	xe_engine_snapshot_capture_for_job(job);
285 
286 	queue_work(system_unbound_wq, &ss->work);
287 
288 	xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
289 	dma_fence_end_signalling(cookie);
290 }
291 
292 /**
293  * xe_devcoredump - Take the required snapshots and initialize coredump device.
294  * @job: The faulty xe_sched_job, where the issue was detected.
295  *
296  * This function should be called at the crash time within the serialized
297  * gt_reset. It is skipped if we still have the core dump device available
298  * with the information of the 'first' snapshot.
299  */
300 void xe_devcoredump(struct xe_sched_job *job)
301 {
302 	struct xe_device *xe = gt_to_xe(job->q->gt);
303 	struct xe_devcoredump *coredump = &xe->devcoredump;
304 
305 	if (coredump->captured) {
306 		drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
307 		return;
308 	}
309 
310 	coredump->captured = true;
311 	devcoredump_snapshot(coredump, job);
312 
313 	drm_info(&xe->drm, "Xe device coredump has been created\n");
314 	drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
315 		 xe->drm.primary->index);
316 
317 	dev_coredumpm_timeout(xe->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
318 			      xe_devcoredump_read, xe_devcoredump_free,
319 			      XE_COREDUMP_TIMEOUT_JIFFIES);
320 }
321 
322 static void xe_driver_devcoredump_fini(void *arg)
323 {
324 	struct drm_device *drm = arg;
325 
326 	dev_coredump_put(drm->dev);
327 }
328 
329 int xe_devcoredump_init(struct xe_device *xe)
330 {
331 	return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
332 }
333 
334 #endif
335 
336 /**
337  * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
338  *
339  * The output is split to multiple lines because some print targets, e.g. dmesg
340  * cannot handle arbitrarily long lines. Note also that printing to dmesg in
341  * piece-meal fashion is not possible, each separate call to drm_puts() has a
342  * line-feed automatically added! Therefore, the entire output line must be
343  * constructed in a local buffer first, then printed in one atomic output call.
344  *
345  * There is also a scheduler yield call to prevent the 'task has been stuck for
346  * 120s' kernel hang check feature from firing when printing to a slow target
347  * such as dmesg over a serial port.
348  *
349  * TODO: Add compression prior to the ASCII85 encoding to shrink huge buffers down.
350  *
351  * @p: the printer object to output to
352  * @prefix: optional prefix to add to output string
353  * @blob: the Binary Large OBject to dump out
354  * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
355  * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
356  */
357 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix,
358 			   const void *blob, size_t offset, size_t size)
359 {
360 	const u32 *blob32 = (const u32 *)blob;
361 	char buff[ASCII85_BUFSZ], *line_buff;
362 	size_t line_pos = 0;
363 
364 #define DMESG_MAX_LINE_LEN	800
365 #define MIN_SPACE		(ASCII85_BUFSZ + 2)		/* 85 + "\n\0" */
366 
367 	if (size & 3)
368 		drm_printf(p, "Size not word aligned: %zu", size);
369 	if (offset & 3)
370 		drm_printf(p, "Offset not word aligned: %zu", size);
371 
372 	line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
373 	if (IS_ERR_OR_NULL(line_buff)) {
374 		drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
375 		return;
376 	}
377 
378 	blob32 += offset / sizeof(*blob32);
379 	size /= sizeof(*blob32);
380 
381 	if (prefix) {
382 		strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
383 		line_pos = strlen(line_buff);
384 
385 		line_buff[line_pos++] = ':';
386 		line_buff[line_pos++] = ' ';
387 	}
388 
389 	while (size--) {
390 		u32 val = *(blob32++);
391 
392 		strscpy(line_buff + line_pos, ascii85_encode(val, buff),
393 			DMESG_MAX_LINE_LEN - line_pos);
394 		line_pos += strlen(line_buff + line_pos);
395 
396 		if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
397 			line_buff[line_pos++] = '\n';
398 			line_buff[line_pos++] = 0;
399 
400 			drm_puts(p, line_buff);
401 
402 			line_pos = 0;
403 
404 			/* Prevent 'stuck thread' time out errors */
405 			cond_resched();
406 		}
407 	}
408 
409 	if (line_pos) {
410 		line_buff[line_pos++] = '\n';
411 		line_buff[line_pos++] = 0;
412 
413 		drm_puts(p, line_buff);
414 	}
415 
416 	kfree(line_buff);
417 
418 #undef MIN_SPACE
419 #undef DMESG_MAX_LINE_LEN
420 }
421