1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt.h" 19 #include "xe_gt_printk.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_module.h" 26 #include "xe_pm.h" 27 #include "xe_sched_job.h" 28 #include "xe_vm.h" 29 30 /** 31 * DOC: Xe device coredump 32 * 33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 34 * standardized way. Once a crash occurs, devcoredump exposes a temporary 35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 37 * ``failing_device`` symlink points to the device that crashed and created the 38 * coredump. 39 * 40 * The following characteristics are observed by xe when creating a device 41 * coredump: 42 * 43 * **Snapshot at hang**: 44 * The 'data' file contains a snapshot of the HW and driver states at the time 45 * the hang happened. Due to the driver recovering from resets/crashes, it may 46 * not correspond to the state of the system when the file is read by 47 * userspace. 48 * 49 * **Coredump release**: 50 * After a coredump is generated, it stays in kernel memory until released by 51 * userspace by writing anything to it, or after an internal timer expires. The 52 * exact timeout may vary and should not be relied upon. Example to release 53 * a coredump: 54 * 55 * .. code-block:: shell 56 * 57 * $ > /sys/class/drm/card0/device/devcoredump/data 58 * 59 * **First failure only**: 60 * In general, the first hang is the most critical one since the following 61 * hangs can be a consequence of the initial hang. For this reason a snapshot 62 * is taken only for the first failure. Until the devcoredump is released by 63 * userspace or kernel, all subsequent hangs do not override the snapshot nor 64 * create new ones. Devcoredump has a delayed work queue that will eventually 65 * delete the file node and free all the dump information. 66 */ 67 68 #ifdef CONFIG_DEV_COREDUMP 69 70 /* 1 hour timeout */ 71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 72 73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 74 { 75 return container_of(coredump, struct xe_device, devcoredump); 76 } 77 78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 79 { 80 return &q->gt->uc.guc; 81 } 82 83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count, 84 ssize_t start, 85 struct xe_devcoredump *coredump) 86 { 87 struct xe_device *xe; 88 struct xe_devcoredump_snapshot *ss; 89 struct drm_printer p; 90 struct drm_print_iterator iter; 91 struct timespec64 ts; 92 int i; 93 94 xe = coredump_to_xe(coredump); 95 ss = &coredump->snapshot; 96 97 iter.data = buffer; 98 iter.start = start; 99 iter.remain = count; 100 101 p = drm_coredump_printer(&iter); 102 103 drm_puts(&p, "**** Xe Device Coredump ****\n"); 104 drm_printf(&p, "Reason: %s\n", ss->reason); 105 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 106 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 107 108 ts = ktime_to_timespec64(ss->snapshot_time); 109 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 110 ts = ktime_to_timespec64(ss->boot_time); 111 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 112 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 113 xe_device_snapshot_print(xe, &p); 114 115 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 116 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 117 118 drm_puts(&p, "\n**** GuC Log ****\n"); 119 xe_guc_log_snapshot_print(ss->guc.log, &p); 120 drm_puts(&p, "\n**** GuC CT ****\n"); 121 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 122 123 drm_puts(&p, "\n**** Contexts ****\n"); 124 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 125 126 drm_puts(&p, "\n**** Job ****\n"); 127 xe_sched_job_snapshot_print(ss->job, &p); 128 129 drm_puts(&p, "\n**** HW Engines ****\n"); 130 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 131 if (ss->hwe[i]) 132 xe_engine_snapshot_print(ss->hwe[i], &p); 133 134 drm_puts(&p, "\n**** VM state ****\n"); 135 xe_vm_snapshot_print(ss->vm, &p); 136 137 return count - iter.remain; 138 } 139 140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 141 { 142 int i; 143 144 kfree(ss->reason); 145 ss->reason = NULL; 146 147 xe_guc_log_snapshot_free(ss->guc.log); 148 ss->guc.log = NULL; 149 150 xe_guc_ct_snapshot_free(ss->guc.ct); 151 ss->guc.ct = NULL; 152 153 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 154 ss->matched_node = NULL; 155 156 xe_guc_exec_queue_snapshot_free(ss->ge); 157 ss->ge = NULL; 158 159 xe_sched_job_snapshot_free(ss->job); 160 ss->job = NULL; 161 162 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 163 if (ss->hwe[i]) { 164 xe_hw_engine_snapshot_free(ss->hwe[i]); 165 ss->hwe[i] = NULL; 166 } 167 168 xe_vm_snapshot_free(ss->vm); 169 ss->vm = NULL; 170 } 171 172 #define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G) 173 174 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 175 size_t count, void *data, size_t datalen) 176 { 177 struct xe_devcoredump *coredump = data; 178 struct xe_devcoredump_snapshot *ss; 179 ssize_t byte_copied; 180 181 if (!coredump) 182 return -ENODEV; 183 184 ss = &coredump->snapshot; 185 186 /* Ensure delayed work is captured before continuing */ 187 flush_work(&ss->work); 188 189 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) 190 xe_pm_runtime_get(gt_to_xe(ss->gt)); 191 192 mutex_lock(&coredump->lock); 193 194 if (!ss->read.buffer) { 195 mutex_unlock(&coredump->lock); 196 return -ENODEV; 197 } 198 199 if (offset >= ss->read.size) { 200 mutex_unlock(&coredump->lock); 201 return 0; 202 } 203 204 if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX || 205 offset < ss->read.chunk_position) { 206 ss->read.chunk_position = 207 ALIGN_DOWN(offset, XE_DEVCOREDUMP_CHUNK_MAX); 208 209 __xe_devcoredump_read(ss->read.buffer, 210 XE_DEVCOREDUMP_CHUNK_MAX, 211 ss->read.chunk_position, coredump); 212 } 213 214 byte_copied = count < ss->read.size - offset ? count : 215 ss->read.size - offset; 216 memcpy(buffer, ss->read.buffer + 217 (offset % XE_DEVCOREDUMP_CHUNK_MAX), byte_copied); 218 219 mutex_unlock(&coredump->lock); 220 221 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) 222 xe_pm_runtime_put(gt_to_xe(ss->gt)); 223 224 return byte_copied; 225 } 226 227 static void xe_devcoredump_free(void *data) 228 { 229 struct xe_devcoredump *coredump = data; 230 231 /* Our device is gone. Nothing to do... */ 232 if (!data || !coredump_to_xe(coredump)) 233 return; 234 235 cancel_work_sync(&coredump->snapshot.work); 236 237 mutex_lock(&coredump->lock); 238 239 xe_devcoredump_snapshot_free(&coredump->snapshot); 240 kvfree(coredump->snapshot.read.buffer); 241 242 /* To prevent stale data on next snapshot, clear everything */ 243 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 244 coredump->captured = false; 245 drm_info(&coredump_to_xe(coredump)->drm, 246 "Xe device coredump has been deleted.\n"); 247 248 mutex_unlock(&coredump->lock); 249 } 250 251 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 252 { 253 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 254 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 255 struct xe_device *xe = coredump_to_xe(coredump); 256 unsigned int fw_ref; 257 258 /* 259 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 260 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker 261 * thread and not in the initial capture call. 262 */ 263 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 264 xe_devcoredump_read, xe_devcoredump_free, 265 XE_COREDUMP_TIMEOUT_JIFFIES); 266 267 xe_pm_runtime_get(xe); 268 269 /* keep going if fw fails as we still want to save the memory and SW data */ 270 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); 271 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 272 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 273 xe_vm_snapshot_capture_delayed(ss->vm); 274 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 275 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref); 276 277 ss->read.chunk_position = 0; 278 279 /* Calculate devcoredump size */ 280 ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump); 281 282 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) { 283 ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX, 284 GFP_USER); 285 if (!ss->read.buffer) 286 goto put_pm; 287 288 __xe_devcoredump_read(ss->read.buffer, 289 XE_DEVCOREDUMP_CHUNK_MAX, 290 0, coredump); 291 } else { 292 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 293 if (!ss->read.buffer) 294 goto put_pm; 295 296 __xe_devcoredump_read(ss->read.buffer, ss->read.size, 0, 297 coredump); 298 xe_devcoredump_snapshot_free(ss); 299 } 300 301 put_pm: 302 xe_pm_runtime_put(xe); 303 } 304 305 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 306 struct xe_exec_queue *q, 307 struct xe_sched_job *job) 308 { 309 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 310 struct xe_guc *guc = exec_queue_to_guc(q); 311 u32 adj_logical_mask = q->logical_mask; 312 u32 width_mask = (0x1 << q->width) - 1; 313 const char *process_name = "no process"; 314 315 unsigned int fw_ref; 316 bool cookie; 317 int i; 318 319 ss->snapshot_time = ktime_get_real(); 320 ss->boot_time = ktime_get_boottime(); 321 322 if (q->vm && q->vm->xef) { 323 process_name = q->vm->xef->process_name; 324 ss->pid = q->vm->xef->pid; 325 } 326 327 strscpy(ss->process_name, process_name); 328 329 ss->gt = q->gt; 330 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 331 332 cookie = dma_fence_begin_signalling(); 333 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) { 334 if (adj_logical_mask & BIT(i)) { 335 adj_logical_mask |= width_mask << i; 336 i += q->width; 337 } else { 338 ++i; 339 } 340 } 341 342 /* keep going if fw fails as we still want to save the memory and SW data */ 343 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 344 345 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 346 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 347 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 348 if (job) 349 ss->job = xe_sched_job_snapshot_capture(job); 350 ss->vm = xe_vm_snapshot_capture(q->vm); 351 352 xe_engine_snapshot_capture_for_queue(q); 353 354 queue_work(system_unbound_wq, &ss->work); 355 356 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 357 dma_fence_end_signalling(cookie); 358 } 359 360 /** 361 * xe_devcoredump - Take the required snapshots and initialize coredump device. 362 * @q: The faulty xe_exec_queue, where the issue was detected. 363 * @job: The faulty xe_sched_job, where the issue was detected. 364 * @fmt: Printf format + args to describe the reason for the core dump 365 * 366 * This function should be called at the crash time within the serialized 367 * gt_reset. It is skipped if we still have the core dump device available 368 * with the information of the 'first' snapshot. 369 */ 370 __printf(3, 4) 371 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 372 { 373 struct xe_device *xe = gt_to_xe(q->gt); 374 struct xe_devcoredump *coredump = &xe->devcoredump; 375 va_list varg; 376 377 mutex_lock(&coredump->lock); 378 379 if (coredump->captured) { 380 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 381 mutex_unlock(&coredump->lock); 382 return; 383 } 384 385 coredump->captured = true; 386 387 va_start(varg, fmt); 388 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 389 va_end(varg); 390 391 devcoredump_snapshot(coredump, q, job); 392 393 drm_info(&xe->drm, "Xe device coredump has been created\n"); 394 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 395 xe->drm.primary->index); 396 397 mutex_unlock(&coredump->lock); 398 } 399 400 static void xe_driver_devcoredump_fini(void *arg) 401 { 402 struct drm_device *drm = arg; 403 404 dev_coredump_put(drm->dev); 405 } 406 407 int xe_devcoredump_init(struct xe_device *xe) 408 { 409 int err; 410 411 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 412 if (err) 413 return err; 414 415 if (IS_ENABLED(CONFIG_LOCKDEP)) { 416 fs_reclaim_acquire(GFP_KERNEL); 417 might_lock(&xe->devcoredump.lock); 418 fs_reclaim_release(GFP_KERNEL); 419 } 420 421 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 422 } 423 424 #endif 425 426 /** 427 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 428 * 429 * The output is split into multiple calls to drm_puts() because some print 430 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may 431 * add newlines, as is the case with dmesg: each drm_puts() call creates a 432 * separate line. 433 * 434 * There is also a scheduler yield call to prevent the 'task has been stuck for 435 * 120s' kernel hang check feature from firing when printing to a slow target 436 * such as dmesg over a serial port. 437 * 438 * @p: the printer object to output to 439 * @prefix: optional prefix to add to output string 440 * @suffix: optional suffix to add at the end. 0 disables it and is 441 * not added to the output, which is useful when using multiple calls 442 * to dump data to @p 443 * @blob: the Binary Large OBject to dump out 444 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 445 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 446 */ 447 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix, 448 const void *blob, size_t offset, size_t size) 449 { 450 const u32 *blob32 = (const u32 *)blob; 451 char buff[ASCII85_BUFSZ], *line_buff; 452 size_t line_pos = 0; 453 454 #define DMESG_MAX_LINE_LEN 800 455 /* Always leave space for the suffix char and the \0 */ 456 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */ 457 458 if (size & 3) 459 drm_printf(p, "Size not word aligned: %zu", size); 460 if (offset & 3) 461 drm_printf(p, "Offset not word aligned: %zu", offset); 462 463 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC); 464 if (!line_buff) { 465 drm_printf(p, "Failed to allocate line buffer\n"); 466 return; 467 } 468 469 blob32 += offset / sizeof(*blob32); 470 size /= sizeof(*blob32); 471 472 if (prefix) { 473 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 474 line_pos = strlen(line_buff); 475 476 line_buff[line_pos++] = ':'; 477 line_buff[line_pos++] = ' '; 478 } 479 480 while (size--) { 481 u32 val = *(blob32++); 482 483 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 484 DMESG_MAX_LINE_LEN - line_pos); 485 line_pos += strlen(line_buff + line_pos); 486 487 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 488 line_buff[line_pos++] = 0; 489 490 drm_puts(p, line_buff); 491 492 line_pos = 0; 493 494 /* Prevent 'stuck thread' time out errors */ 495 cond_resched(); 496 } 497 } 498 499 if (suffix) 500 line_buff[line_pos++] = suffix; 501 502 if (line_pos) { 503 line_buff[line_pos++] = 0; 504 drm_puts(p, line_buff); 505 } 506 507 kfree(line_buff); 508 509 #undef MIN_SPACE 510 #undef DMESG_MAX_LINE_LEN 511 } 512