1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #ifndef _XE_BO_H_ 7 #define _XE_BO_H_ 8 9 #include <drm/ttm/ttm_tt.h> 10 11 #include "xe_bo_types.h" 12 #include "xe_macros.h" 13 #include "xe_vm_types.h" 14 #include "xe_vm.h" 15 16 #define XE_DEFAULT_GTT_SIZE_MB 3072ULL /* 3GB by default */ 17 18 #define XE_BO_FLAG_USER BIT(0) 19 /* The bits below need to be contiguous, or things break */ 20 #define XE_BO_FLAG_SYSTEM BIT(1) 21 #define XE_BO_FLAG_VRAM0 BIT(2) 22 #define XE_BO_FLAG_VRAM1 BIT(3) 23 #define XE_BO_FLAG_VRAM_MASK (XE_BO_FLAG_VRAM0 | XE_BO_FLAG_VRAM1) 24 /* -- */ 25 #define XE_BO_FLAG_STOLEN BIT(4) 26 #define XE_BO_FLAG_VRAM_IF_DGFX(tile) (IS_DGFX(tile_to_xe(tile)) ? \ 27 XE_BO_FLAG_VRAM0 << (tile)->id : \ 28 XE_BO_FLAG_SYSTEM) 29 #define XE_BO_FLAG_GGTT BIT(5) 30 #define XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE BIT(6) 31 #define XE_BO_FLAG_PINNED BIT(7) 32 #define XE_BO_FLAG_NO_RESV_EVICT BIT(8) 33 #define XE_BO_FLAG_DEFER_BACKING BIT(9) 34 #define XE_BO_FLAG_SCANOUT BIT(10) 35 #define XE_BO_FLAG_FIXED_PLACEMENT BIT(11) 36 #define XE_BO_FLAG_PAGETABLE BIT(12) 37 #define XE_BO_FLAG_NEEDS_CPU_ACCESS BIT(13) 38 #define XE_BO_FLAG_NEEDS_UC BIT(14) 39 #define XE_BO_FLAG_NEEDS_64K BIT(15) 40 #define XE_BO_FLAG_NEEDS_2M BIT(16) 41 #define XE_BO_FLAG_GGTT_INVALIDATE BIT(17) 42 #define XE_BO_FLAG_PINNED_NORESTORE BIT(18) 43 #define XE_BO_FLAG_PINNED_LATE_RESTORE BIT(19) 44 #define XE_BO_FLAG_GGTT0 BIT(20) 45 #define XE_BO_FLAG_GGTT1 BIT(21) 46 #define XE_BO_FLAG_GGTT2 BIT(22) 47 #define XE_BO_FLAG_GGTT3 BIT(23) 48 #define XE_BO_FLAG_CPU_ADDR_MIRROR BIT(24) 49 50 /* this one is trigger internally only */ 51 #define XE_BO_FLAG_INTERNAL_TEST BIT(30) 52 #define XE_BO_FLAG_INTERNAL_64K BIT(31) 53 54 #define XE_BO_FLAG_GGTT_ALL (XE_BO_FLAG_GGTT0 | \ 55 XE_BO_FLAG_GGTT1 | \ 56 XE_BO_FLAG_GGTT2 | \ 57 XE_BO_FLAG_GGTT3) 58 59 #define XE_BO_FLAG_GGTTx(tile) \ 60 (XE_BO_FLAG_GGTT0 << (tile)->id) 61 62 #define XE_PTE_SHIFT 12 63 #define XE_PAGE_SIZE (1 << XE_PTE_SHIFT) 64 #define XE_PTE_MASK (XE_PAGE_SIZE - 1) 65 #define XE_PDE_SHIFT (XE_PTE_SHIFT - 3) 66 #define XE_PDES (1 << XE_PDE_SHIFT) 67 #define XE_PDE_MASK (XE_PDES - 1) 68 69 #define XE_64K_PTE_SHIFT 16 70 #define XE_64K_PAGE_SIZE (1 << XE_64K_PTE_SHIFT) 71 #define XE_64K_PTE_MASK (XE_64K_PAGE_SIZE - 1) 72 #define XE_64K_PDE_MASK (XE_PDE_MASK >> 4) 73 74 #define XE_PL_SYSTEM TTM_PL_SYSTEM 75 #define XE_PL_TT TTM_PL_TT 76 #define XE_PL_VRAM0 TTM_PL_VRAM 77 #define XE_PL_VRAM1 (XE_PL_VRAM0 + 1) 78 #define XE_PL_STOLEN (TTM_NUM_MEM_TYPES - 1) 79 80 #define XE_BO_PROPS_INVALID (-1) 81 82 #define XE_PCI_BARRIER_MMAP_OFFSET (0x50 << XE_PTE_SHIFT) 83 84 struct sg_table; 85 86 struct xe_bo *xe_bo_alloc(void); 87 void xe_bo_free(struct xe_bo *bo); 88 89 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 90 struct xe_tile *tile, struct dma_resv *resv, 91 struct ttm_lru_bulk_move *bulk, size_t size, 92 u16 cpu_caching, enum ttm_bo_type type, 93 u32 flags); 94 struct xe_bo * 95 xe_bo_create_locked_range(struct xe_device *xe, 96 struct xe_tile *tile, struct xe_vm *vm, 97 size_t size, u64 start, u64 end, 98 enum ttm_bo_type type, u32 flags, u64 alignment); 99 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 100 struct xe_vm *vm, size_t size, 101 enum ttm_bo_type type, u32 flags); 102 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 103 struct xe_vm *vm, size_t size, 104 enum ttm_bo_type type, u32 flags); 105 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 106 struct xe_vm *vm, size_t size, 107 u16 cpu_caching, 108 u32 flags); 109 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 110 struct xe_vm *vm, size_t size, 111 enum ttm_bo_type type, u32 flags); 112 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 113 struct xe_vm *vm, size_t size, u64 offset, 114 enum ttm_bo_type type, u32 flags); 115 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 116 struct xe_tile *tile, 117 struct xe_vm *vm, 118 size_t size, u64 offset, 119 enum ttm_bo_type type, u32 flags, 120 u64 alignment); 121 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 122 const void *data, size_t size, 123 enum ttm_bo_type type, u32 flags); 124 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 125 size_t size, u32 flags); 126 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 127 const void *data, size_t size, u32 flags); 128 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src); 129 130 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 131 u32 bo_flags); 132 133 static inline struct xe_bo *ttm_to_xe_bo(const struct ttm_buffer_object *bo) 134 { 135 return container_of(bo, struct xe_bo, ttm); 136 } 137 138 static inline struct xe_bo *gem_to_xe_bo(const struct drm_gem_object *obj) 139 { 140 return container_of(obj, struct xe_bo, ttm.base); 141 } 142 143 #define xe_bo_device(bo) ttm_to_xe_device((bo)->ttm.bdev) 144 145 static inline struct xe_bo *xe_bo_get(struct xe_bo *bo) 146 { 147 if (bo) 148 drm_gem_object_get(&bo->ttm.base); 149 150 return bo; 151 } 152 153 void xe_bo_put(struct xe_bo *bo); 154 155 /* 156 * xe_bo_get_unless_zero() - Conditionally obtain a GEM object refcount on an 157 * xe bo 158 * @bo: The bo for which we want to obtain a refcount. 159 * 160 * There is a short window between where the bo's GEM object refcount reaches 161 * zero and where we put the final ttm_bo reference. Code in the eviction- and 162 * shrinking path should therefore attempt to grab a gem object reference before 163 * trying to use members outside of the base class ttm object. This function is 164 * intended for that purpose. On successful return, this function must be paired 165 * with an xe_bo_put(). 166 * 167 * Return: @bo on success, NULL on failure. 168 */ 169 static inline __must_check struct xe_bo *xe_bo_get_unless_zero(struct xe_bo *bo) 170 { 171 if (!bo || !kref_get_unless_zero(&bo->ttm.base.refcount)) 172 return NULL; 173 174 return bo; 175 } 176 177 static inline void __xe_bo_unset_bulk_move(struct xe_bo *bo) 178 { 179 if (bo) 180 ttm_bo_set_bulk_move(&bo->ttm, NULL); 181 } 182 183 static inline void xe_bo_assert_held(struct xe_bo *bo) 184 { 185 if (bo) 186 dma_resv_assert_held((bo)->ttm.base.resv); 187 } 188 189 int xe_bo_lock(struct xe_bo *bo, bool intr); 190 191 void xe_bo_unlock(struct xe_bo *bo); 192 193 static inline void xe_bo_unlock_vm_held(struct xe_bo *bo) 194 { 195 if (bo) { 196 XE_WARN_ON(bo->vm && bo->ttm.base.resv != xe_vm_resv(bo->vm)); 197 if (bo->vm) 198 xe_vm_assert_held(bo->vm); 199 else 200 dma_resv_unlock(bo->ttm.base.resv); 201 } 202 } 203 204 int xe_bo_pin_external(struct xe_bo *bo); 205 int xe_bo_pin(struct xe_bo *bo); 206 void xe_bo_unpin_external(struct xe_bo *bo); 207 void xe_bo_unpin(struct xe_bo *bo); 208 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict); 209 210 static inline bool xe_bo_is_pinned(struct xe_bo *bo) 211 { 212 return bo->ttm.pin_count; 213 } 214 215 static inline bool xe_bo_is_protected(const struct xe_bo *bo) 216 { 217 return bo->pxp_key_instance; 218 } 219 220 static inline void xe_bo_unpin_map_no_vm(struct xe_bo *bo) 221 { 222 if (likely(bo)) { 223 xe_bo_lock(bo, false); 224 xe_bo_unpin(bo); 225 xe_bo_unlock(bo); 226 227 xe_bo_put(bo); 228 } 229 } 230 231 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo); 232 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size); 233 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size); 234 235 static inline dma_addr_t 236 xe_bo_main_addr(struct xe_bo *bo, size_t page_size) 237 { 238 return xe_bo_addr(bo, 0, page_size); 239 } 240 241 static inline u32 242 __xe_bo_ggtt_addr(struct xe_bo *bo, u8 tile_id) 243 { 244 struct xe_ggtt_node *ggtt_node = bo->ggtt_node[tile_id]; 245 246 if (XE_WARN_ON(!ggtt_node)) 247 return 0; 248 249 XE_WARN_ON(ggtt_node->base.size > bo->size); 250 XE_WARN_ON(ggtt_node->base.start + ggtt_node->base.size > (1ull << 32)); 251 return ggtt_node->base.start; 252 } 253 254 static inline u32 255 xe_bo_ggtt_addr(struct xe_bo *bo) 256 { 257 xe_assert(xe_bo_device(bo), bo->tile); 258 259 return __xe_bo_ggtt_addr(bo, bo->tile->id); 260 } 261 262 int xe_bo_vmap(struct xe_bo *bo); 263 void xe_bo_vunmap(struct xe_bo *bo); 264 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size); 265 266 bool mem_type_is_vram(u32 mem_type); 267 bool xe_bo_is_vram(struct xe_bo *bo); 268 bool xe_bo_is_stolen(struct xe_bo *bo); 269 bool xe_bo_is_stolen_devmem(struct xe_bo *bo); 270 bool xe_bo_is_vm_bound(struct xe_bo *bo); 271 bool xe_bo_has_single_placement(struct xe_bo *bo); 272 uint64_t vram_region_gpu_offset(struct ttm_resource *res); 273 274 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type); 275 276 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type); 277 int xe_bo_evict(struct xe_bo *bo); 278 279 int xe_bo_evict_pinned(struct xe_bo *bo); 280 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo); 281 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo); 282 int xe_bo_restore_pinned(struct xe_bo *bo); 283 284 int xe_bo_dma_unmap_pinned(struct xe_bo *bo); 285 286 extern const struct ttm_device_funcs xe_ttm_funcs; 287 extern const char *const xe_mem_type_to_name[]; 288 289 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 290 struct drm_file *file); 291 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 292 struct drm_file *file); 293 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo); 294 295 int xe_bo_dumb_create(struct drm_file *file_priv, 296 struct drm_device *dev, 297 struct drm_mode_create_dumb *args); 298 299 bool xe_bo_needs_ccs_pages(struct xe_bo *bo); 300 301 static inline size_t xe_bo_ccs_pages_start(struct xe_bo *bo) 302 { 303 return PAGE_ALIGN(bo->ttm.base.size); 304 } 305 306 static inline bool xe_bo_has_pages(struct xe_bo *bo) 307 { 308 if ((bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) || 309 xe_bo_is_vram(bo)) 310 return true; 311 312 return false; 313 } 314 315 void __xe_bo_release_dummy(struct kref *kref); 316 317 /** 318 * xe_bo_put_deferred() - Put a buffer object with delayed final freeing 319 * @bo: The bo to put. 320 * @deferred: List to which to add the buffer object if we cannot put, or 321 * NULL if the function is to put unconditionally. 322 * 323 * Since the final freeing of an object includes both sleeping and (!) 324 * memory allocation in the dma_resv individualization, it's not ok 325 * to put an object from atomic context nor from within a held lock 326 * tainted by reclaim. In such situations we want to defer the final 327 * freeing until we've exited the restricting context, or in the worst 328 * case to a workqueue. 329 * This function either puts the object if possible without the refcount 330 * reaching zero, or adds it to the @deferred list if that was not possible. 331 * The caller needs to follow up with a call to xe_bo_put_commit() to actually 332 * put the bo iff this function returns true. It's safe to always 333 * follow up with a call to xe_bo_put_commit(). 334 * TODO: It's TTM that is the villain here. Perhaps TTM should add an 335 * interface like this. 336 * 337 * Return: true if @bo was the first object put on the @freed list, 338 * false otherwise. 339 */ 340 static inline bool 341 xe_bo_put_deferred(struct xe_bo *bo, struct llist_head *deferred) 342 { 343 if (!deferred) { 344 xe_bo_put(bo); 345 return false; 346 } 347 348 if (!kref_put(&bo->ttm.base.refcount, __xe_bo_release_dummy)) 349 return false; 350 351 return llist_add(&bo->freed, deferred); 352 } 353 354 void xe_bo_put_commit(struct llist_head *deferred); 355 356 /** 357 * xe_bo_put_async() - Put BO async 358 * @bo: The bo to put. 359 * 360 * Put BO async, the final put is deferred to a worker to exit an IRQ context. 361 */ 362 static inline void 363 xe_bo_put_async(struct xe_bo *bo) 364 { 365 struct xe_bo_dev *bo_device = &xe_bo_device(bo)->bo_device; 366 367 if (xe_bo_put_deferred(bo, &bo_device->async_list)) 368 schedule_work(&bo_device->async_free); 369 } 370 371 void xe_bo_dev_init(struct xe_bo_dev *bo_device); 372 373 void xe_bo_dev_fini(struct xe_bo_dev *bo_device); 374 375 struct sg_table *xe_bo_sg(struct xe_bo *bo); 376 377 /* 378 * xe_sg_segment_size() - Provides upper limit for sg segment size. 379 * @dev: device pointer 380 * 381 * Returns the maximum segment size for the 'struct scatterlist' 382 * elements. 383 */ 384 static inline unsigned int xe_sg_segment_size(struct device *dev) 385 { 386 struct scatterlist __maybe_unused sg; 387 size_t max = BIT_ULL(sizeof(sg.length) * 8) - 1; 388 389 max = min_t(size_t, max, dma_max_mapping_size(dev)); 390 391 /* 392 * The iommu_dma_map_sg() function ensures iova allocation doesn't 393 * cross dma segment boundary. It does so by padding some sg elements. 394 * This can cause overflow, ending up with sg->length being set to 0. 395 * Avoid this by ensuring maximum segment size is half of 'max' 396 * rounded down to PAGE_SIZE. 397 */ 398 return round_down(max / 2, PAGE_SIZE); 399 } 400 401 /** 402 * struct xe_bo_shrink_flags - flags governing the shrink behaviour. 403 * @purge: Only purging allowed. Don't shrink if bo not purgeable. 404 * @writeback: Attempt to immediately move content to swap. 405 */ 406 struct xe_bo_shrink_flags { 407 u32 purge : 1; 408 u32 writeback : 1; 409 }; 410 411 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 412 const struct xe_bo_shrink_flags flags, 413 unsigned long *scanned); 414 415 /** 416 * xe_bo_is_mem_type - Whether the bo currently resides in the given 417 * TTM memory type 418 * @bo: The bo to check. 419 * @mem_type: The TTM memory type. 420 * 421 * Return: true iff the bo resides in @mem_type, false otherwise. 422 */ 423 static inline bool xe_bo_is_mem_type(struct xe_bo *bo, u32 mem_type) 424 { 425 xe_bo_assert_held(bo); 426 return bo->ttm.resource->mem_type == mem_type; 427 } 428 #endif 429