1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 100 * @bo: The BO 101 * 102 * The stolen memory is accessed through the PCI BAR for both DGFX and some 103 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 104 * 105 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 106 */ 107 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 108 { 109 return xe_bo_is_stolen(bo) && 110 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 111 } 112 113 static bool xe_bo_is_user(struct xe_bo *bo) 114 { 115 return bo->flags & XE_BO_FLAG_USER; 116 } 117 118 static struct xe_migrate * 119 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 120 { 121 struct xe_tile *tile; 122 123 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 124 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 125 return tile->migrate; 126 } 127 128 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 129 { 130 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 131 struct ttm_resource_manager *mgr; 132 133 xe_assert(xe, resource_is_vram(res)); 134 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 135 return to_xe_ttm_vram_mgr(mgr)->vram; 136 } 137 138 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 139 u32 bo_flags, u32 *c) 140 { 141 if (bo_flags & XE_BO_FLAG_SYSTEM) { 142 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 143 144 bo->placements[*c] = (struct ttm_place) { 145 .mem_type = XE_PL_TT, 146 }; 147 *c += 1; 148 } 149 } 150 151 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 152 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 153 { 154 struct ttm_place place = { .mem_type = mem_type }; 155 struct xe_mem_region *vram; 156 u64 io_size; 157 158 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 159 160 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 161 xe_assert(xe, vram && vram->usable_size); 162 io_size = vram->io_size; 163 164 /* 165 * For eviction / restore on suspend / resume objects 166 * pinned in VRAM must be contiguous 167 */ 168 if (bo_flags & (XE_BO_FLAG_PINNED | 169 XE_BO_FLAG_GGTT)) 170 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 171 172 if (io_size < vram->usable_size) { 173 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 174 place.fpfn = 0; 175 place.lpfn = io_size >> PAGE_SHIFT; 176 } else { 177 place.flags |= TTM_PL_FLAG_TOPDOWN; 178 } 179 } 180 places[*c] = place; 181 *c += 1; 182 } 183 184 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 185 u32 bo_flags, u32 *c) 186 { 187 if (bo_flags & XE_BO_FLAG_VRAM0) 188 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 189 if (bo_flags & XE_BO_FLAG_VRAM1) 190 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 191 } 192 193 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 194 u32 bo_flags, u32 *c) 195 { 196 if (bo_flags & XE_BO_FLAG_STOLEN) { 197 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 198 199 bo->placements[*c] = (struct ttm_place) { 200 .mem_type = XE_PL_STOLEN, 201 .flags = bo_flags & (XE_BO_FLAG_PINNED | 202 XE_BO_FLAG_GGTT) ? 203 TTM_PL_FLAG_CONTIGUOUS : 0, 204 }; 205 *c += 1; 206 } 207 } 208 209 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 210 u32 bo_flags) 211 { 212 u32 c = 0; 213 214 try_add_vram(xe, bo, bo_flags, &c); 215 try_add_system(xe, bo, bo_flags, &c); 216 try_add_stolen(xe, bo, bo_flags, &c); 217 218 if (!c) 219 return -EINVAL; 220 221 bo->placement = (struct ttm_placement) { 222 .num_placement = c, 223 .placement = bo->placements, 224 }; 225 226 return 0; 227 } 228 229 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 230 u32 bo_flags) 231 { 232 xe_bo_assert_held(bo); 233 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 234 } 235 236 static void xe_evict_flags(struct ttm_buffer_object *tbo, 237 struct ttm_placement *placement) 238 { 239 if (!xe_bo_is_xe_bo(tbo)) { 240 /* Don't handle scatter gather BOs */ 241 if (tbo->type == ttm_bo_type_sg) { 242 placement->num_placement = 0; 243 return; 244 } 245 246 *placement = sys_placement; 247 return; 248 } 249 250 /* 251 * For xe, sg bos that are evicted to system just triggers a 252 * rebind of the sg list upon subsequent validation to XE_PL_TT. 253 */ 254 switch (tbo->resource->mem_type) { 255 case XE_PL_VRAM0: 256 case XE_PL_VRAM1: 257 case XE_PL_STOLEN: 258 *placement = tt_placement; 259 break; 260 case XE_PL_TT: 261 default: 262 *placement = sys_placement; 263 break; 264 } 265 } 266 267 struct xe_ttm_tt { 268 struct ttm_tt ttm; 269 struct device *dev; 270 struct sg_table sgt; 271 struct sg_table *sg; 272 }; 273 274 static int xe_tt_map_sg(struct ttm_tt *tt) 275 { 276 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 277 unsigned long num_pages = tt->num_pages; 278 int ret; 279 280 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 281 282 if (xe_tt->sg) 283 return 0; 284 285 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 286 num_pages, 0, 287 (u64)num_pages << PAGE_SHIFT, 288 xe_sg_segment_size(xe_tt->dev), 289 GFP_KERNEL); 290 if (ret) 291 return ret; 292 293 xe_tt->sg = &xe_tt->sgt; 294 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 295 DMA_ATTR_SKIP_CPU_SYNC); 296 if (ret) { 297 sg_free_table(xe_tt->sg); 298 xe_tt->sg = NULL; 299 return ret; 300 } 301 302 return 0; 303 } 304 305 struct sg_table *xe_bo_sg(struct xe_bo *bo) 306 { 307 struct ttm_tt *tt = bo->ttm.ttm; 308 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 309 310 return xe_tt->sg; 311 } 312 313 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 314 u32 page_flags) 315 { 316 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 317 struct xe_device *xe = xe_bo_device(bo); 318 struct xe_ttm_tt *tt; 319 unsigned long extra_pages; 320 enum ttm_caching caching = ttm_cached; 321 int err; 322 323 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 324 if (!tt) 325 return NULL; 326 327 tt->dev = xe->drm.dev; 328 329 extra_pages = 0; 330 if (xe_bo_needs_ccs_pages(bo)) 331 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 332 PAGE_SIZE); 333 334 /* 335 * DGFX system memory is always WB / ttm_cached, since 336 * other caching modes are only supported on x86. DGFX 337 * GPU system memory accesses are always coherent with the 338 * CPU. 339 */ 340 if (!IS_DGFX(xe)) { 341 switch (bo->cpu_caching) { 342 case DRM_XE_GEM_CPU_CACHING_WC: 343 caching = ttm_write_combined; 344 break; 345 default: 346 caching = ttm_cached; 347 break; 348 } 349 350 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 351 352 /* 353 * Display scanout is always non-coherent with the CPU cache. 354 * 355 * For Xe_LPG and beyond, PPGTT PTE lookups are also 356 * non-coherent and require a CPU:WC mapping. 357 */ 358 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 359 (xe->info.graphics_verx100 >= 1270 && 360 bo->flags & XE_BO_FLAG_PAGETABLE)) 361 caching = ttm_write_combined; 362 } 363 364 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 365 if (err) { 366 kfree(tt); 367 return NULL; 368 } 369 370 return &tt->ttm; 371 } 372 373 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 374 struct ttm_operation_ctx *ctx) 375 { 376 int err; 377 378 /* 379 * dma-bufs are not populated with pages, and the dma- 380 * addresses are set up when moved to XE_PL_TT. 381 */ 382 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 383 return 0; 384 385 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 386 if (err) 387 return err; 388 389 /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ 390 err = xe_tt_map_sg(tt); 391 if (err) 392 ttm_pool_free(&ttm_dev->pool, tt); 393 394 return err; 395 } 396 397 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 398 { 399 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 400 401 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 402 return; 403 404 if (xe_tt->sg) { 405 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 406 DMA_BIDIRECTIONAL, 0); 407 sg_free_table(xe_tt->sg); 408 xe_tt->sg = NULL; 409 } 410 411 return ttm_pool_free(&ttm_dev->pool, tt); 412 } 413 414 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 415 { 416 ttm_tt_fini(tt); 417 kfree(tt); 418 } 419 420 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 421 struct ttm_resource *mem) 422 { 423 struct xe_device *xe = ttm_to_xe_device(bdev); 424 425 switch (mem->mem_type) { 426 case XE_PL_SYSTEM: 427 case XE_PL_TT: 428 return 0; 429 case XE_PL_VRAM0: 430 case XE_PL_VRAM1: { 431 struct xe_ttm_vram_mgr_resource *vres = 432 to_xe_ttm_vram_mgr_resource(mem); 433 struct xe_mem_region *vram = res_to_mem_region(mem); 434 435 if (vres->used_visible_size < mem->size) 436 return -EINVAL; 437 438 mem->bus.offset = mem->start << PAGE_SHIFT; 439 440 if (vram->mapping && 441 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 442 mem->bus.addr = (u8 __force *)vram->mapping + 443 mem->bus.offset; 444 445 mem->bus.offset += vram->io_start; 446 mem->bus.is_iomem = true; 447 448 #if !defined(CONFIG_X86) 449 mem->bus.caching = ttm_write_combined; 450 #endif 451 return 0; 452 } case XE_PL_STOLEN: 453 return xe_ttm_stolen_io_mem_reserve(xe, mem); 454 default: 455 return -EINVAL; 456 } 457 } 458 459 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 460 const struct ttm_operation_ctx *ctx) 461 { 462 struct dma_resv_iter cursor; 463 struct dma_fence *fence; 464 struct drm_gem_object *obj = &bo->ttm.base; 465 struct drm_gpuvm_bo *vm_bo; 466 bool idle = false; 467 int ret = 0; 468 469 dma_resv_assert_held(bo->ttm.base.resv); 470 471 if (!list_empty(&bo->ttm.base.gpuva.list)) { 472 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 473 DMA_RESV_USAGE_BOOKKEEP); 474 dma_resv_for_each_fence_unlocked(&cursor, fence) 475 dma_fence_enable_sw_signaling(fence); 476 dma_resv_iter_end(&cursor); 477 } 478 479 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 480 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 481 struct drm_gpuva *gpuva; 482 483 if (!xe_vm_in_fault_mode(vm)) { 484 drm_gpuvm_bo_evict(vm_bo, true); 485 continue; 486 } 487 488 if (!idle) { 489 long timeout; 490 491 if (ctx->no_wait_gpu && 492 !dma_resv_test_signaled(bo->ttm.base.resv, 493 DMA_RESV_USAGE_BOOKKEEP)) 494 return -EBUSY; 495 496 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 497 DMA_RESV_USAGE_BOOKKEEP, 498 ctx->interruptible, 499 MAX_SCHEDULE_TIMEOUT); 500 if (!timeout) 501 return -ETIME; 502 if (timeout < 0) 503 return timeout; 504 505 idle = true; 506 } 507 508 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 509 struct xe_vma *vma = gpuva_to_vma(gpuva); 510 511 trace_xe_vma_evict(vma); 512 ret = xe_vm_invalidate_vma(vma); 513 if (XE_WARN_ON(ret)) 514 return ret; 515 } 516 } 517 518 return ret; 519 } 520 521 /* 522 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 523 * Note that unmapping the attachment is deferred to the next 524 * map_attachment time, or to bo destroy (after idling) whichever comes first. 525 * This is to avoid syncing before unmap_attachment(), assuming that the 526 * caller relies on idling the reservation object before moving the 527 * backing store out. Should that assumption not hold, then we will be able 528 * to unconditionally call unmap_attachment() when moving out to system. 529 */ 530 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 531 struct ttm_resource *new_res) 532 { 533 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 534 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 535 ttm); 536 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 537 struct sg_table *sg; 538 539 xe_assert(xe, attach); 540 xe_assert(xe, ttm_bo->ttm); 541 542 if (new_res->mem_type == XE_PL_SYSTEM) 543 goto out; 544 545 if (ttm_bo->sg) { 546 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 547 ttm_bo->sg = NULL; 548 } 549 550 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 551 if (IS_ERR(sg)) 552 return PTR_ERR(sg); 553 554 ttm_bo->sg = sg; 555 xe_tt->sg = sg; 556 557 out: 558 ttm_bo_move_null(ttm_bo, new_res); 559 560 return 0; 561 } 562 563 /** 564 * xe_bo_move_notify - Notify subsystems of a pending move 565 * @bo: The buffer object 566 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 567 * 568 * This function notifies subsystems of an upcoming buffer move. 569 * Upon receiving such a notification, subsystems should schedule 570 * halting access to the underlying pages and optionally add a fence 571 * to the buffer object's dma_resv object, that signals when access is 572 * stopped. The caller will wait on all dma_resv fences before 573 * starting the move. 574 * 575 * A subsystem may commence access to the object after obtaining 576 * bindings to the new backing memory under the object lock. 577 * 578 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 579 * negative error code on error. 580 */ 581 static int xe_bo_move_notify(struct xe_bo *bo, 582 const struct ttm_operation_ctx *ctx) 583 { 584 struct ttm_buffer_object *ttm_bo = &bo->ttm; 585 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 586 struct ttm_resource *old_mem = ttm_bo->resource; 587 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 588 int ret; 589 590 /* 591 * If this starts to call into many components, consider 592 * using a notification chain here. 593 */ 594 595 if (xe_bo_is_pinned(bo)) 596 return -EINVAL; 597 598 xe_bo_vunmap(bo); 599 ret = xe_bo_trigger_rebind(xe, bo, ctx); 600 if (ret) 601 return ret; 602 603 /* Don't call move_notify() for imported dma-bufs. */ 604 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 605 dma_buf_move_notify(ttm_bo->base.dma_buf); 606 607 /* 608 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 609 * so if we moved from VRAM make sure to unlink this from the userfault 610 * tracking. 611 */ 612 if (mem_type_is_vram(old_mem_type)) { 613 mutex_lock(&xe->mem_access.vram_userfault.lock); 614 if (!list_empty(&bo->vram_userfault_link)) 615 list_del_init(&bo->vram_userfault_link); 616 mutex_unlock(&xe->mem_access.vram_userfault.lock); 617 } 618 619 return 0; 620 } 621 622 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 623 struct ttm_operation_ctx *ctx, 624 struct ttm_resource *new_mem, 625 struct ttm_place *hop) 626 { 627 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 628 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 629 struct ttm_resource *old_mem = ttm_bo->resource; 630 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 631 struct ttm_tt *ttm = ttm_bo->ttm; 632 struct xe_migrate *migrate = NULL; 633 struct dma_fence *fence; 634 bool move_lacks_source; 635 bool tt_has_data; 636 bool needs_clear; 637 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 638 ttm && ttm_tt_is_populated(ttm)) ? true : false; 639 int ret = 0; 640 /* Bo creation path, moving to system or TT. */ 641 if ((!old_mem && ttm) && !handle_system_ccs) { 642 ttm_bo_move_null(ttm_bo, new_mem); 643 return 0; 644 } 645 646 if (ttm_bo->type == ttm_bo_type_sg) { 647 ret = xe_bo_move_notify(bo, ctx); 648 if (!ret) 649 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 650 goto out; 651 } 652 653 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 654 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 655 656 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 657 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 658 659 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 660 (!ttm && ttm_bo->type == ttm_bo_type_device); 661 662 if ((move_lacks_source && !needs_clear)) { 663 ttm_bo_move_null(ttm_bo, new_mem); 664 goto out; 665 } 666 667 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 668 ttm_bo_move_null(ttm_bo, new_mem); 669 goto out; 670 } 671 672 /* 673 * Failed multi-hop where the old_mem is still marked as 674 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 675 */ 676 if (old_mem_type == XE_PL_TT && 677 new_mem->mem_type == XE_PL_TT) { 678 ttm_bo_move_null(ttm_bo, new_mem); 679 goto out; 680 } 681 682 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 683 ret = xe_bo_move_notify(bo, ctx); 684 if (ret) 685 goto out; 686 } 687 688 if (old_mem_type == XE_PL_TT && 689 new_mem->mem_type == XE_PL_SYSTEM) { 690 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 691 DMA_RESV_USAGE_BOOKKEEP, 692 true, 693 MAX_SCHEDULE_TIMEOUT); 694 if (timeout < 0) { 695 ret = timeout; 696 goto out; 697 } 698 699 if (!handle_system_ccs) { 700 ttm_bo_move_null(ttm_bo, new_mem); 701 goto out; 702 } 703 } 704 705 if (!move_lacks_source && 706 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 707 (mem_type_is_vram(old_mem_type) && 708 new_mem->mem_type == XE_PL_SYSTEM))) { 709 hop->fpfn = 0; 710 hop->lpfn = 0; 711 hop->mem_type = XE_PL_TT; 712 hop->flags = TTM_PL_FLAG_TEMPORARY; 713 ret = -EMULTIHOP; 714 goto out; 715 } 716 717 if (bo->tile) 718 migrate = bo->tile->migrate; 719 else if (resource_is_vram(new_mem)) 720 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 721 else if (mem_type_is_vram(old_mem_type)) 722 migrate = mem_type_to_migrate(xe, old_mem_type); 723 else 724 migrate = xe->tiles[0].migrate; 725 726 xe_assert(xe, migrate); 727 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 728 xe_pm_runtime_get_noresume(xe); 729 730 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 731 /* 732 * Kernel memory that is pinned should only be moved on suspend 733 * / resume, some of the pinned memory is required for the 734 * device to resume / use the GPU to move other evicted memory 735 * (user memory) around. This likely could be optimized a bit 736 * futher where we find the minimum set of pinned memory 737 * required for resume but for simplity doing a memcpy for all 738 * pinned memory. 739 */ 740 ret = xe_bo_vmap(bo); 741 if (!ret) { 742 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 743 744 /* Create a new VMAP once kernel BO back in VRAM */ 745 if (!ret && resource_is_vram(new_mem)) { 746 struct xe_mem_region *vram = res_to_mem_region(new_mem); 747 void __iomem *new_addr = vram->mapping + 748 (new_mem->start << PAGE_SHIFT); 749 750 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 751 ret = -EINVAL; 752 xe_pm_runtime_put(xe); 753 goto out; 754 } 755 756 xe_assert(xe, new_mem->start == 757 bo->placements->fpfn); 758 759 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 760 } 761 } 762 } else { 763 if (move_lacks_source) 764 fence = xe_migrate_clear(migrate, bo, new_mem); 765 else 766 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 767 new_mem, handle_system_ccs); 768 if (IS_ERR(fence)) { 769 ret = PTR_ERR(fence); 770 xe_pm_runtime_put(xe); 771 goto out; 772 } 773 if (!move_lacks_source) { 774 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 775 true, new_mem); 776 if (ret) { 777 dma_fence_wait(fence, false); 778 ttm_bo_move_null(ttm_bo, new_mem); 779 ret = 0; 780 } 781 } else { 782 /* 783 * ttm_bo_move_accel_cleanup() may blow up if 784 * bo->resource == NULL, so just attach the 785 * fence and set the new resource. 786 */ 787 dma_resv_add_fence(ttm_bo->base.resv, fence, 788 DMA_RESV_USAGE_KERNEL); 789 ttm_bo_move_null(ttm_bo, new_mem); 790 } 791 792 dma_fence_put(fence); 793 } 794 795 xe_pm_runtime_put(xe); 796 797 out: 798 return ret; 799 800 } 801 802 /** 803 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 804 * @bo: The buffer object to move. 805 * 806 * On successful completion, the object memory will be moved to sytem memory. 807 * 808 * This is needed to for special handling of pinned VRAM object during 809 * suspend-resume. 810 * 811 * Return: 0 on success. Negative error code on failure. 812 */ 813 int xe_bo_evict_pinned(struct xe_bo *bo) 814 { 815 struct ttm_place place = { 816 .mem_type = XE_PL_TT, 817 }; 818 struct ttm_placement placement = { 819 .placement = &place, 820 .num_placement = 1, 821 }; 822 struct ttm_operation_ctx ctx = { 823 .interruptible = false, 824 }; 825 struct ttm_resource *new_mem; 826 int ret; 827 828 xe_bo_assert_held(bo); 829 830 if (WARN_ON(!bo->ttm.resource)) 831 return -EINVAL; 832 833 if (WARN_ON(!xe_bo_is_pinned(bo))) 834 return -EINVAL; 835 836 if (WARN_ON(!xe_bo_is_vram(bo))) 837 return -EINVAL; 838 839 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 840 if (ret) 841 return ret; 842 843 if (!bo->ttm.ttm) { 844 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 845 if (!bo->ttm.ttm) { 846 ret = -ENOMEM; 847 goto err_res_free; 848 } 849 } 850 851 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 852 if (ret) 853 goto err_res_free; 854 855 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 856 if (ret) 857 goto err_res_free; 858 859 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 860 if (ret) 861 goto err_res_free; 862 863 return 0; 864 865 err_res_free: 866 ttm_resource_free(&bo->ttm, &new_mem); 867 return ret; 868 } 869 870 /** 871 * xe_bo_restore_pinned() - Restore a pinned VRAM object 872 * @bo: The buffer object to move. 873 * 874 * On successful completion, the object memory will be moved back to VRAM. 875 * 876 * This is needed to for special handling of pinned VRAM object during 877 * suspend-resume. 878 * 879 * Return: 0 on success. Negative error code on failure. 880 */ 881 int xe_bo_restore_pinned(struct xe_bo *bo) 882 { 883 struct ttm_operation_ctx ctx = { 884 .interruptible = false, 885 }; 886 struct ttm_resource *new_mem; 887 int ret; 888 889 xe_bo_assert_held(bo); 890 891 if (WARN_ON(!bo->ttm.resource)) 892 return -EINVAL; 893 894 if (WARN_ON(!xe_bo_is_pinned(bo))) 895 return -EINVAL; 896 897 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 898 return -EINVAL; 899 900 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 901 if (ret) 902 return ret; 903 904 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 905 if (ret) 906 goto err_res_free; 907 908 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 909 if (ret) 910 goto err_res_free; 911 912 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 913 if (ret) 914 goto err_res_free; 915 916 return 0; 917 918 err_res_free: 919 ttm_resource_free(&bo->ttm, &new_mem); 920 return ret; 921 } 922 923 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 924 unsigned long page_offset) 925 { 926 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 927 struct xe_res_cursor cursor; 928 struct xe_mem_region *vram; 929 930 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 931 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 932 933 vram = res_to_mem_region(ttm_bo->resource); 934 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 935 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 936 } 937 938 static void __xe_bo_vunmap(struct xe_bo *bo); 939 940 /* 941 * TODO: Move this function to TTM so we don't rely on how TTM does its 942 * locking, thereby abusing TTM internals. 943 */ 944 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 945 { 946 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 947 bool locked; 948 949 xe_assert(xe, !kref_read(&ttm_bo->kref)); 950 951 /* 952 * We can typically only race with TTM trylocking under the 953 * lru_lock, which will immediately be unlocked again since 954 * the ttm_bo refcount is zero at this point. So trylocking *should* 955 * always succeed here, as long as we hold the lru lock. 956 */ 957 spin_lock(&ttm_bo->bdev->lru_lock); 958 locked = dma_resv_trylock(ttm_bo->base.resv); 959 spin_unlock(&ttm_bo->bdev->lru_lock); 960 xe_assert(xe, locked); 961 962 return locked; 963 } 964 965 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 966 { 967 struct dma_resv_iter cursor; 968 struct dma_fence *fence; 969 struct dma_fence *replacement = NULL; 970 struct xe_bo *bo; 971 972 if (!xe_bo_is_xe_bo(ttm_bo)) 973 return; 974 975 bo = ttm_to_xe_bo(ttm_bo); 976 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 977 978 /* 979 * Corner case where TTM fails to allocate memory and this BOs resv 980 * still points the VMs resv 981 */ 982 if (ttm_bo->base.resv != &ttm_bo->base._resv) 983 return; 984 985 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 986 return; 987 988 /* 989 * Scrub the preempt fences if any. The unbind fence is already 990 * attached to the resv. 991 * TODO: Don't do this for external bos once we scrub them after 992 * unbind. 993 */ 994 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 995 DMA_RESV_USAGE_BOOKKEEP, fence) { 996 if (xe_fence_is_xe_preempt(fence) && 997 !dma_fence_is_signaled(fence)) { 998 if (!replacement) 999 replacement = dma_fence_get_stub(); 1000 1001 dma_resv_replace_fences(ttm_bo->base.resv, 1002 fence->context, 1003 replacement, 1004 DMA_RESV_USAGE_BOOKKEEP); 1005 } 1006 } 1007 dma_fence_put(replacement); 1008 1009 dma_resv_unlock(ttm_bo->base.resv); 1010 } 1011 1012 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1013 { 1014 if (!xe_bo_is_xe_bo(ttm_bo)) 1015 return; 1016 1017 /* 1018 * Object is idle and about to be destroyed. Release the 1019 * dma-buf attachment. 1020 */ 1021 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1022 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1023 struct xe_ttm_tt, ttm); 1024 1025 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1026 DMA_BIDIRECTIONAL); 1027 ttm_bo->sg = NULL; 1028 xe_tt->sg = NULL; 1029 } 1030 } 1031 1032 const struct ttm_device_funcs xe_ttm_funcs = { 1033 .ttm_tt_create = xe_ttm_tt_create, 1034 .ttm_tt_populate = xe_ttm_tt_populate, 1035 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1036 .ttm_tt_destroy = xe_ttm_tt_destroy, 1037 .evict_flags = xe_evict_flags, 1038 .move = xe_bo_move, 1039 .io_mem_reserve = xe_ttm_io_mem_reserve, 1040 .io_mem_pfn = xe_ttm_io_mem_pfn, 1041 .release_notify = xe_ttm_bo_release_notify, 1042 .eviction_valuable = ttm_bo_eviction_valuable, 1043 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1044 }; 1045 1046 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1047 { 1048 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1049 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1050 1051 if (bo->ttm.base.import_attach) 1052 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1053 drm_gem_object_release(&bo->ttm.base); 1054 1055 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1056 1057 if (bo->ggtt_node.size) 1058 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1059 1060 #ifdef CONFIG_PROC_FS 1061 if (bo->client) 1062 xe_drm_client_remove_bo(bo); 1063 #endif 1064 1065 if (bo->vm && xe_bo_is_user(bo)) 1066 xe_vm_put(bo->vm); 1067 1068 mutex_lock(&xe->mem_access.vram_userfault.lock); 1069 if (!list_empty(&bo->vram_userfault_link)) 1070 list_del(&bo->vram_userfault_link); 1071 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1072 1073 kfree(bo); 1074 } 1075 1076 static void xe_gem_object_free(struct drm_gem_object *obj) 1077 { 1078 /* Our BO reference counting scheme works as follows: 1079 * 1080 * The gem object kref is typically used throughout the driver, 1081 * and the gem object holds a ttm_buffer_object refcount, so 1082 * that when the last gem object reference is put, which is when 1083 * we end up in this function, we put also that ttm_buffer_object 1084 * refcount. Anything using gem interfaces is then no longer 1085 * allowed to access the object in a way that requires a gem 1086 * refcount, including locking the object. 1087 * 1088 * driver ttm callbacks is allowed to use the ttm_buffer_object 1089 * refcount directly if needed. 1090 */ 1091 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1092 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1093 } 1094 1095 static void xe_gem_object_close(struct drm_gem_object *obj, 1096 struct drm_file *file_priv) 1097 { 1098 struct xe_bo *bo = gem_to_xe_bo(obj); 1099 1100 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1101 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1102 1103 xe_bo_lock(bo, false); 1104 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1105 xe_bo_unlock(bo); 1106 } 1107 } 1108 1109 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1110 { 1111 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1112 struct drm_device *ddev = tbo->base.dev; 1113 struct xe_device *xe = to_xe_device(ddev); 1114 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1115 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1116 vm_fault_t ret; 1117 int idx; 1118 1119 if (needs_rpm) 1120 xe_pm_runtime_get(xe); 1121 1122 ret = ttm_bo_vm_reserve(tbo, vmf); 1123 if (ret) 1124 goto out; 1125 1126 if (drm_dev_enter(ddev, &idx)) { 1127 trace_xe_bo_cpu_fault(bo); 1128 1129 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1130 TTM_BO_VM_NUM_PREFAULT); 1131 drm_dev_exit(idx); 1132 } else { 1133 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1134 } 1135 1136 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1137 goto out; 1138 /* 1139 * ttm_bo_vm_reserve() already has dma_resv_lock. 1140 */ 1141 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1142 mutex_lock(&xe->mem_access.vram_userfault.lock); 1143 if (list_empty(&bo->vram_userfault_link)) 1144 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1145 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1146 } 1147 1148 dma_resv_unlock(tbo->base.resv); 1149 out: 1150 if (needs_rpm) 1151 xe_pm_runtime_put(xe); 1152 1153 return ret; 1154 } 1155 1156 static const struct vm_operations_struct xe_gem_vm_ops = { 1157 .fault = xe_gem_fault, 1158 .open = ttm_bo_vm_open, 1159 .close = ttm_bo_vm_close, 1160 .access = ttm_bo_vm_access 1161 }; 1162 1163 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1164 .free = xe_gem_object_free, 1165 .close = xe_gem_object_close, 1166 .mmap = drm_gem_ttm_mmap, 1167 .export = xe_gem_prime_export, 1168 .vm_ops = &xe_gem_vm_ops, 1169 }; 1170 1171 /** 1172 * xe_bo_alloc - Allocate storage for a struct xe_bo 1173 * 1174 * This funcition is intended to allocate storage to be used for input 1175 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1176 * created is needed before the call to __xe_bo_create_locked(). 1177 * If __xe_bo_create_locked ends up never to be called, then the 1178 * storage allocated with this function needs to be freed using 1179 * xe_bo_free(). 1180 * 1181 * Return: A pointer to an uninitialized struct xe_bo on success, 1182 * ERR_PTR(-ENOMEM) on error. 1183 */ 1184 struct xe_bo *xe_bo_alloc(void) 1185 { 1186 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1187 1188 if (!bo) 1189 return ERR_PTR(-ENOMEM); 1190 1191 return bo; 1192 } 1193 1194 /** 1195 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1196 * @bo: The buffer object storage. 1197 * 1198 * Refer to xe_bo_alloc() documentation for valid use-cases. 1199 */ 1200 void xe_bo_free(struct xe_bo *bo) 1201 { 1202 kfree(bo); 1203 } 1204 1205 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1206 struct xe_tile *tile, struct dma_resv *resv, 1207 struct ttm_lru_bulk_move *bulk, size_t size, 1208 u16 cpu_caching, enum ttm_bo_type type, 1209 u32 flags) 1210 { 1211 struct ttm_operation_ctx ctx = { 1212 .interruptible = true, 1213 .no_wait_gpu = false, 1214 }; 1215 struct ttm_placement *placement; 1216 uint32_t alignment; 1217 size_t aligned_size; 1218 int err; 1219 1220 /* Only kernel objects should set GT */ 1221 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1222 1223 if (XE_WARN_ON(!size)) { 1224 xe_bo_free(bo); 1225 return ERR_PTR(-EINVAL); 1226 } 1227 1228 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1229 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1230 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1231 (flags & XE_BO_NEEDS_64K))) { 1232 aligned_size = ALIGN(size, SZ_64K); 1233 if (type != ttm_bo_type_device) 1234 size = ALIGN(size, SZ_64K); 1235 flags |= XE_BO_FLAG_INTERNAL_64K; 1236 alignment = SZ_64K >> PAGE_SHIFT; 1237 1238 } else { 1239 aligned_size = ALIGN(size, SZ_4K); 1240 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1241 alignment = SZ_4K >> PAGE_SHIFT; 1242 } 1243 1244 if (type == ttm_bo_type_device && aligned_size != size) 1245 return ERR_PTR(-EINVAL); 1246 1247 if (!bo) { 1248 bo = xe_bo_alloc(); 1249 if (IS_ERR(bo)) 1250 return bo; 1251 } 1252 1253 bo->ccs_cleared = false; 1254 bo->tile = tile; 1255 bo->size = size; 1256 bo->flags = flags; 1257 bo->cpu_caching = cpu_caching; 1258 bo->ttm.base.funcs = &xe_gem_object_funcs; 1259 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1260 INIT_LIST_HEAD(&bo->pinned_link); 1261 #ifdef CONFIG_PROC_FS 1262 INIT_LIST_HEAD(&bo->client_link); 1263 #endif 1264 INIT_LIST_HEAD(&bo->vram_userfault_link); 1265 1266 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1267 1268 if (resv) { 1269 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1270 ctx.resv = resv; 1271 } 1272 1273 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1274 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1275 if (WARN_ON(err)) { 1276 xe_ttm_bo_destroy(&bo->ttm); 1277 return ERR_PTR(err); 1278 } 1279 } 1280 1281 /* Defer populating type_sg bos */ 1282 placement = (type == ttm_bo_type_sg || 1283 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1284 &bo->placement; 1285 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1286 placement, alignment, 1287 &ctx, NULL, resv, xe_ttm_bo_destroy); 1288 if (err) 1289 return ERR_PTR(err); 1290 1291 /* 1292 * The VRAM pages underneath are potentially still being accessed by the 1293 * GPU, as per async GPU clearing and async evictions. However TTM makes 1294 * sure to add any corresponding move/clear fences into the objects 1295 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1296 * 1297 * For KMD internal buffers we don't care about GPU clearing, however we 1298 * still need to handle async evictions, where the VRAM is still being 1299 * accessed by the GPU. Most internal callers are not expecting this, 1300 * since they are missing the required synchronisation before accessing 1301 * the memory. To keep things simple just sync wait any kernel fences 1302 * here, if the buffer is designated KMD internal. 1303 * 1304 * For normal userspace objects we should already have the required 1305 * pipelining or sync waiting elsewhere, since we already have to deal 1306 * with things like async GPU clearing. 1307 */ 1308 if (type == ttm_bo_type_kernel) { 1309 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1310 DMA_RESV_USAGE_KERNEL, 1311 ctx.interruptible, 1312 MAX_SCHEDULE_TIMEOUT); 1313 1314 if (timeout < 0) { 1315 if (!resv) 1316 dma_resv_unlock(bo->ttm.base.resv); 1317 xe_bo_put(bo); 1318 return ERR_PTR(timeout); 1319 } 1320 } 1321 1322 bo->created = true; 1323 if (bulk) 1324 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1325 else 1326 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1327 1328 return bo; 1329 } 1330 1331 static int __xe_bo_fixed_placement(struct xe_device *xe, 1332 struct xe_bo *bo, 1333 u32 flags, 1334 u64 start, u64 end, u64 size) 1335 { 1336 struct ttm_place *place = bo->placements; 1337 1338 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1339 return -EINVAL; 1340 1341 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1342 place->fpfn = start >> PAGE_SHIFT; 1343 place->lpfn = end >> PAGE_SHIFT; 1344 1345 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1346 case XE_BO_FLAG_VRAM0: 1347 place->mem_type = XE_PL_VRAM0; 1348 break; 1349 case XE_BO_FLAG_VRAM1: 1350 place->mem_type = XE_PL_VRAM1; 1351 break; 1352 case XE_BO_FLAG_STOLEN: 1353 place->mem_type = XE_PL_STOLEN; 1354 break; 1355 1356 default: 1357 /* 0 or multiple of the above set */ 1358 return -EINVAL; 1359 } 1360 1361 bo->placement = (struct ttm_placement) { 1362 .num_placement = 1, 1363 .placement = place, 1364 }; 1365 1366 return 0; 1367 } 1368 1369 static struct xe_bo * 1370 __xe_bo_create_locked(struct xe_device *xe, 1371 struct xe_tile *tile, struct xe_vm *vm, 1372 size_t size, u64 start, u64 end, 1373 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1374 { 1375 struct xe_bo *bo = NULL; 1376 int err; 1377 1378 if (vm) 1379 xe_vm_assert_held(vm); 1380 1381 if (start || end != ~0ULL) { 1382 bo = xe_bo_alloc(); 1383 if (IS_ERR(bo)) 1384 return bo; 1385 1386 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1387 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1388 if (err) { 1389 xe_bo_free(bo); 1390 return ERR_PTR(err); 1391 } 1392 } 1393 1394 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1395 vm && !xe_vm_in_fault_mode(vm) && 1396 flags & XE_BO_FLAG_USER ? 1397 &vm->lru_bulk_move : NULL, size, 1398 cpu_caching, type, flags); 1399 if (IS_ERR(bo)) 1400 return bo; 1401 1402 /* 1403 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1404 * to ensure the shared resv doesn't disappear under the bo, the bo 1405 * will keep a reference to the vm, and avoid circular references 1406 * by having all the vm's bo refereferences released at vm close 1407 * time. 1408 */ 1409 if (vm && xe_bo_is_user(bo)) 1410 xe_vm_get(vm); 1411 bo->vm = vm; 1412 1413 if (bo->flags & XE_BO_FLAG_GGTT) { 1414 if (!tile && flags & XE_BO_FLAG_STOLEN) 1415 tile = xe_device_get_root_tile(xe); 1416 1417 xe_assert(xe, tile); 1418 1419 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1420 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1421 start + bo->size, U64_MAX); 1422 } else { 1423 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1424 } 1425 if (err) 1426 goto err_unlock_put_bo; 1427 } 1428 1429 return bo; 1430 1431 err_unlock_put_bo: 1432 __xe_bo_unset_bulk_move(bo); 1433 xe_bo_unlock_vm_held(bo); 1434 xe_bo_put(bo); 1435 return ERR_PTR(err); 1436 } 1437 1438 struct xe_bo * 1439 xe_bo_create_locked_range(struct xe_device *xe, 1440 struct xe_tile *tile, struct xe_vm *vm, 1441 size_t size, u64 start, u64 end, 1442 enum ttm_bo_type type, u32 flags) 1443 { 1444 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1445 } 1446 1447 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1448 struct xe_vm *vm, size_t size, 1449 enum ttm_bo_type type, u32 flags) 1450 { 1451 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1452 } 1453 1454 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1455 struct xe_vm *vm, size_t size, 1456 u16 cpu_caching, 1457 enum ttm_bo_type type, 1458 u32 flags) 1459 { 1460 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1461 cpu_caching, type, 1462 flags | XE_BO_FLAG_USER); 1463 if (!IS_ERR(bo)) 1464 xe_bo_unlock_vm_held(bo); 1465 1466 return bo; 1467 } 1468 1469 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1470 struct xe_vm *vm, size_t size, 1471 enum ttm_bo_type type, u32 flags) 1472 { 1473 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1474 1475 if (!IS_ERR(bo)) 1476 xe_bo_unlock_vm_held(bo); 1477 1478 return bo; 1479 } 1480 1481 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1482 struct xe_vm *vm, 1483 size_t size, u64 offset, 1484 enum ttm_bo_type type, u32 flags) 1485 { 1486 struct xe_bo *bo; 1487 int err; 1488 u64 start = offset == ~0ull ? 0 : offset; 1489 u64 end = offset == ~0ull ? offset : start + size; 1490 1491 if (flags & XE_BO_FLAG_STOLEN && 1492 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1493 flags |= XE_BO_FLAG_GGTT; 1494 1495 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1496 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); 1497 if (IS_ERR(bo)) 1498 return bo; 1499 1500 err = xe_bo_pin(bo); 1501 if (err) 1502 goto err_put; 1503 1504 err = xe_bo_vmap(bo); 1505 if (err) 1506 goto err_unpin; 1507 1508 xe_bo_unlock_vm_held(bo); 1509 1510 return bo; 1511 1512 err_unpin: 1513 xe_bo_unpin(bo); 1514 err_put: 1515 xe_bo_unlock_vm_held(bo); 1516 xe_bo_put(bo); 1517 return ERR_PTR(err); 1518 } 1519 1520 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1521 struct xe_vm *vm, size_t size, 1522 enum ttm_bo_type type, u32 flags) 1523 { 1524 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1525 } 1526 1527 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1528 const void *data, size_t size, 1529 enum ttm_bo_type type, u32 flags) 1530 { 1531 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1532 ALIGN(size, PAGE_SIZE), 1533 type, flags); 1534 if (IS_ERR(bo)) 1535 return bo; 1536 1537 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1538 1539 return bo; 1540 } 1541 1542 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1543 { 1544 xe_bo_unpin_map_no_vm(arg); 1545 } 1546 1547 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1548 size_t size, u32 flags) 1549 { 1550 struct xe_bo *bo; 1551 int ret; 1552 1553 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1554 if (IS_ERR(bo)) 1555 return bo; 1556 1557 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1558 if (ret) 1559 return ERR_PTR(ret); 1560 1561 return bo; 1562 } 1563 1564 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1565 const void *data, size_t size, u32 flags) 1566 { 1567 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1568 1569 if (IS_ERR(bo)) 1570 return bo; 1571 1572 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1573 1574 return bo; 1575 } 1576 1577 /** 1578 * xe_managed_bo_reinit_in_vram 1579 * @xe: xe device 1580 * @tile: Tile where the new buffer will be created 1581 * @src: Managed buffer object allocated in system memory 1582 * 1583 * Replace a managed src buffer object allocated in system memory with a new 1584 * one allocated in vram, copying the data between them. 1585 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1586 * is responsible for making sure that any old references to it are updated. 1587 * 1588 * Returns 0 for success, negative error code otherwise. 1589 */ 1590 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1591 { 1592 struct xe_bo *bo; 1593 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1594 1595 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1596 1597 xe_assert(xe, IS_DGFX(xe)); 1598 xe_assert(xe, !(*src)->vmap.is_iomem); 1599 1600 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1601 (*src)->size, dst_flags); 1602 if (IS_ERR(bo)) 1603 return PTR_ERR(bo); 1604 1605 drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); 1606 *src = bo; 1607 1608 return 0; 1609 } 1610 1611 /* 1612 * XXX: This is in the VM bind data path, likely should calculate this once and 1613 * store, with a recalculation if the BO is moved. 1614 */ 1615 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1616 { 1617 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1618 1619 if (res->mem_type == XE_PL_STOLEN) 1620 return xe_ttm_stolen_gpu_offset(xe); 1621 1622 return res_to_mem_region(res)->dpa_base; 1623 } 1624 1625 /** 1626 * xe_bo_pin_external - pin an external BO 1627 * @bo: buffer object to be pinned 1628 * 1629 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1630 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1631 * asserts and code to ensure evict / restore on suspend / resume. 1632 * 1633 * Returns 0 for success, negative error code otherwise. 1634 */ 1635 int xe_bo_pin_external(struct xe_bo *bo) 1636 { 1637 struct xe_device *xe = xe_bo_device(bo); 1638 int err; 1639 1640 xe_assert(xe, !bo->vm); 1641 xe_assert(xe, xe_bo_is_user(bo)); 1642 1643 if (!xe_bo_is_pinned(bo)) { 1644 err = xe_bo_validate(bo, NULL, false); 1645 if (err) 1646 return err; 1647 1648 if (xe_bo_is_vram(bo)) { 1649 spin_lock(&xe->pinned.lock); 1650 list_add_tail(&bo->pinned_link, 1651 &xe->pinned.external_vram); 1652 spin_unlock(&xe->pinned.lock); 1653 } 1654 } 1655 1656 ttm_bo_pin(&bo->ttm); 1657 1658 /* 1659 * FIXME: If we always use the reserve / unreserve functions for locking 1660 * we do not need this. 1661 */ 1662 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1663 1664 return 0; 1665 } 1666 1667 int xe_bo_pin(struct xe_bo *bo) 1668 { 1669 struct xe_device *xe = xe_bo_device(bo); 1670 int err; 1671 1672 /* We currently don't expect user BO to be pinned */ 1673 xe_assert(xe, !xe_bo_is_user(bo)); 1674 1675 /* Pinned object must be in GGTT or have pinned flag */ 1676 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1677 XE_BO_FLAG_GGTT)); 1678 1679 /* 1680 * No reason we can't support pinning imported dma-bufs we just don't 1681 * expect to pin an imported dma-buf. 1682 */ 1683 xe_assert(xe, !bo->ttm.base.import_attach); 1684 1685 /* We only expect at most 1 pin */ 1686 xe_assert(xe, !xe_bo_is_pinned(bo)); 1687 1688 err = xe_bo_validate(bo, NULL, false); 1689 if (err) 1690 return err; 1691 1692 /* 1693 * For pinned objects in on DGFX, which are also in vram, we expect 1694 * these to be in contiguous VRAM memory. Required eviction / restore 1695 * during suspend / resume (force restore to same physical address). 1696 */ 1697 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1698 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1699 struct ttm_place *place = &(bo->placements[0]); 1700 1701 if (mem_type_is_vram(place->mem_type)) { 1702 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1703 1704 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1705 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1706 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1707 1708 spin_lock(&xe->pinned.lock); 1709 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1710 spin_unlock(&xe->pinned.lock); 1711 } 1712 } 1713 1714 ttm_bo_pin(&bo->ttm); 1715 1716 /* 1717 * FIXME: If we always use the reserve / unreserve functions for locking 1718 * we do not need this. 1719 */ 1720 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * xe_bo_unpin_external - unpin an external BO 1727 * @bo: buffer object to be unpinned 1728 * 1729 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1730 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1731 * asserts and code to ensure evict / restore on suspend / resume. 1732 * 1733 * Returns 0 for success, negative error code otherwise. 1734 */ 1735 void xe_bo_unpin_external(struct xe_bo *bo) 1736 { 1737 struct xe_device *xe = xe_bo_device(bo); 1738 1739 xe_assert(xe, !bo->vm); 1740 xe_assert(xe, xe_bo_is_pinned(bo)); 1741 xe_assert(xe, xe_bo_is_user(bo)); 1742 1743 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { 1744 spin_lock(&xe->pinned.lock); 1745 list_del_init(&bo->pinned_link); 1746 spin_unlock(&xe->pinned.lock); 1747 } 1748 1749 ttm_bo_unpin(&bo->ttm); 1750 1751 /* 1752 * FIXME: If we always use the reserve / unreserve functions for locking 1753 * we do not need this. 1754 */ 1755 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1756 } 1757 1758 void xe_bo_unpin(struct xe_bo *bo) 1759 { 1760 struct xe_device *xe = xe_bo_device(bo); 1761 1762 xe_assert(xe, !bo->ttm.base.import_attach); 1763 xe_assert(xe, xe_bo_is_pinned(bo)); 1764 1765 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1766 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1767 struct ttm_place *place = &(bo->placements[0]); 1768 1769 if (mem_type_is_vram(place->mem_type)) { 1770 xe_assert(xe, !list_empty(&bo->pinned_link)); 1771 1772 spin_lock(&xe->pinned.lock); 1773 list_del_init(&bo->pinned_link); 1774 spin_unlock(&xe->pinned.lock); 1775 } 1776 } 1777 1778 ttm_bo_unpin(&bo->ttm); 1779 } 1780 1781 /** 1782 * xe_bo_validate() - Make sure the bo is in an allowed placement 1783 * @bo: The bo, 1784 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1785 * NULL. Used together with @allow_res_evict. 1786 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1787 * reservation object. 1788 * 1789 * Make sure the bo is in allowed placement, migrating it if necessary. If 1790 * needed, other bos will be evicted. If bos selected for eviction shares 1791 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1792 * set to true, otherwise they will be bypassed. 1793 * 1794 * Return: 0 on success, negative error code on failure. May return 1795 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1796 */ 1797 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1798 { 1799 struct ttm_operation_ctx ctx = { 1800 .interruptible = true, 1801 .no_wait_gpu = false, 1802 }; 1803 1804 if (vm) { 1805 lockdep_assert_held(&vm->lock); 1806 xe_vm_assert_held(vm); 1807 1808 ctx.allow_res_evict = allow_res_evict; 1809 ctx.resv = xe_vm_resv(vm); 1810 } 1811 1812 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1813 } 1814 1815 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1816 { 1817 if (bo->destroy == &xe_ttm_bo_destroy) 1818 return true; 1819 1820 return false; 1821 } 1822 1823 /* 1824 * Resolve a BO address. There is no assert to check if the proper lock is held 1825 * so it should only be used in cases where it is not fatal to get the wrong 1826 * address, such as printing debug information, but not in cases where memory is 1827 * written based on this result. 1828 */ 1829 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1830 { 1831 struct xe_device *xe = xe_bo_device(bo); 1832 struct xe_res_cursor cur; 1833 u64 page; 1834 1835 xe_assert(xe, page_size <= PAGE_SIZE); 1836 page = offset >> PAGE_SHIFT; 1837 offset &= (PAGE_SIZE - 1); 1838 1839 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1840 xe_assert(xe, bo->ttm.ttm); 1841 1842 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1843 page_size, &cur); 1844 return xe_res_dma(&cur) + offset; 1845 } else { 1846 struct xe_res_cursor cur; 1847 1848 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1849 page_size, &cur); 1850 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1851 } 1852 } 1853 1854 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1855 { 1856 if (!READ_ONCE(bo->ttm.pin_count)) 1857 xe_bo_assert_held(bo); 1858 return __xe_bo_addr(bo, offset, page_size); 1859 } 1860 1861 int xe_bo_vmap(struct xe_bo *bo) 1862 { 1863 void *virtual; 1864 bool is_iomem; 1865 int ret; 1866 1867 xe_bo_assert_held(bo); 1868 1869 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1870 return -EINVAL; 1871 1872 if (!iosys_map_is_null(&bo->vmap)) 1873 return 0; 1874 1875 /* 1876 * We use this more or less deprecated interface for now since 1877 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1878 * single page bos, which is done here. 1879 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1880 * to use struct iosys_map. 1881 */ 1882 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1883 if (ret) 1884 return ret; 1885 1886 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1887 if (is_iomem) 1888 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1889 else 1890 iosys_map_set_vaddr(&bo->vmap, virtual); 1891 1892 return 0; 1893 } 1894 1895 static void __xe_bo_vunmap(struct xe_bo *bo) 1896 { 1897 if (!iosys_map_is_null(&bo->vmap)) { 1898 iosys_map_clear(&bo->vmap); 1899 ttm_bo_kunmap(&bo->kmap); 1900 } 1901 } 1902 1903 void xe_bo_vunmap(struct xe_bo *bo) 1904 { 1905 xe_bo_assert_held(bo); 1906 __xe_bo_vunmap(bo); 1907 } 1908 1909 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1910 struct drm_file *file) 1911 { 1912 struct xe_device *xe = to_xe_device(dev); 1913 struct xe_file *xef = to_xe_file(file); 1914 struct drm_xe_gem_create *args = data; 1915 struct xe_vm *vm = NULL; 1916 struct xe_bo *bo; 1917 unsigned int bo_flags; 1918 u32 handle; 1919 int err; 1920 1921 if (XE_IOCTL_DBG(xe, args->extensions) || 1922 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1923 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1924 return -EINVAL; 1925 1926 /* at least one valid memory placement must be specified */ 1927 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1928 !args->placement)) 1929 return -EINVAL; 1930 1931 if (XE_IOCTL_DBG(xe, args->flags & 1932 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1933 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1934 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1935 return -EINVAL; 1936 1937 if (XE_IOCTL_DBG(xe, args->handle)) 1938 return -EINVAL; 1939 1940 if (XE_IOCTL_DBG(xe, !args->size)) 1941 return -EINVAL; 1942 1943 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1944 return -EINVAL; 1945 1946 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1947 return -EINVAL; 1948 1949 bo_flags = 0; 1950 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1951 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 1952 1953 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1954 bo_flags |= XE_BO_FLAG_SCANOUT; 1955 1956 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 1957 1958 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1959 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 1960 return -EINVAL; 1961 1962 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 1963 } 1964 1965 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1966 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1967 return -EINVAL; 1968 1969 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 1970 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1971 return -EINVAL; 1972 1973 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 1974 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 1975 return -EINVAL; 1976 1977 if (args->vm_id) { 1978 vm = xe_vm_lookup(xef, args->vm_id); 1979 if (XE_IOCTL_DBG(xe, !vm)) 1980 return -ENOENT; 1981 err = xe_vm_lock(vm, true); 1982 if (err) 1983 goto out_vm; 1984 } 1985 1986 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 1987 ttm_bo_type_device, bo_flags); 1988 1989 if (vm) 1990 xe_vm_unlock(vm); 1991 1992 if (IS_ERR(bo)) { 1993 err = PTR_ERR(bo); 1994 goto out_vm; 1995 } 1996 1997 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 1998 if (err) 1999 goto out_bulk; 2000 2001 args->handle = handle; 2002 goto out_put; 2003 2004 out_bulk: 2005 if (vm && !xe_vm_in_fault_mode(vm)) { 2006 xe_vm_lock(vm, false); 2007 __xe_bo_unset_bulk_move(bo); 2008 xe_vm_unlock(vm); 2009 } 2010 out_put: 2011 xe_bo_put(bo); 2012 out_vm: 2013 if (vm) 2014 xe_vm_put(vm); 2015 2016 return err; 2017 } 2018 2019 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2020 struct drm_file *file) 2021 { 2022 struct xe_device *xe = to_xe_device(dev); 2023 struct drm_xe_gem_mmap_offset *args = data; 2024 struct drm_gem_object *gem_obj; 2025 2026 if (XE_IOCTL_DBG(xe, args->extensions) || 2027 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2028 return -EINVAL; 2029 2030 if (XE_IOCTL_DBG(xe, args->flags)) 2031 return -EINVAL; 2032 2033 gem_obj = drm_gem_object_lookup(file, args->handle); 2034 if (XE_IOCTL_DBG(xe, !gem_obj)) 2035 return -ENOENT; 2036 2037 /* The mmap offset was set up at BO allocation time. */ 2038 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2039 2040 xe_bo_put(gem_to_xe_bo(gem_obj)); 2041 return 0; 2042 } 2043 2044 /** 2045 * xe_bo_lock() - Lock the buffer object's dma_resv object 2046 * @bo: The struct xe_bo whose lock is to be taken 2047 * @intr: Whether to perform any wait interruptible 2048 * 2049 * Locks the buffer object's dma_resv object. If the buffer object is 2050 * pointing to a shared dma_resv object, that shared lock is locked. 2051 * 2052 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2053 * contended lock was interrupted. If @intr is set to false, the 2054 * function always returns 0. 2055 */ 2056 int xe_bo_lock(struct xe_bo *bo, bool intr) 2057 { 2058 if (intr) 2059 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2060 2061 dma_resv_lock(bo->ttm.base.resv, NULL); 2062 2063 return 0; 2064 } 2065 2066 /** 2067 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2068 * @bo: The struct xe_bo whose lock is to be released. 2069 * 2070 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2071 */ 2072 void xe_bo_unlock(struct xe_bo *bo) 2073 { 2074 dma_resv_unlock(bo->ttm.base.resv); 2075 } 2076 2077 /** 2078 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2079 * @bo: The buffer object to migrate 2080 * @mem_type: The TTM memory type intended to migrate to 2081 * 2082 * Check whether the buffer object supports migration to the 2083 * given memory type. Note that pinning may affect the ability to migrate as 2084 * returned by this function. 2085 * 2086 * This function is primarily intended as a helper for checking the 2087 * possibility to migrate buffer objects and can be called without 2088 * the object lock held. 2089 * 2090 * Return: true if migration is possible, false otherwise. 2091 */ 2092 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2093 { 2094 unsigned int cur_place; 2095 2096 if (bo->ttm.type == ttm_bo_type_kernel) 2097 return true; 2098 2099 if (bo->ttm.type == ttm_bo_type_sg) 2100 return false; 2101 2102 for (cur_place = 0; cur_place < bo->placement.num_placement; 2103 cur_place++) { 2104 if (bo->placements[cur_place].mem_type == mem_type) 2105 return true; 2106 } 2107 2108 return false; 2109 } 2110 2111 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2112 { 2113 memset(place, 0, sizeof(*place)); 2114 place->mem_type = mem_type; 2115 } 2116 2117 /** 2118 * xe_bo_migrate - Migrate an object to the desired region id 2119 * @bo: The buffer object to migrate. 2120 * @mem_type: The TTM region type to migrate to. 2121 * 2122 * Attempt to migrate the buffer object to the desired memory region. The 2123 * buffer object may not be pinned, and must be locked. 2124 * On successful completion, the object memory type will be updated, 2125 * but an async migration task may not have completed yet, and to 2126 * accomplish that, the object's kernel fences must be signaled with 2127 * the object lock held. 2128 * 2129 * Return: 0 on success. Negative error code on failure. In particular may 2130 * return -EINTR or -ERESTARTSYS if signal pending. 2131 */ 2132 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2133 { 2134 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2135 struct ttm_operation_ctx ctx = { 2136 .interruptible = true, 2137 .no_wait_gpu = false, 2138 }; 2139 struct ttm_placement placement; 2140 struct ttm_place requested; 2141 2142 xe_bo_assert_held(bo); 2143 2144 if (bo->ttm.resource->mem_type == mem_type) 2145 return 0; 2146 2147 if (xe_bo_is_pinned(bo)) 2148 return -EBUSY; 2149 2150 if (!xe_bo_can_migrate(bo, mem_type)) 2151 return -EINVAL; 2152 2153 xe_place_from_ttm_type(mem_type, &requested); 2154 placement.num_placement = 1; 2155 placement.placement = &requested; 2156 2157 /* 2158 * Stolen needs to be handled like below VRAM handling if we ever need 2159 * to support it. 2160 */ 2161 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2162 2163 if (mem_type_is_vram(mem_type)) { 2164 u32 c = 0; 2165 2166 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2167 } 2168 2169 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2170 } 2171 2172 /** 2173 * xe_bo_evict - Evict an object to evict placement 2174 * @bo: The buffer object to migrate. 2175 * @force_alloc: Set force_alloc in ttm_operation_ctx 2176 * 2177 * On successful completion, the object memory will be moved to evict 2178 * placement. Ths function blocks until the object has been fully moved. 2179 * 2180 * Return: 0 on success. Negative error code on failure. 2181 */ 2182 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2183 { 2184 struct ttm_operation_ctx ctx = { 2185 .interruptible = false, 2186 .no_wait_gpu = false, 2187 .force_alloc = force_alloc, 2188 }; 2189 struct ttm_placement placement; 2190 int ret; 2191 2192 xe_evict_flags(&bo->ttm, &placement); 2193 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2194 if (ret) 2195 return ret; 2196 2197 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2198 false, MAX_SCHEDULE_TIMEOUT); 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2205 * placed in system memory. 2206 * @bo: The xe_bo 2207 * 2208 * Return: true if extra pages need to be allocated, false otherwise. 2209 */ 2210 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2211 { 2212 struct xe_device *xe = xe_bo_device(bo); 2213 2214 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2215 return false; 2216 2217 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2218 return false; 2219 2220 /* On discrete GPUs, if the GPU can access this buffer from 2221 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2222 * can't be used since there's no CCS storage associated with 2223 * non-VRAM addresses. 2224 */ 2225 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2226 return false; 2227 2228 return true; 2229 } 2230 2231 /** 2232 * __xe_bo_release_dummy() - Dummy kref release function 2233 * @kref: The embedded struct kref. 2234 * 2235 * Dummy release function for xe_bo_put_deferred(). Keep off. 2236 */ 2237 void __xe_bo_release_dummy(struct kref *kref) 2238 { 2239 } 2240 2241 /** 2242 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2243 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2244 * 2245 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2246 * The @deferred list can be either an onstack local list or a global 2247 * shared list used by a workqueue. 2248 */ 2249 void xe_bo_put_commit(struct llist_head *deferred) 2250 { 2251 struct llist_node *freed; 2252 struct xe_bo *bo, *next; 2253 2254 if (!deferred) 2255 return; 2256 2257 freed = llist_del_all(deferred); 2258 if (!freed) 2259 return; 2260 2261 llist_for_each_entry_safe(bo, next, freed, freed) 2262 drm_gem_object_free(&bo->ttm.base.refcount); 2263 } 2264 2265 /** 2266 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2267 * @file_priv: ... 2268 * @dev: ... 2269 * @args: ... 2270 * 2271 * See dumb_create() hook in include/drm/drm_drv.h 2272 * 2273 * Return: ... 2274 */ 2275 int xe_bo_dumb_create(struct drm_file *file_priv, 2276 struct drm_device *dev, 2277 struct drm_mode_create_dumb *args) 2278 { 2279 struct xe_device *xe = to_xe_device(dev); 2280 struct xe_bo *bo; 2281 uint32_t handle; 2282 int cpp = DIV_ROUND_UP(args->bpp, 8); 2283 int err; 2284 u32 page_size = max_t(u32, PAGE_SIZE, 2285 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2286 2287 args->pitch = ALIGN(args->width * cpp, 64); 2288 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2289 page_size); 2290 2291 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2292 DRM_XE_GEM_CPU_CACHING_WC, 2293 ttm_bo_type_device, 2294 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2295 XE_BO_FLAG_SCANOUT | 2296 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2297 if (IS_ERR(bo)) 2298 return PTR_ERR(bo); 2299 2300 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2301 /* drop reference from allocate - handle holds it now */ 2302 drm_gem_object_put(&bo->ttm.base); 2303 if (!err) 2304 args->handle = handle; 2305 return err; 2306 } 2307 2308 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2309 { 2310 struct ttm_buffer_object *tbo = &bo->ttm; 2311 struct ttm_device *bdev = tbo->bdev; 2312 2313 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2314 2315 list_del_init(&bo->vram_userfault_link); 2316 } 2317 2318 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2319 #include "tests/xe_bo.c" 2320 #endif 2321