xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision face6a3615a649456eb4549f6d474221d877d604)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_drv.h>
12 #include <drm/drm_dumb_buffers.h>
13 #include <drm/drm_gem_ttm_helper.h>
14 #include <drm/drm_managed.h>
15 #include <drm/ttm/ttm_backup.h>
16 #include <drm/ttm/ttm_device.h>
17 #include <drm/ttm/ttm_placement.h>
18 #include <drm/ttm/ttm_tt.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include <kunit/static_stub.h>
22 
23 #include <trace/events/gpu_mem.h>
24 
25 #include "xe_device.h"
26 #include "xe_dma_buf.h"
27 #include "xe_drm_client.h"
28 #include "xe_ggtt.h"
29 #include "xe_gt.h"
30 #include "xe_map.h"
31 #include "xe_migrate.h"
32 #include "xe_pm.h"
33 #include "xe_preempt_fence.h"
34 #include "xe_pxp.h"
35 #include "xe_res_cursor.h"
36 #include "xe_shrinker.h"
37 #include "xe_sriov_vf_ccs.h"
38 #include "xe_tile.h"
39 #include "xe_trace_bo.h"
40 #include "xe_ttm_stolen_mgr.h"
41 #include "xe_vm.h"
42 #include "xe_vram_types.h"
43 
44 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
45 	[XE_PL_SYSTEM] = "system",
46 	[XE_PL_TT] = "gtt",
47 	[XE_PL_VRAM0] = "vram0",
48 	[XE_PL_VRAM1] = "vram1",
49 	[XE_PL_STOLEN] = "stolen"
50 };
51 
52 static const struct ttm_place sys_placement_flags = {
53 	.fpfn = 0,
54 	.lpfn = 0,
55 	.mem_type = XE_PL_SYSTEM,
56 	.flags = 0,
57 };
58 
59 static struct ttm_placement sys_placement = {
60 	.num_placement = 1,
61 	.placement = &sys_placement_flags,
62 };
63 
64 static struct ttm_placement purge_placement;
65 
66 static const struct ttm_place tt_placement_flags[] = {
67 	{
68 		.fpfn = 0,
69 		.lpfn = 0,
70 		.mem_type = XE_PL_TT,
71 		.flags = TTM_PL_FLAG_DESIRED,
72 	},
73 	{
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = XE_PL_SYSTEM,
77 		.flags = TTM_PL_FLAG_FALLBACK,
78 	}
79 };
80 
81 static struct ttm_placement tt_placement = {
82 	.num_placement = 2,
83 	.placement = tt_placement_flags,
84 };
85 
86 #define for_each_set_bo_vram_flag(bit__, bo_flags__) \
87 	for (unsigned int __bit_tmp = BIT(0); __bit_tmp <= XE_BO_FLAG_VRAM_MASK; __bit_tmp <<= 1) \
88 		for_each_if(((bit__) = __bit_tmp) & (bo_flags__) & XE_BO_FLAG_VRAM_MASK)
89 
90 bool mem_type_is_vram(u32 mem_type)
91 {
92 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
93 }
94 
95 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
96 {
97 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
98 }
99 
100 static bool resource_is_vram(struct ttm_resource *res)
101 {
102 	return mem_type_is_vram(res->mem_type);
103 }
104 
105 bool xe_bo_is_vram(struct xe_bo *bo)
106 {
107 	return resource_is_vram(bo->ttm.resource) ||
108 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
109 }
110 
111 bool xe_bo_is_stolen(struct xe_bo *bo)
112 {
113 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
114 }
115 
116 /**
117  * xe_bo_has_single_placement - check if BO is placed only in one memory location
118  * @bo: The BO
119  *
120  * This function checks whether a given BO is placed in only one memory location.
121  *
122  * Returns: true if the BO is placed in a single memory location, false otherwise.
123  *
124  */
125 bool xe_bo_has_single_placement(struct xe_bo *bo)
126 {
127 	return bo->placement.num_placement == 1;
128 }
129 
130 /**
131  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
132  * @bo: The BO
133  *
134  * The stolen memory is accessed through the PCI BAR for both DGFX and some
135  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
136  *
137  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
138  */
139 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
140 {
141 	return xe_bo_is_stolen(bo) &&
142 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
143 }
144 
145 /**
146  * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
147  * @bo: The BO
148  *
149  * Check if a given bo is bound through VM_BIND. This requires the
150  * reservation lock for the BO to be held.
151  *
152  * Returns: boolean
153  */
154 bool xe_bo_is_vm_bound(struct xe_bo *bo)
155 {
156 	xe_bo_assert_held(bo);
157 
158 	return !list_empty(&bo->ttm.base.gpuva.list);
159 }
160 
161 static bool xe_bo_is_user(struct xe_bo *bo)
162 {
163 	return bo->flags & XE_BO_FLAG_USER;
164 }
165 
166 static struct xe_migrate *
167 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
168 {
169 	struct xe_tile *tile;
170 
171 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
172 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
173 	return tile->migrate;
174 }
175 
176 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
177 {
178 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
179 	struct ttm_resource_manager *mgr;
180 	struct xe_ttm_vram_mgr *vram_mgr;
181 
182 	xe_assert(xe, resource_is_vram(res));
183 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
184 	vram_mgr = to_xe_ttm_vram_mgr(mgr);
185 
186 	return container_of(vram_mgr, struct xe_vram_region, ttm);
187 }
188 
189 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
190 			   u32 bo_flags, u32 *c)
191 {
192 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
193 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
194 
195 		bo->placements[*c] = (struct ttm_place) {
196 			.mem_type = XE_PL_TT,
197 			.flags = (bo_flags & XE_BO_FLAG_VRAM_MASK) ?
198 			TTM_PL_FLAG_FALLBACK : 0,
199 		};
200 		*c += 1;
201 	}
202 }
203 
204 static bool force_contiguous(u32 bo_flags)
205 {
206 	if (bo_flags & XE_BO_FLAG_STOLEN)
207 		return true; /* users expect this */
208 	else if (bo_flags & XE_BO_FLAG_PINNED &&
209 		 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE))
210 		return true; /* needs vmap */
211 	else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR)
212 		return true;
213 
214 	/*
215 	 * For eviction / restore on suspend / resume objects pinned in VRAM
216 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
217 	 */
218 	return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS &&
219 	       bo_flags & XE_BO_FLAG_PINNED;
220 }
221 
222 static u8 vram_bo_flag_to_tile_id(struct xe_device *xe, u32 vram_bo_flag)
223 {
224 	xe_assert(xe, vram_bo_flag & XE_BO_FLAG_VRAM_MASK);
225 	xe_assert(xe, (vram_bo_flag & (vram_bo_flag - 1)) == 0);
226 
227 	return __ffs(vram_bo_flag >> (__ffs(XE_BO_FLAG_VRAM0) - 1)) - 1;
228 }
229 
230 static u32 bo_vram_flags_to_vram_placement(struct xe_device *xe, u32 bo_flags, u32 vram_flag,
231 					   enum ttm_bo_type type)
232 {
233 	u8 tile_id = vram_bo_flag_to_tile_id(xe, vram_flag);
234 
235 	xe_assert(xe, tile_id < xe->info.tile_count);
236 
237 	if (type == ttm_bo_type_kernel && !(bo_flags & XE_BO_FLAG_FORCE_USER_VRAM))
238 		return xe->tiles[tile_id].mem.kernel_vram->placement;
239 	else
240 		return xe->tiles[tile_id].mem.vram->placement;
241 }
242 
243 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
244 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
245 {
246 	struct ttm_place place = { .mem_type = mem_type };
247 	struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
248 	struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
249 
250 	struct xe_vram_region *vram;
251 	u64 io_size;
252 
253 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
254 
255 	vram = container_of(vram_mgr, struct xe_vram_region, ttm);
256 	xe_assert(xe, vram && vram->usable_size);
257 	io_size = vram->io_size;
258 
259 	if (force_contiguous(bo_flags))
260 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
261 
262 	if (io_size < vram->usable_size) {
263 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
264 			place.fpfn = 0;
265 			place.lpfn = io_size >> PAGE_SHIFT;
266 		} else {
267 			place.flags |= TTM_PL_FLAG_TOPDOWN;
268 		}
269 	}
270 	places[*c] = place;
271 	*c += 1;
272 }
273 
274 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
275 			 u32 bo_flags, enum ttm_bo_type type, u32 *c)
276 {
277 	u32 vram_flag;
278 
279 	for_each_set_bo_vram_flag(vram_flag, bo_flags) {
280 		u32 pl = bo_vram_flags_to_vram_placement(xe, bo_flags, vram_flag, type);
281 
282 		add_vram(xe, bo, bo->placements, bo_flags, pl, c);
283 	}
284 }
285 
286 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
287 			   u32 bo_flags, u32 *c)
288 {
289 	if (bo_flags & XE_BO_FLAG_STOLEN) {
290 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
291 
292 		bo->placements[*c] = (struct ttm_place) {
293 			.mem_type = XE_PL_STOLEN,
294 			.flags = force_contiguous(bo_flags) ?
295 				TTM_PL_FLAG_CONTIGUOUS : 0,
296 		};
297 		*c += 1;
298 	}
299 }
300 
301 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
302 				       u32 bo_flags, enum ttm_bo_type type)
303 {
304 	u32 c = 0;
305 
306 	try_add_vram(xe, bo, bo_flags, type, &c);
307 	try_add_system(xe, bo, bo_flags, &c);
308 	try_add_stolen(xe, bo, bo_flags, &c);
309 
310 	if (!c)
311 		return -EINVAL;
312 
313 	bo->placement = (struct ttm_placement) {
314 		.num_placement = c,
315 		.placement = bo->placements,
316 	};
317 
318 	return 0;
319 }
320 
321 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
322 			      u32 bo_flags, enum ttm_bo_type type)
323 {
324 	xe_bo_assert_held(bo);
325 	return __xe_bo_placement_for_flags(xe, bo, bo_flags, type);
326 }
327 
328 static void xe_evict_flags(struct ttm_buffer_object *tbo,
329 			   struct ttm_placement *placement)
330 {
331 	struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm);
332 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
333 	struct xe_bo *bo;
334 
335 	if (!xe_bo_is_xe_bo(tbo)) {
336 		/* Don't handle scatter gather BOs */
337 		if (tbo->type == ttm_bo_type_sg) {
338 			placement->num_placement = 0;
339 			return;
340 		}
341 
342 		*placement = device_unplugged ? purge_placement : sys_placement;
343 		return;
344 	}
345 
346 	bo = ttm_to_xe_bo(tbo);
347 	if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
348 		*placement = sys_placement;
349 		return;
350 	}
351 
352 	if (device_unplugged && !tbo->base.dma_buf) {
353 		*placement = purge_placement;
354 		return;
355 	}
356 
357 	/*
358 	 * For xe, sg bos that are evicted to system just triggers a
359 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
360 	 */
361 	switch (tbo->resource->mem_type) {
362 	case XE_PL_VRAM0:
363 	case XE_PL_VRAM1:
364 	case XE_PL_STOLEN:
365 		*placement = tt_placement;
366 		break;
367 	case XE_PL_TT:
368 	default:
369 		*placement = sys_placement;
370 		break;
371 	}
372 }
373 
374 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */
375 struct xe_ttm_tt {
376 	struct ttm_tt ttm;
377 	struct sg_table sgt;
378 	struct sg_table *sg;
379 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
380 	bool purgeable;
381 };
382 
383 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt)
384 {
385 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
386 	unsigned long num_pages = tt->num_pages;
387 	int ret;
388 
389 	XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
390 		   !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
391 
392 	if (xe_tt->sg)
393 		return 0;
394 
395 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
396 						num_pages, 0,
397 						(u64)num_pages << PAGE_SHIFT,
398 						xe_sg_segment_size(xe->drm.dev),
399 						GFP_KERNEL);
400 	if (ret)
401 		return ret;
402 
403 	xe_tt->sg = &xe_tt->sgt;
404 	ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
405 			      DMA_ATTR_SKIP_CPU_SYNC);
406 	if (ret) {
407 		sg_free_table(xe_tt->sg);
408 		xe_tt->sg = NULL;
409 		return ret;
410 	}
411 
412 	return 0;
413 }
414 
415 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt)
416 {
417 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
418 
419 	if (xe_tt->sg) {
420 		dma_unmap_sgtable(xe->drm.dev, xe_tt->sg,
421 				  DMA_BIDIRECTIONAL, 0);
422 		sg_free_table(xe_tt->sg);
423 		xe_tt->sg = NULL;
424 	}
425 }
426 
427 struct sg_table *xe_bo_sg(struct xe_bo *bo)
428 {
429 	struct ttm_tt *tt = bo->ttm.ttm;
430 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
431 
432 	return xe_tt->sg;
433 }
434 
435 /*
436  * Account ttm pages against the device shrinker's shrinkable and
437  * purgeable counts.
438  */
439 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt)
440 {
441 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
442 
443 	if (xe_tt->purgeable)
444 		xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages);
445 	else
446 		xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0);
447 }
448 
449 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt)
450 {
451 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
452 
453 	if (xe_tt->purgeable)
454 		xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages);
455 	else
456 		xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0);
457 }
458 
459 static void update_global_total_pages(struct ttm_device *ttm_dev,
460 				      long num_pages)
461 {
462 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM)
463 	struct xe_device *xe = ttm_to_xe_device(ttm_dev);
464 	u64 global_total_pages =
465 		atomic64_add_return(num_pages, &xe->global_total_pages);
466 
467 	trace_gpu_mem_total(xe->drm.primary->index, 0,
468 			    global_total_pages << PAGE_SHIFT);
469 #endif
470 }
471 
472 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
473 				       u32 page_flags)
474 {
475 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
476 	struct xe_device *xe = xe_bo_device(bo);
477 	struct xe_ttm_tt *xe_tt;
478 	struct ttm_tt *tt;
479 	unsigned long extra_pages;
480 	enum ttm_caching caching = ttm_cached;
481 	int err;
482 
483 	xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
484 	if (!xe_tt)
485 		return NULL;
486 
487 	tt = &xe_tt->ttm;
488 
489 	extra_pages = 0;
490 	if (xe_bo_needs_ccs_pages(bo))
491 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)),
492 					   PAGE_SIZE);
493 
494 	/*
495 	 * DGFX system memory is always WB / ttm_cached, since
496 	 * other caching modes are only supported on x86. DGFX
497 	 * GPU system memory accesses are always coherent with the
498 	 * CPU.
499 	 */
500 	if (!IS_DGFX(xe)) {
501 		switch (bo->cpu_caching) {
502 		case DRM_XE_GEM_CPU_CACHING_WC:
503 			caching = ttm_write_combined;
504 			break;
505 		default:
506 			caching = ttm_cached;
507 			break;
508 		}
509 
510 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
511 
512 		/*
513 		 * Display scanout is always non-coherent with the CPU cache.
514 		 *
515 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
516 		 * non-coherent and require a CPU:WC mapping.
517 		 */
518 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
519 		    (xe->info.graphics_verx100 >= 1270 &&
520 		     bo->flags & XE_BO_FLAG_PAGETABLE))
521 			caching = ttm_write_combined;
522 	}
523 
524 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
525 		/*
526 		 * Valid only for internally-created buffers only, for
527 		 * which cpu_caching is never initialized.
528 		 */
529 		xe_assert(xe, bo->cpu_caching == 0);
530 		caching = ttm_uncached;
531 	}
532 
533 	if (ttm_bo->type != ttm_bo_type_sg)
534 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
535 
536 	err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
537 	if (err) {
538 		kfree(xe_tt);
539 		return NULL;
540 	}
541 
542 	if (ttm_bo->type != ttm_bo_type_sg) {
543 		err = ttm_tt_setup_backup(tt);
544 		if (err) {
545 			ttm_tt_fini(tt);
546 			kfree(xe_tt);
547 			return NULL;
548 		}
549 	}
550 
551 	return tt;
552 }
553 
554 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
555 			      struct ttm_operation_ctx *ctx)
556 {
557 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
558 	int err;
559 
560 	/*
561 	 * dma-bufs are not populated with pages, and the dma-
562 	 * addresses are set up when moved to XE_PL_TT.
563 	 */
564 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
565 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
566 		return 0;
567 
568 	if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
569 		err = ttm_tt_restore(ttm_dev, tt, ctx);
570 	} else {
571 		ttm_tt_clear_backed_up(tt);
572 		err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
573 	}
574 	if (err)
575 		return err;
576 
577 	xe_tt->purgeable = false;
578 	xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt);
579 	update_global_total_pages(ttm_dev, tt->num_pages);
580 
581 	return 0;
582 }
583 
584 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
585 {
586 	struct xe_device *xe = ttm_to_xe_device(ttm_dev);
587 
588 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
589 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
590 		return;
591 
592 	xe_tt_unmap_sg(xe, tt);
593 
594 	ttm_pool_free(&ttm_dev->pool, tt);
595 	xe_ttm_tt_account_subtract(xe, tt);
596 	update_global_total_pages(ttm_dev, -(long)tt->num_pages);
597 }
598 
599 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
600 {
601 	ttm_tt_fini(tt);
602 	kfree(tt);
603 }
604 
605 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
606 {
607 	struct xe_ttm_vram_mgr_resource *vres =
608 		to_xe_ttm_vram_mgr_resource(mem);
609 
610 	return vres->used_visible_size == mem->size;
611 }
612 
613 /**
614  * xe_bo_is_visible_vram - check if BO is placed entirely in visible VRAM.
615  * @bo: The BO
616  *
617  * This function checks whether a given BO resides entirely in memory visible from the CPU
618  *
619  * Returns: true if the BO is entirely visible, false otherwise.
620  *
621  */
622 bool xe_bo_is_visible_vram(struct xe_bo *bo)
623 {
624 	if (drm_WARN_ON(bo->ttm.base.dev, !xe_bo_is_vram(bo)))
625 		return false;
626 
627 	return xe_ttm_resource_visible(bo->ttm.resource);
628 }
629 
630 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
631 				 struct ttm_resource *mem)
632 {
633 	struct xe_device *xe = ttm_to_xe_device(bdev);
634 
635 	switch (mem->mem_type) {
636 	case XE_PL_SYSTEM:
637 	case XE_PL_TT:
638 		return 0;
639 	case XE_PL_VRAM0:
640 	case XE_PL_VRAM1: {
641 		struct xe_vram_region *vram = res_to_mem_region(mem);
642 
643 		if (!xe_ttm_resource_visible(mem))
644 			return -EINVAL;
645 
646 		mem->bus.offset = mem->start << PAGE_SHIFT;
647 
648 		if (vram->mapping &&
649 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
650 			mem->bus.addr = (u8 __force *)vram->mapping +
651 				mem->bus.offset;
652 
653 		mem->bus.offset += vram->io_start;
654 		mem->bus.is_iomem = true;
655 
656 #if  !IS_ENABLED(CONFIG_X86)
657 		mem->bus.caching = ttm_write_combined;
658 #endif
659 		return 0;
660 	} case XE_PL_STOLEN:
661 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
662 	default:
663 		return -EINVAL;
664 	}
665 }
666 
667 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
668 				const struct ttm_operation_ctx *ctx)
669 {
670 	struct dma_resv_iter cursor;
671 	struct dma_fence *fence;
672 	struct drm_gem_object *obj = &bo->ttm.base;
673 	struct drm_gpuvm_bo *vm_bo;
674 	bool idle = false;
675 	int ret = 0;
676 
677 	dma_resv_assert_held(bo->ttm.base.resv);
678 
679 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
680 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
681 				    DMA_RESV_USAGE_BOOKKEEP);
682 		dma_resv_for_each_fence_unlocked(&cursor, fence)
683 			dma_fence_enable_sw_signaling(fence);
684 		dma_resv_iter_end(&cursor);
685 	}
686 
687 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
688 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
689 		struct drm_gpuva *gpuva;
690 
691 		if (!xe_vm_in_fault_mode(vm)) {
692 			drm_gpuvm_bo_evict(vm_bo, true);
693 			continue;
694 		}
695 
696 		if (!idle) {
697 			long timeout;
698 
699 			if (ctx->no_wait_gpu &&
700 			    !dma_resv_test_signaled(bo->ttm.base.resv,
701 						    DMA_RESV_USAGE_BOOKKEEP))
702 				return -EBUSY;
703 
704 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
705 							DMA_RESV_USAGE_BOOKKEEP,
706 							ctx->interruptible,
707 							MAX_SCHEDULE_TIMEOUT);
708 			if (!timeout)
709 				return -ETIME;
710 			if (timeout < 0)
711 				return timeout;
712 
713 			idle = true;
714 		}
715 
716 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
717 			struct xe_vma *vma = gpuva_to_vma(gpuva);
718 
719 			trace_xe_vma_evict(vma);
720 			ret = xe_vm_invalidate_vma(vma);
721 			if (XE_WARN_ON(ret))
722 				return ret;
723 		}
724 	}
725 
726 	return ret;
727 }
728 
729 /*
730  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
731  * Note that unmapping the attachment is deferred to the next
732  * map_attachment time, or to bo destroy (after idling) whichever comes first.
733  * This is to avoid syncing before unmap_attachment(), assuming that the
734  * caller relies on idling the reservation object before moving the
735  * backing store out. Should that assumption not hold, then we will be able
736  * to unconditionally call unmap_attachment() when moving out to system.
737  */
738 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
739 			     struct ttm_resource *new_res)
740 {
741 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
742 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
743 					       ttm);
744 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
745 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
746 	struct sg_table *sg;
747 
748 	xe_assert(xe, attach);
749 	xe_assert(xe, ttm_bo->ttm);
750 
751 	if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM &&
752 	    ttm_bo->sg) {
753 		dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
754 				      false, MAX_SCHEDULE_TIMEOUT);
755 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
756 		ttm_bo->sg = NULL;
757 	}
758 
759 	if (new_res->mem_type == XE_PL_SYSTEM)
760 		goto out;
761 
762 	if (ttm_bo->sg) {
763 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
764 		ttm_bo->sg = NULL;
765 	}
766 
767 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
768 	if (IS_ERR(sg))
769 		return PTR_ERR(sg);
770 
771 	ttm_bo->sg = sg;
772 	xe_tt->sg = sg;
773 
774 out:
775 	ttm_bo_move_null(ttm_bo, new_res);
776 
777 	return 0;
778 }
779 
780 /**
781  * xe_bo_move_notify - Notify subsystems of a pending move
782  * @bo: The buffer object
783  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
784  *
785  * This function notifies subsystems of an upcoming buffer move.
786  * Upon receiving such a notification, subsystems should schedule
787  * halting access to the underlying pages and optionally add a fence
788  * to the buffer object's dma_resv object, that signals when access is
789  * stopped. The caller will wait on all dma_resv fences before
790  * starting the move.
791  *
792  * A subsystem may commence access to the object after obtaining
793  * bindings to the new backing memory under the object lock.
794  *
795  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
796  * negative error code on error.
797  */
798 static int xe_bo_move_notify(struct xe_bo *bo,
799 			     const struct ttm_operation_ctx *ctx)
800 {
801 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
802 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
803 	struct ttm_resource *old_mem = ttm_bo->resource;
804 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
805 	int ret;
806 
807 	/*
808 	 * If this starts to call into many components, consider
809 	 * using a notification chain here.
810 	 */
811 
812 	if (xe_bo_is_pinned(bo))
813 		return -EINVAL;
814 
815 	xe_bo_vunmap(bo);
816 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
817 	if (ret)
818 		return ret;
819 
820 	/* Don't call move_notify() for imported dma-bufs. */
821 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
822 		dma_buf_move_notify(ttm_bo->base.dma_buf);
823 
824 	/*
825 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
826 	 * so if we moved from VRAM make sure to unlink this from the userfault
827 	 * tracking.
828 	 */
829 	if (mem_type_is_vram(old_mem_type)) {
830 		mutex_lock(&xe->mem_access.vram_userfault.lock);
831 		if (!list_empty(&bo->vram_userfault_link))
832 			list_del_init(&bo->vram_userfault_link);
833 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
834 	}
835 
836 	return 0;
837 }
838 
839 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
840 		      struct ttm_operation_ctx *ctx,
841 		      struct ttm_resource *new_mem,
842 		      struct ttm_place *hop)
843 {
844 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
845 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
846 	struct ttm_resource *old_mem = ttm_bo->resource;
847 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
848 	struct ttm_tt *ttm = ttm_bo->ttm;
849 	struct xe_migrate *migrate = NULL;
850 	struct dma_fence *fence;
851 	bool move_lacks_source;
852 	bool tt_has_data;
853 	bool needs_clear;
854 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
855 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
856 	int ret = 0;
857 
858 	/* Bo creation path, moving to system or TT. */
859 	if ((!old_mem && ttm) && !handle_system_ccs) {
860 		if (new_mem->mem_type == XE_PL_TT)
861 			ret = xe_tt_map_sg(xe, ttm);
862 		if (!ret)
863 			ttm_bo_move_null(ttm_bo, new_mem);
864 		goto out;
865 	}
866 
867 	if (ttm_bo->type == ttm_bo_type_sg) {
868 		if (new_mem->mem_type == XE_PL_SYSTEM)
869 			ret = xe_bo_move_notify(bo, ctx);
870 		if (!ret)
871 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
872 		return ret;
873 	}
874 
875 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm));
876 
877 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
878 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
879 
880 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
881 		(!ttm && ttm_bo->type == ttm_bo_type_device);
882 
883 	if (new_mem->mem_type == XE_PL_TT) {
884 		ret = xe_tt_map_sg(xe, ttm);
885 		if (ret)
886 			goto out;
887 	}
888 
889 	if ((move_lacks_source && !needs_clear)) {
890 		ttm_bo_move_null(ttm_bo, new_mem);
891 		goto out;
892 	}
893 
894 	if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
895 	    new_mem->mem_type == XE_PL_SYSTEM) {
896 		ret = xe_svm_bo_evict(bo);
897 		if (!ret) {
898 			drm_dbg(&xe->drm, "Evict system allocator BO success\n");
899 			ttm_bo_move_null(ttm_bo, new_mem);
900 		} else {
901 			drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
902 				ERR_PTR(ret));
903 		}
904 
905 		goto out;
906 	}
907 
908 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
909 		ttm_bo_move_null(ttm_bo, new_mem);
910 		goto out;
911 	}
912 
913 	/*
914 	 * Failed multi-hop where the old_mem is still marked as
915 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
916 	 */
917 	if (old_mem_type == XE_PL_TT &&
918 	    new_mem->mem_type == XE_PL_TT) {
919 		ttm_bo_move_null(ttm_bo, new_mem);
920 		goto out;
921 	}
922 
923 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
924 		ret = xe_bo_move_notify(bo, ctx);
925 		if (ret)
926 			goto out;
927 	}
928 
929 	if (old_mem_type == XE_PL_TT &&
930 	    new_mem->mem_type == XE_PL_SYSTEM) {
931 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
932 						     DMA_RESV_USAGE_BOOKKEEP,
933 						     false,
934 						     MAX_SCHEDULE_TIMEOUT);
935 		if (timeout < 0) {
936 			ret = timeout;
937 			goto out;
938 		}
939 
940 		if (!handle_system_ccs) {
941 			ttm_bo_move_null(ttm_bo, new_mem);
942 			goto out;
943 		}
944 	}
945 
946 	if (!move_lacks_source &&
947 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
948 	     (mem_type_is_vram(old_mem_type) &&
949 	      new_mem->mem_type == XE_PL_SYSTEM))) {
950 		hop->fpfn = 0;
951 		hop->lpfn = 0;
952 		hop->mem_type = XE_PL_TT;
953 		hop->flags = TTM_PL_FLAG_TEMPORARY;
954 		ret = -EMULTIHOP;
955 		goto out;
956 	}
957 
958 	if (bo->tile)
959 		migrate = bo->tile->migrate;
960 	else if (resource_is_vram(new_mem))
961 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
962 	else if (mem_type_is_vram(old_mem_type))
963 		migrate = mem_type_to_migrate(xe, old_mem_type);
964 	else
965 		migrate = xe->tiles[0].migrate;
966 
967 	xe_assert(xe, migrate);
968 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
969 	if (xe_rpm_reclaim_safe(xe)) {
970 		/*
971 		 * We might be called through swapout in the validation path of
972 		 * another TTM device, so acquire rpm here.
973 		 */
974 		xe_pm_runtime_get(xe);
975 	} else {
976 		drm_WARN_ON(&xe->drm, handle_system_ccs);
977 		xe_pm_runtime_get_noresume(xe);
978 	}
979 
980 	if (move_lacks_source) {
981 		u32 flags = 0;
982 
983 		if (mem_type_is_vram(new_mem->mem_type))
984 			flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
985 		else if (handle_system_ccs)
986 			flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
987 
988 		fence = xe_migrate_clear(migrate, bo, new_mem, flags);
989 	} else {
990 		fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem,
991 					handle_system_ccs);
992 	}
993 	if (IS_ERR(fence)) {
994 		ret = PTR_ERR(fence);
995 		xe_pm_runtime_put(xe);
996 		goto out;
997 	}
998 	if (!move_lacks_source) {
999 		ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true,
1000 						new_mem);
1001 		if (ret) {
1002 			dma_fence_wait(fence, false);
1003 			ttm_bo_move_null(ttm_bo, new_mem);
1004 			ret = 0;
1005 		}
1006 	} else {
1007 		/*
1008 		 * ttm_bo_move_accel_cleanup() may blow up if
1009 		 * bo->resource == NULL, so just attach the
1010 		 * fence and set the new resource.
1011 		 */
1012 		dma_resv_add_fence(ttm_bo->base.resv, fence,
1013 				   DMA_RESV_USAGE_KERNEL);
1014 		ttm_bo_move_null(ttm_bo, new_mem);
1015 	}
1016 
1017 	dma_fence_put(fence);
1018 	xe_pm_runtime_put(xe);
1019 
1020 	/*
1021 	 * CCS meta data is migrated from TT -> SMEM. So, let us detach the
1022 	 * BBs from BO as it is no longer needed.
1023 	 */
1024 	if (IS_VF_CCS_READY(xe) && old_mem_type == XE_PL_TT &&
1025 	    new_mem->mem_type == XE_PL_SYSTEM)
1026 		xe_sriov_vf_ccs_detach_bo(bo);
1027 
1028 	if (IS_VF_CCS_READY(xe) &&
1029 	    ((move_lacks_source && new_mem->mem_type == XE_PL_TT) ||
1030 	     (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) &&
1031 	    handle_system_ccs)
1032 		ret = xe_sriov_vf_ccs_attach_bo(bo);
1033 
1034 out:
1035 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
1036 	    ttm_bo->ttm) {
1037 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
1038 						     DMA_RESV_USAGE_KERNEL,
1039 						     false,
1040 						     MAX_SCHEDULE_TIMEOUT);
1041 		if (timeout < 0)
1042 			ret = timeout;
1043 
1044 		if (IS_VF_CCS_READY(xe))
1045 			xe_sriov_vf_ccs_detach_bo(bo);
1046 
1047 		xe_tt_unmap_sg(xe, ttm_bo->ttm);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
1054 			       struct ttm_buffer_object *bo,
1055 			       unsigned long *scanned)
1056 {
1057 	struct xe_device *xe = ttm_to_xe_device(bo->bdev);
1058 	long lret;
1059 
1060 	/* Fake move to system, without copying data. */
1061 	if (bo->resource->mem_type != XE_PL_SYSTEM) {
1062 		struct ttm_resource *new_resource;
1063 
1064 		lret = ttm_bo_wait_ctx(bo, ctx);
1065 		if (lret)
1066 			return lret;
1067 
1068 		lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
1069 		if (lret)
1070 			return lret;
1071 
1072 		xe_tt_unmap_sg(xe, bo->ttm);
1073 		ttm_bo_move_null(bo, new_resource);
1074 	}
1075 
1076 	*scanned += bo->ttm->num_pages;
1077 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1078 			     {.purge = true,
1079 			      .writeback = false,
1080 			      .allow_move = false});
1081 
1082 	if (lret > 0)
1083 		xe_ttm_tt_account_subtract(xe, bo->ttm);
1084 
1085 	return lret;
1086 }
1087 
1088 static bool
1089 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place)
1090 {
1091 	struct drm_gpuvm_bo *vm_bo;
1092 
1093 	if (!ttm_bo_eviction_valuable(bo, place))
1094 		return false;
1095 
1096 	if (!xe_bo_is_xe_bo(bo))
1097 		return true;
1098 
1099 	drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) {
1100 		if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm)))
1101 			return false;
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 /**
1108  * xe_bo_shrink() - Try to shrink an xe bo.
1109  * @ctx: The struct ttm_operation_ctx used for shrinking.
1110  * @bo: The TTM buffer object whose pages to shrink.
1111  * @flags: Flags governing the shrink behaviour.
1112  * @scanned: Pointer to a counter of the number of pages
1113  * attempted to shrink.
1114  *
1115  * Try to shrink- or purge a bo, and if it succeeds, unmap dma.
1116  * Note that we need to be able to handle also non xe bos
1117  * (ghost bos), but only if the struct ttm_tt is embedded in
1118  * a struct xe_ttm_tt. When the function attempts to shrink
1119  * the pages of a buffer object, The value pointed to by @scanned
1120  * is updated.
1121  *
1122  * Return: The number of pages shrunken or purged, or negative error
1123  * code on failure.
1124  */
1125 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1126 		  const struct xe_bo_shrink_flags flags,
1127 		  unsigned long *scanned)
1128 {
1129 	struct ttm_tt *tt = bo->ttm;
1130 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
1131 	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1132 	struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
1133 	struct xe_device *xe = ttm_to_xe_device(bo->bdev);
1134 	bool needs_rpm;
1135 	long lret = 0L;
1136 
1137 	if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
1138 	    (flags.purge && !xe_tt->purgeable))
1139 		return -EBUSY;
1140 
1141 	if (!xe_bo_eviction_valuable(bo, &place))
1142 		return -EBUSY;
1143 
1144 	if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
1145 		return xe_bo_shrink_purge(ctx, bo, scanned);
1146 
1147 	if (xe_tt->purgeable) {
1148 		if (bo->resource->mem_type != XE_PL_SYSTEM)
1149 			lret = xe_bo_move_notify(xe_bo, ctx);
1150 		if (!lret)
1151 			lret = xe_bo_shrink_purge(ctx, bo, scanned);
1152 		goto out_unref;
1153 	}
1154 
1155 	/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
1156 	needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
1157 		     xe_bo_needs_ccs_pages(xe_bo));
1158 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1159 		goto out_unref;
1160 
1161 	*scanned += tt->num_pages;
1162 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1163 			     {.purge = false,
1164 			      .writeback = flags.writeback,
1165 			      .allow_move = true});
1166 	if (needs_rpm)
1167 		xe_pm_runtime_put(xe);
1168 
1169 	if (lret > 0)
1170 		xe_ttm_tt_account_subtract(xe, tt);
1171 
1172 out_unref:
1173 	xe_bo_put(xe_bo);
1174 
1175 	return lret;
1176 }
1177 
1178 /**
1179  * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed
1180  * up in system memory.
1181  * @bo: The buffer object to prepare.
1182  *
1183  * On successful completion, the object backup pages are allocated. Expectation
1184  * is that this is called from the PM notifier, prior to suspend/hibernation.
1185  *
1186  * Return: 0 on success. Negative error code on failure.
1187  */
1188 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo)
1189 {
1190 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1191 	struct xe_validation_ctx ctx;
1192 	struct drm_exec exec;
1193 	struct xe_bo *backup;
1194 	int ret = 0;
1195 
1196 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) {
1197 		ret = drm_exec_lock_obj(&exec, &bo->ttm.base);
1198 		drm_exec_retry_on_contention(&exec);
1199 		xe_assert(xe, !ret);
1200 		xe_assert(xe, !bo->backup_obj);
1201 
1202 		/*
1203 		 * Since this is called from the PM notifier we might have raced with
1204 		 * someone unpinning this after we dropped the pinned list lock and
1205 		 * grabbing the above bo lock.
1206 		 */
1207 		if (!xe_bo_is_pinned(bo))
1208 			break;
1209 
1210 		if (!xe_bo_is_vram(bo))
1211 			break;
1212 
1213 		if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1214 			break;
1215 
1216 		backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo),
1217 					   DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1218 					   XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1219 					   XE_BO_FLAG_PINNED, &exec);
1220 		if (IS_ERR(backup)) {
1221 			drm_exec_retry_on_contention(&exec);
1222 			ret = PTR_ERR(backup);
1223 			xe_validation_retry_on_oom(&ctx, &ret);
1224 			break;
1225 		}
1226 
1227 		backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1228 		ttm_bo_pin(&backup->ttm);
1229 		bo->backup_obj = backup;
1230 	}
1231 
1232 	return ret;
1233 }
1234 
1235 /**
1236  * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation.
1237  * @bo: The buffer object to undo the prepare for.
1238  *
1239  * Always returns 0. The backup object is removed, if still present. Expectation
1240  * it that this called from the PM notifier when undoing the prepare step.
1241  *
1242  * Return: Always returns 0.
1243  */
1244 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo)
1245 {
1246 	xe_bo_lock(bo, false);
1247 	if (bo->backup_obj) {
1248 		ttm_bo_unpin(&bo->backup_obj->ttm);
1249 		xe_bo_put(bo->backup_obj);
1250 		bo->backup_obj = NULL;
1251 	}
1252 	xe_bo_unlock(bo);
1253 
1254 	return 0;
1255 }
1256 
1257 static int xe_bo_evict_pinned_copy(struct xe_bo *bo, struct xe_bo *backup)
1258 {
1259 	struct xe_device *xe = xe_bo_device(bo);
1260 	bool unmap = false;
1261 	int ret = 0;
1262 
1263 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1264 		struct xe_migrate *migrate;
1265 		struct dma_fence *fence;
1266 
1267 		if (bo->tile)
1268 			migrate = bo->tile->migrate;
1269 		else
1270 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1271 
1272 		xe_assert(xe, bo->ttm.base.resv == backup->ttm.base.resv);
1273 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1274 		if (ret)
1275 			goto out_backup;
1276 
1277 		fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource,
1278 					backup->ttm.resource, false);
1279 		if (IS_ERR(fence)) {
1280 			ret = PTR_ERR(fence);
1281 			goto out_backup;
1282 		}
1283 
1284 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1285 				   DMA_RESV_USAGE_KERNEL);
1286 		dma_fence_put(fence);
1287 	} else {
1288 		ret = xe_bo_vmap(backup);
1289 		if (ret)
1290 			goto out_backup;
1291 
1292 		if (iosys_map_is_null(&bo->vmap)) {
1293 			ret = xe_bo_vmap(bo);
1294 			if (ret)
1295 				goto out_vunmap;
1296 			unmap = true;
1297 		}
1298 
1299 		xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0,
1300 				   xe_bo_size(bo));
1301 	}
1302 
1303 	if (!bo->backup_obj)
1304 		bo->backup_obj = backup;
1305 out_vunmap:
1306 	xe_bo_vunmap(backup);
1307 out_backup:
1308 	if (unmap)
1309 		xe_bo_vunmap(bo);
1310 
1311 	return ret;
1312 }
1313 
1314 /**
1315  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
1316  * @bo: The buffer object to move.
1317  *
1318  * On successful completion, the object memory will be moved to system memory.
1319  *
1320  * This is needed to for special handling of pinned VRAM object during
1321  * suspend-resume.
1322  *
1323  * Return: 0 on success. Negative error code on failure.
1324  */
1325 int xe_bo_evict_pinned(struct xe_bo *bo)
1326 {
1327 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1328 	struct xe_validation_ctx ctx;
1329 	struct drm_exec exec;
1330 	struct xe_bo *backup = bo->backup_obj;
1331 	bool backup_created = false;
1332 	int ret = 0;
1333 
1334 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.exclusive = true}, ret) {
1335 		ret = drm_exec_lock_obj(&exec, &bo->ttm.base);
1336 		drm_exec_retry_on_contention(&exec);
1337 		xe_assert(xe, !ret);
1338 
1339 		if (WARN_ON(!bo->ttm.resource)) {
1340 			ret = -EINVAL;
1341 			break;
1342 		}
1343 
1344 		if (WARN_ON(!xe_bo_is_pinned(bo))) {
1345 			ret = -EINVAL;
1346 			break;
1347 		}
1348 
1349 		if (!xe_bo_is_vram(bo))
1350 			break;
1351 
1352 		if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1353 			break;
1354 
1355 		if (!backup) {
1356 			backup = xe_bo_init_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL,
1357 						   xe_bo_size(bo),
1358 						   DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1359 						   XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1360 						   XE_BO_FLAG_PINNED, &exec);
1361 			if (IS_ERR(backup)) {
1362 				drm_exec_retry_on_contention(&exec);
1363 				ret = PTR_ERR(backup);
1364 				xe_validation_retry_on_oom(&ctx, &ret);
1365 				break;
1366 			}
1367 			backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1368 			backup_created = true;
1369 		}
1370 
1371 		ret = xe_bo_evict_pinned_copy(bo, backup);
1372 	}
1373 
1374 	if (ret && backup_created)
1375 		xe_bo_put(backup);
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * xe_bo_restore_pinned() - Restore a pinned VRAM object
1382  * @bo: The buffer object to move.
1383  *
1384  * On successful completion, the object memory will be moved back to VRAM.
1385  *
1386  * This is needed to for special handling of pinned VRAM object during
1387  * suspend-resume.
1388  *
1389  * Return: 0 on success. Negative error code on failure.
1390  */
1391 int xe_bo_restore_pinned(struct xe_bo *bo)
1392 {
1393 	struct ttm_operation_ctx ctx = {
1394 		.interruptible = false,
1395 		.gfp_retry_mayfail = false,
1396 	};
1397 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1398 	struct xe_bo *backup = bo->backup_obj;
1399 	bool unmap = false;
1400 	int ret;
1401 
1402 	if (!backup)
1403 		return 0;
1404 
1405 	xe_bo_lock(bo, false);
1406 
1407 	if (!xe_bo_is_pinned(backup)) {
1408 		ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx);
1409 		if (ret)
1410 			goto out_unlock_bo;
1411 	}
1412 
1413 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1414 		struct xe_migrate *migrate;
1415 		struct dma_fence *fence;
1416 
1417 		if (bo->tile)
1418 			migrate = bo->tile->migrate;
1419 		else
1420 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1421 
1422 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1423 		if (ret)
1424 			goto out_unlock_bo;
1425 
1426 		fence = xe_migrate_copy(migrate, backup, bo,
1427 					backup->ttm.resource, bo->ttm.resource,
1428 					false);
1429 		if (IS_ERR(fence)) {
1430 			ret = PTR_ERR(fence);
1431 			goto out_unlock_bo;
1432 		}
1433 
1434 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1435 				   DMA_RESV_USAGE_KERNEL);
1436 		dma_fence_put(fence);
1437 	} else {
1438 		ret = xe_bo_vmap(backup);
1439 		if (ret)
1440 			goto out_unlock_bo;
1441 
1442 		if (iosys_map_is_null(&bo->vmap)) {
1443 			ret = xe_bo_vmap(bo);
1444 			if (ret)
1445 				goto out_backup;
1446 			unmap = true;
1447 		}
1448 
1449 		xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr,
1450 				 xe_bo_size(bo));
1451 	}
1452 
1453 	bo->backup_obj = NULL;
1454 
1455 out_backup:
1456 	xe_bo_vunmap(backup);
1457 	if (!bo->backup_obj) {
1458 		if (xe_bo_is_pinned(backup))
1459 			ttm_bo_unpin(&backup->ttm);
1460 		xe_bo_put(backup);
1461 	}
1462 out_unlock_bo:
1463 	if (unmap)
1464 		xe_bo_vunmap(bo);
1465 	xe_bo_unlock(bo);
1466 	return ret;
1467 }
1468 
1469 int xe_bo_dma_unmap_pinned(struct xe_bo *bo)
1470 {
1471 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
1472 	struct ttm_tt *tt = ttm_bo->ttm;
1473 
1474 	if (tt) {
1475 		struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm);
1476 
1477 		if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1478 			dma_buf_unmap_attachment(ttm_bo->base.import_attach,
1479 						 ttm_bo->sg,
1480 						 DMA_BIDIRECTIONAL);
1481 			ttm_bo->sg = NULL;
1482 			xe_tt->sg = NULL;
1483 		} else if (xe_tt->sg) {
1484 			dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev,
1485 					  xe_tt->sg,
1486 					  DMA_BIDIRECTIONAL, 0);
1487 			sg_free_table(xe_tt->sg);
1488 			xe_tt->sg = NULL;
1489 		}
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1496 				       unsigned long page_offset)
1497 {
1498 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1499 	struct xe_res_cursor cursor;
1500 	struct xe_vram_region *vram;
1501 
1502 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1503 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1504 
1505 	vram = res_to_mem_region(ttm_bo->resource);
1506 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1507 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1508 }
1509 
1510 static void __xe_bo_vunmap(struct xe_bo *bo);
1511 
1512 /*
1513  * TODO: Move this function to TTM so we don't rely on how TTM does its
1514  * locking, thereby abusing TTM internals.
1515  */
1516 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1517 {
1518 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1519 	bool locked;
1520 
1521 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1522 
1523 	/*
1524 	 * We can typically only race with TTM trylocking under the
1525 	 * lru_lock, which will immediately be unlocked again since
1526 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1527 	 * always succeed here, as long as we hold the lru lock.
1528 	 */
1529 	spin_lock(&ttm_bo->bdev->lru_lock);
1530 	locked = dma_resv_trylock(ttm_bo->base.resv);
1531 	spin_unlock(&ttm_bo->bdev->lru_lock);
1532 	xe_assert(xe, locked);
1533 
1534 	return locked;
1535 }
1536 
1537 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1538 {
1539 	struct dma_resv_iter cursor;
1540 	struct dma_fence *fence;
1541 	struct dma_fence *replacement = NULL;
1542 	struct xe_bo *bo;
1543 
1544 	if (!xe_bo_is_xe_bo(ttm_bo))
1545 		return;
1546 
1547 	bo = ttm_to_xe_bo(ttm_bo);
1548 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1549 
1550 	/*
1551 	 * Corner case where TTM fails to allocate memory and this BOs resv
1552 	 * still points the VMs resv
1553 	 */
1554 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1555 		return;
1556 
1557 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1558 		return;
1559 
1560 	/*
1561 	 * Scrub the preempt fences if any. The unbind fence is already
1562 	 * attached to the resv.
1563 	 * TODO: Don't do this for external bos once we scrub them after
1564 	 * unbind.
1565 	 */
1566 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1567 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1568 		if (xe_fence_is_xe_preempt(fence) &&
1569 		    !dma_fence_is_signaled(fence)) {
1570 			if (!replacement)
1571 				replacement = dma_fence_get_stub();
1572 
1573 			dma_resv_replace_fences(ttm_bo->base.resv,
1574 						fence->context,
1575 						replacement,
1576 						DMA_RESV_USAGE_BOOKKEEP);
1577 		}
1578 	}
1579 	dma_fence_put(replacement);
1580 
1581 	dma_resv_unlock(ttm_bo->base.resv);
1582 }
1583 
1584 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1585 {
1586 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1587 
1588 	if (!xe_bo_is_xe_bo(ttm_bo))
1589 		return;
1590 
1591 	if (IS_VF_CCS_READY(ttm_to_xe_device(ttm_bo->bdev)))
1592 		xe_sriov_vf_ccs_detach_bo(bo);
1593 
1594 	/*
1595 	 * Object is idle and about to be destroyed. Release the
1596 	 * dma-buf attachment.
1597 	 */
1598 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1599 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1600 						       struct xe_ttm_tt, ttm);
1601 
1602 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1603 					 DMA_BIDIRECTIONAL);
1604 		ttm_bo->sg = NULL;
1605 		xe_tt->sg = NULL;
1606 	}
1607 }
1608 
1609 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1610 {
1611 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1612 
1613 	if (ttm_bo->ttm) {
1614 		struct ttm_placement place = {};
1615 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1616 
1617 		drm_WARN_ON(&xe->drm, ret);
1618 	}
1619 }
1620 
1621 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1622 {
1623 	struct ttm_operation_ctx ctx = {
1624 		.interruptible = false,
1625 		.gfp_retry_mayfail = false,
1626 	};
1627 
1628 	if (ttm_bo->ttm) {
1629 		struct xe_ttm_tt *xe_tt =
1630 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1631 
1632 		if (xe_tt->purgeable)
1633 			xe_ttm_bo_purge(ttm_bo, &ctx);
1634 	}
1635 }
1636 
1637 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1638 				unsigned long offset, void *buf, int len,
1639 				int write)
1640 {
1641 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1642 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1643 	struct iosys_map vmap;
1644 	struct xe_res_cursor cursor;
1645 	struct xe_vram_region *vram;
1646 	int bytes_left = len;
1647 	int err = 0;
1648 
1649 	xe_bo_assert_held(bo);
1650 	xe_device_assert_mem_access(xe);
1651 
1652 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1653 		return -EIO;
1654 
1655 	if (!xe_bo_is_visible_vram(bo) || len >= SZ_16K) {
1656 		struct xe_migrate *migrate =
1657 			mem_type_to_migrate(xe, ttm_bo->resource->mem_type);
1658 
1659 		err = xe_migrate_access_memory(migrate, bo, offset, buf, len,
1660 					       write);
1661 		goto out;
1662 	}
1663 
1664 	vram = res_to_mem_region(ttm_bo->resource);
1665 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1666 		     xe_bo_size(bo) - (offset & PAGE_MASK), &cursor);
1667 
1668 	do {
1669 		unsigned long page_offset = (offset & ~PAGE_MASK);
1670 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1671 
1672 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1673 					  cursor.start);
1674 		if (write)
1675 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1676 		else
1677 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1678 
1679 		buf += byte_count;
1680 		offset += byte_count;
1681 		bytes_left -= byte_count;
1682 		if (bytes_left)
1683 			xe_res_next(&cursor, PAGE_SIZE);
1684 	} while (bytes_left);
1685 
1686 out:
1687 	return err ?: len;
1688 }
1689 
1690 const struct ttm_device_funcs xe_ttm_funcs = {
1691 	.ttm_tt_create = xe_ttm_tt_create,
1692 	.ttm_tt_populate = xe_ttm_tt_populate,
1693 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1694 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1695 	.evict_flags = xe_evict_flags,
1696 	.move = xe_bo_move,
1697 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1698 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1699 	.access_memory = xe_ttm_access_memory,
1700 	.release_notify = xe_ttm_bo_release_notify,
1701 	.eviction_valuable = xe_bo_eviction_valuable,
1702 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1703 	.swap_notify = xe_ttm_bo_swap_notify,
1704 };
1705 
1706 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1707 {
1708 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1709 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1710 	struct xe_tile *tile;
1711 	u8 id;
1712 
1713 	if (bo->ttm.base.import_attach)
1714 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1715 	drm_gem_object_release(&bo->ttm.base);
1716 
1717 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1718 
1719 	for_each_tile(tile, xe, id)
1720 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1721 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1722 
1723 #ifdef CONFIG_PROC_FS
1724 	if (bo->client)
1725 		xe_drm_client_remove_bo(bo);
1726 #endif
1727 
1728 	if (bo->vm && xe_bo_is_user(bo))
1729 		xe_vm_put(bo->vm);
1730 
1731 	if (bo->parent_obj)
1732 		xe_bo_put(bo->parent_obj);
1733 
1734 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1735 	if (!list_empty(&bo->vram_userfault_link))
1736 		list_del(&bo->vram_userfault_link);
1737 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1738 
1739 	kfree(bo);
1740 }
1741 
1742 static void xe_gem_object_free(struct drm_gem_object *obj)
1743 {
1744 	/* Our BO reference counting scheme works as follows:
1745 	 *
1746 	 * The gem object kref is typically used throughout the driver,
1747 	 * and the gem object holds a ttm_buffer_object refcount, so
1748 	 * that when the last gem object reference is put, which is when
1749 	 * we end up in this function, we put also that ttm_buffer_object
1750 	 * refcount. Anything using gem interfaces is then no longer
1751 	 * allowed to access the object in a way that requires a gem
1752 	 * refcount, including locking the object.
1753 	 *
1754 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1755 	 * refcount directly if needed.
1756 	 */
1757 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1758 	ttm_bo_fini(container_of(obj, struct ttm_buffer_object, base));
1759 }
1760 
1761 static void xe_gem_object_close(struct drm_gem_object *obj,
1762 				struct drm_file *file_priv)
1763 {
1764 	struct xe_bo *bo = gem_to_xe_bo(obj);
1765 
1766 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1767 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1768 
1769 		xe_bo_lock(bo, false);
1770 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1771 		xe_bo_unlock(bo);
1772 	}
1773 }
1774 
1775 static bool should_migrate_to_smem(struct xe_bo *bo)
1776 {
1777 	/*
1778 	 * NOTE: The following atomic checks are platform-specific. For example,
1779 	 * if a device supports CXL atomics, these may not be necessary or
1780 	 * may behave differently.
1781 	 */
1782 
1783 	return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL ||
1784 	       bo->attr.atomic_access == DRM_XE_ATOMIC_CPU;
1785 }
1786 
1787 static int xe_bo_wait_usage_kernel(struct xe_bo *bo, struct ttm_operation_ctx *ctx)
1788 {
1789 	long lerr;
1790 
1791 	if (ctx->no_wait_gpu)
1792 		return dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL) ?
1793 			0 : -EBUSY;
1794 
1795 	lerr = dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
1796 				     ctx->interruptible, MAX_SCHEDULE_TIMEOUT);
1797 	if (lerr < 0)
1798 		return lerr;
1799 	if (lerr == 0)
1800 		return -EBUSY;
1801 
1802 	return 0;
1803 }
1804 
1805 /* Populate the bo if swapped out, or migrate if the access mode requires that. */
1806 static int xe_bo_fault_migrate(struct xe_bo *bo, struct ttm_operation_ctx *ctx,
1807 			       struct drm_exec *exec)
1808 {
1809 	struct ttm_buffer_object *tbo = &bo->ttm;
1810 	int err = 0;
1811 
1812 	if (ttm_manager_type(tbo->bdev, tbo->resource->mem_type)->use_tt) {
1813 		err = xe_bo_wait_usage_kernel(bo, ctx);
1814 		if (!err)
1815 			err = ttm_bo_populate(&bo->ttm, ctx);
1816 	} else if (should_migrate_to_smem(bo)) {
1817 		xe_assert(xe_bo_device(bo), bo->flags & XE_BO_FLAG_SYSTEM);
1818 		err = xe_bo_migrate(bo, XE_PL_TT, ctx, exec);
1819 	}
1820 
1821 	return err;
1822 }
1823 
1824 /* Call into TTM to populate PTEs, and register bo for PTE removal on runtime suspend. */
1825 static vm_fault_t __xe_bo_cpu_fault(struct vm_fault *vmf, struct xe_device *xe, struct xe_bo *bo)
1826 {
1827 	vm_fault_t ret;
1828 
1829 	trace_xe_bo_cpu_fault(bo);
1830 
1831 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1832 				       TTM_BO_VM_NUM_PREFAULT);
1833 	/*
1834 	 * When TTM is actually called to insert PTEs, ensure no blocking conditions
1835 	 * remain, in which case TTM may drop locks and return VM_FAULT_RETRY.
1836 	 */
1837 	xe_assert(xe, ret != VM_FAULT_RETRY);
1838 
1839 	if (ret == VM_FAULT_NOPAGE &&
1840 	    mem_type_is_vram(bo->ttm.resource->mem_type)) {
1841 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1842 		if (list_empty(&bo->vram_userfault_link))
1843 			list_add(&bo->vram_userfault_link,
1844 				 &xe->mem_access.vram_userfault.list);
1845 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1846 	}
1847 
1848 	return ret;
1849 }
1850 
1851 static vm_fault_t xe_err_to_fault_t(int err)
1852 {
1853 	switch (err) {
1854 	case 0:
1855 	case -EINTR:
1856 	case -ERESTARTSYS:
1857 	case -EAGAIN:
1858 		return VM_FAULT_NOPAGE;
1859 	case -ENOMEM:
1860 	case -ENOSPC:
1861 		return VM_FAULT_OOM;
1862 	default:
1863 		break;
1864 	}
1865 	return VM_FAULT_SIGBUS;
1866 }
1867 
1868 static bool xe_ttm_bo_is_imported(struct ttm_buffer_object *tbo)
1869 {
1870 	dma_resv_assert_held(tbo->base.resv);
1871 
1872 	return tbo->ttm &&
1873 		(tbo->ttm->page_flags & (TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE)) ==
1874 		TTM_TT_FLAG_EXTERNAL;
1875 }
1876 
1877 static vm_fault_t xe_bo_cpu_fault_fastpath(struct vm_fault *vmf, struct xe_device *xe,
1878 					   struct xe_bo *bo, bool needs_rpm)
1879 {
1880 	struct ttm_buffer_object *tbo = &bo->ttm;
1881 	vm_fault_t ret = VM_FAULT_RETRY;
1882 	struct xe_validation_ctx ctx;
1883 	struct ttm_operation_ctx tctx = {
1884 		.interruptible = true,
1885 		.no_wait_gpu = true,
1886 		.gfp_retry_mayfail = true,
1887 
1888 	};
1889 	int err;
1890 
1891 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1892 		return VM_FAULT_RETRY;
1893 
1894 	err = xe_validation_ctx_init(&ctx, &xe->val, NULL,
1895 				     (struct xe_val_flags) {
1896 					     .interruptible = true,
1897 					     .no_block = true
1898 				     });
1899 	if (err)
1900 		goto out_pm;
1901 
1902 	if (!dma_resv_trylock(tbo->base.resv))
1903 		goto out_validation;
1904 
1905 	if (xe_ttm_bo_is_imported(tbo)) {
1906 		ret = VM_FAULT_SIGBUS;
1907 		drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n");
1908 		goto out_unlock;
1909 	}
1910 
1911 	err = xe_bo_fault_migrate(bo, &tctx, NULL);
1912 	if (err) {
1913 		/* Return VM_FAULT_RETRY on these errors. */
1914 		if (err != -ENOMEM && err != -ENOSPC && err != -EBUSY)
1915 			ret = xe_err_to_fault_t(err);
1916 		goto out_unlock;
1917 	}
1918 
1919 	if (dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL))
1920 		ret = __xe_bo_cpu_fault(vmf, xe, bo);
1921 
1922 out_unlock:
1923 	dma_resv_unlock(tbo->base.resv);
1924 out_validation:
1925 	xe_validation_ctx_fini(&ctx);
1926 out_pm:
1927 	if (needs_rpm)
1928 		xe_pm_runtime_put(xe);
1929 
1930 	return ret;
1931 }
1932 
1933 static vm_fault_t xe_bo_cpu_fault(struct vm_fault *vmf)
1934 {
1935 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1936 	struct drm_device *ddev = tbo->base.dev;
1937 	struct xe_device *xe = to_xe_device(ddev);
1938 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1939 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1940 	bool retry_after_wait = false;
1941 	struct xe_validation_ctx ctx;
1942 	struct drm_exec exec;
1943 	vm_fault_t ret;
1944 	int err = 0;
1945 	int idx;
1946 
1947 	if (!drm_dev_enter(&xe->drm, &idx))
1948 		return ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1949 
1950 	ret = xe_bo_cpu_fault_fastpath(vmf, xe, bo, needs_rpm);
1951 	if (ret != VM_FAULT_RETRY)
1952 		goto out;
1953 
1954 	if (fault_flag_allow_retry_first(vmf->flags)) {
1955 		if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
1956 			goto out;
1957 		retry_after_wait = true;
1958 		xe_bo_get(bo);
1959 		mmap_read_unlock(vmf->vma->vm_mm);
1960 	} else {
1961 		ret = VM_FAULT_NOPAGE;
1962 	}
1963 
1964 	/*
1965 	 * The fastpath failed and we were not required to return and retry immediately.
1966 	 * We're now running in one of two modes:
1967 	 *
1968 	 * 1) retry_after_wait == true: The mmap_read_lock() is dropped, and we're trying
1969 	 * to resolve blocking waits. But we can't resolve the fault since the
1970 	 * mmap_read_lock() is dropped. After retrying the fault, the aim is that the fastpath
1971 	 * should succeed. But it may fail since we drop the bo lock.
1972 	 *
1973 	 * 2) retry_after_wait == false: The fastpath failed, typically even after
1974 	 * a retry. Do whatever's necessary to resolve the fault.
1975 	 *
1976 	 * This construct is recommended to avoid excessive waits under the mmap_lock.
1977 	 */
1978 
1979 	if (needs_rpm)
1980 		xe_pm_runtime_get(xe);
1981 
1982 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true},
1983 			    err) {
1984 		struct ttm_operation_ctx tctx = {
1985 			.interruptible = true,
1986 			.no_wait_gpu = false,
1987 			.gfp_retry_mayfail = retry_after_wait,
1988 		};
1989 
1990 		err = drm_exec_lock_obj(&exec, &tbo->base);
1991 		drm_exec_retry_on_contention(&exec);
1992 		if (err)
1993 			break;
1994 
1995 		if (xe_ttm_bo_is_imported(tbo)) {
1996 			err = -EFAULT;
1997 			drm_dbg(&xe->drm, "CPU trying to access an imported buffer object.\n");
1998 			break;
1999 		}
2000 
2001 		err = xe_bo_fault_migrate(bo, &tctx, &exec);
2002 		if (err) {
2003 			drm_exec_retry_on_contention(&exec);
2004 			xe_validation_retry_on_oom(&ctx, &err);
2005 			break;
2006 		}
2007 
2008 		err = xe_bo_wait_usage_kernel(bo, &tctx);
2009 		if (err)
2010 			break;
2011 
2012 		if (!retry_after_wait)
2013 			ret = __xe_bo_cpu_fault(vmf, xe, bo);
2014 	}
2015 	/* if retry_after_wait == true, we *must* return VM_FAULT_RETRY. */
2016 	if (err && !retry_after_wait)
2017 		ret = xe_err_to_fault_t(err);
2018 
2019 	if (needs_rpm)
2020 		xe_pm_runtime_put(xe);
2021 
2022 	if (retry_after_wait)
2023 		xe_bo_put(bo);
2024 out:
2025 	drm_dev_exit(idx);
2026 
2027 	return ret;
2028 }
2029 
2030 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
2031 			   void *buf, int len, int write)
2032 {
2033 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
2034 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
2035 	struct xe_device *xe = xe_bo_device(bo);
2036 	int ret;
2037 
2038 	xe_pm_runtime_get(xe);
2039 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
2040 	xe_pm_runtime_put(xe);
2041 
2042 	return ret;
2043 }
2044 
2045 /**
2046  * xe_bo_read() - Read from an xe_bo
2047  * @bo: The buffer object to read from.
2048  * @offset: The byte offset to start reading from.
2049  * @dst: Location to store the read.
2050  * @size: Size in bytes for the read.
2051  *
2052  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
2053  *
2054  * Return: Zero on success, or negative error.
2055  */
2056 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
2057 {
2058 	int ret;
2059 
2060 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
2061 	if (ret >= 0 && ret != size)
2062 		ret = -EIO;
2063 	else if (ret == size)
2064 		ret = 0;
2065 
2066 	return ret;
2067 }
2068 
2069 static const struct vm_operations_struct xe_gem_vm_ops = {
2070 	.fault = xe_bo_cpu_fault,
2071 	.open = ttm_bo_vm_open,
2072 	.close = ttm_bo_vm_close,
2073 	.access = xe_bo_vm_access,
2074 };
2075 
2076 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
2077 	.free = xe_gem_object_free,
2078 	.close = xe_gem_object_close,
2079 	.mmap = drm_gem_ttm_mmap,
2080 	.export = xe_gem_prime_export,
2081 	.vm_ops = &xe_gem_vm_ops,
2082 };
2083 
2084 /**
2085  * xe_bo_alloc - Allocate storage for a struct xe_bo
2086  *
2087  * This function is intended to allocate storage to be used for input
2088  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
2089  * created is needed before the call to __xe_bo_create_locked().
2090  * If __xe_bo_create_locked ends up never to be called, then the
2091  * storage allocated with this function needs to be freed using
2092  * xe_bo_free().
2093  *
2094  * Return: A pointer to an uninitialized struct xe_bo on success,
2095  * ERR_PTR(-ENOMEM) on error.
2096  */
2097 struct xe_bo *xe_bo_alloc(void)
2098 {
2099 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
2100 
2101 	if (!bo)
2102 		return ERR_PTR(-ENOMEM);
2103 
2104 	return bo;
2105 }
2106 
2107 /**
2108  * xe_bo_free - Free storage allocated using xe_bo_alloc()
2109  * @bo: The buffer object storage.
2110  *
2111  * Refer to xe_bo_alloc() documentation for valid use-cases.
2112  */
2113 void xe_bo_free(struct xe_bo *bo)
2114 {
2115 	kfree(bo);
2116 }
2117 
2118 /**
2119  * xe_bo_init_locked() - Initialize or create an xe_bo.
2120  * @xe: The xe device.
2121  * @bo: An already allocated buffer object or NULL
2122  * if the function should allocate a new one.
2123  * @tile: The tile to select for migration of this bo, and the tile used for
2124  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2125  * @resv: Pointer to a locked shared reservation object to use for this bo,
2126  * or NULL for the xe_bo to use its own.
2127  * @bulk: The bulk move to use for LRU bumping, or NULL for external bos.
2128  * @size: The storage size to use for the bo.
2129  * @cpu_caching: The cpu caching used for system memory backing store.
2130  * @type: The TTM buffer object type.
2131  * @flags: XE_BO_FLAG_ flags.
2132  * @exec: The drm_exec transaction to use for exhaustive eviction.
2133  *
2134  * Initialize or create an xe buffer object. On failure, any allocated buffer
2135  * object passed in @bo will have been unreferenced.
2136  *
2137  * Return: The buffer object on success. Negative error pointer on failure.
2138  */
2139 struct xe_bo *xe_bo_init_locked(struct xe_device *xe, struct xe_bo *bo,
2140 				struct xe_tile *tile, struct dma_resv *resv,
2141 				struct ttm_lru_bulk_move *bulk, size_t size,
2142 				u16 cpu_caching, enum ttm_bo_type type,
2143 				u32 flags, struct drm_exec *exec)
2144 {
2145 	struct ttm_operation_ctx ctx = {
2146 		.interruptible = true,
2147 		.no_wait_gpu = false,
2148 		.gfp_retry_mayfail = true,
2149 	};
2150 	struct ttm_placement *placement;
2151 	uint32_t alignment;
2152 	size_t aligned_size;
2153 	int err;
2154 
2155 	/* Only kernel objects should set GT */
2156 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
2157 
2158 	if (XE_WARN_ON(!size)) {
2159 		xe_bo_free(bo);
2160 		return ERR_PTR(-EINVAL);
2161 	}
2162 
2163 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
2164 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
2165 		return ERR_PTR(-EINVAL);
2166 
2167 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
2168 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
2169 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
2170 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
2171 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
2172 
2173 		aligned_size = ALIGN(size, align);
2174 		if (type != ttm_bo_type_device)
2175 			size = ALIGN(size, align);
2176 		flags |= XE_BO_FLAG_INTERNAL_64K;
2177 		alignment = align >> PAGE_SHIFT;
2178 	} else {
2179 		aligned_size = ALIGN(size, SZ_4K);
2180 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
2181 		alignment = SZ_4K >> PAGE_SHIFT;
2182 	}
2183 
2184 	if (type == ttm_bo_type_device && aligned_size != size)
2185 		return ERR_PTR(-EINVAL);
2186 
2187 	if (!bo) {
2188 		bo = xe_bo_alloc();
2189 		if (IS_ERR(bo))
2190 			return bo;
2191 	}
2192 
2193 	bo->ccs_cleared = false;
2194 	bo->tile = tile;
2195 	bo->flags = flags;
2196 	bo->cpu_caching = cpu_caching;
2197 	bo->ttm.base.funcs = &xe_gem_object_funcs;
2198 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
2199 	INIT_LIST_HEAD(&bo->pinned_link);
2200 #ifdef CONFIG_PROC_FS
2201 	INIT_LIST_HEAD(&bo->client_link);
2202 #endif
2203 	INIT_LIST_HEAD(&bo->vram_userfault_link);
2204 
2205 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
2206 
2207 	if (resv) {
2208 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
2209 		ctx.resv = resv;
2210 	}
2211 
2212 	xe_validation_assert_exec(xe, exec, &bo->ttm.base);
2213 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
2214 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags, type);
2215 		if (WARN_ON(err)) {
2216 			xe_ttm_bo_destroy(&bo->ttm);
2217 			return ERR_PTR(err);
2218 		}
2219 	}
2220 
2221 	/* Defer populating type_sg bos */
2222 	placement = (type == ttm_bo_type_sg ||
2223 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
2224 		&bo->placement;
2225 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
2226 				   placement, alignment,
2227 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
2228 	if (err)
2229 		return ERR_PTR(err);
2230 
2231 	/*
2232 	 * The VRAM pages underneath are potentially still being accessed by the
2233 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
2234 	 * sure to add any corresponding move/clear fences into the objects
2235 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
2236 	 *
2237 	 * For KMD internal buffers we don't care about GPU clearing, however we
2238 	 * still need to handle async evictions, where the VRAM is still being
2239 	 * accessed by the GPU. Most internal callers are not expecting this,
2240 	 * since they are missing the required synchronisation before accessing
2241 	 * the memory. To keep things simple just sync wait any kernel fences
2242 	 * here, if the buffer is designated KMD internal.
2243 	 *
2244 	 * For normal userspace objects we should already have the required
2245 	 * pipelining or sync waiting elsewhere, since we already have to deal
2246 	 * with things like async GPU clearing.
2247 	 */
2248 	if (type == ttm_bo_type_kernel) {
2249 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
2250 						     DMA_RESV_USAGE_KERNEL,
2251 						     ctx.interruptible,
2252 						     MAX_SCHEDULE_TIMEOUT);
2253 
2254 		if (timeout < 0) {
2255 			if (!resv)
2256 				dma_resv_unlock(bo->ttm.base.resv);
2257 			xe_bo_put(bo);
2258 			return ERR_PTR(timeout);
2259 		}
2260 	}
2261 
2262 	bo->created = true;
2263 	if (bulk)
2264 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
2265 	else
2266 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2267 
2268 	return bo;
2269 }
2270 
2271 static int __xe_bo_fixed_placement(struct xe_device *xe,
2272 				   struct xe_bo *bo, enum ttm_bo_type type,
2273 				   u32 flags,
2274 				   u64 start, u64 end, u64 size)
2275 {
2276 	struct ttm_place *place = bo->placements;
2277 	u32 vram_flag, vram_stolen_flags;
2278 
2279 	/*
2280 	 * to allow fixed placement in GGTT of a VF, post-migration fixups would have to
2281 	 * include selecting a new fixed offset and shifting the page ranges for it
2282 	 */
2283 	xe_assert(xe, !IS_SRIOV_VF(xe) || !(bo->flags & XE_BO_FLAG_GGTT));
2284 
2285 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
2286 		return -EINVAL;
2287 
2288 	vram_flag = flags & XE_BO_FLAG_VRAM_MASK;
2289 	vram_stolen_flags = (flags & (XE_BO_FLAG_STOLEN)) | vram_flag;
2290 
2291 	/* check if more than one VRAM/STOLEN flag is set */
2292 	if (hweight32(vram_stolen_flags) > 1)
2293 		return -EINVAL;
2294 
2295 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
2296 	place->fpfn = start >> PAGE_SHIFT;
2297 	place->lpfn = end >> PAGE_SHIFT;
2298 
2299 	if (flags & XE_BO_FLAG_STOLEN)
2300 		place->mem_type = XE_PL_STOLEN;
2301 	else
2302 		place->mem_type = bo_vram_flags_to_vram_placement(xe, flags, vram_flag, type);
2303 
2304 	bo->placement = (struct ttm_placement) {
2305 		.num_placement = 1,
2306 		.placement = place,
2307 	};
2308 
2309 	return 0;
2310 }
2311 
2312 static struct xe_bo *
2313 __xe_bo_create_locked(struct xe_device *xe,
2314 		      struct xe_tile *tile, struct xe_vm *vm,
2315 		      size_t size, u64 start, u64 end,
2316 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
2317 		      u64 alignment, struct drm_exec *exec)
2318 {
2319 	struct xe_bo *bo = NULL;
2320 	int err;
2321 
2322 	if (vm)
2323 		xe_vm_assert_held(vm);
2324 
2325 	if (start || end != ~0ULL) {
2326 		bo = xe_bo_alloc();
2327 		if (IS_ERR(bo))
2328 			return bo;
2329 
2330 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
2331 		err = __xe_bo_fixed_placement(xe, bo, type, flags, start, end, size);
2332 		if (err) {
2333 			xe_bo_free(bo);
2334 			return ERR_PTR(err);
2335 		}
2336 	}
2337 
2338 	bo = xe_bo_init_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
2339 			       vm && !xe_vm_in_fault_mode(vm) &&
2340 			       flags & XE_BO_FLAG_USER ?
2341 			       &vm->lru_bulk_move : NULL, size,
2342 			       cpu_caching, type, flags, exec);
2343 	if (IS_ERR(bo))
2344 		return bo;
2345 
2346 	bo->min_align = alignment;
2347 
2348 	/*
2349 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
2350 	 * to ensure the shared resv doesn't disappear under the bo, the bo
2351 	 * will keep a reference to the vm, and avoid circular references
2352 	 * by having all the vm's bo refereferences released at vm close
2353 	 * time.
2354 	 */
2355 	if (vm && xe_bo_is_user(bo))
2356 		xe_vm_get(vm);
2357 	bo->vm = vm;
2358 
2359 	if (bo->flags & XE_BO_FLAG_GGTT) {
2360 		struct xe_tile *t;
2361 		u8 id;
2362 
2363 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
2364 			if (!tile && flags & XE_BO_FLAG_STOLEN)
2365 				tile = xe_device_get_root_tile(xe);
2366 
2367 			xe_assert(xe, tile);
2368 		}
2369 
2370 		for_each_tile(t, xe, id) {
2371 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
2372 				continue;
2373 
2374 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
2375 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
2376 							   start + xe_bo_size(bo), U64_MAX,
2377 							   exec);
2378 			} else {
2379 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo, exec);
2380 			}
2381 			if (err)
2382 				goto err_unlock_put_bo;
2383 		}
2384 	}
2385 
2386 	trace_xe_bo_create(bo);
2387 	return bo;
2388 
2389 err_unlock_put_bo:
2390 	__xe_bo_unset_bulk_move(bo);
2391 	xe_bo_unlock_vm_held(bo);
2392 	xe_bo_put(bo);
2393 	return ERR_PTR(err);
2394 }
2395 
2396 /**
2397  * xe_bo_create_locked() - Create a BO
2398  * @xe: The xe device.
2399  * @tile: The tile to select for migration of this bo, and the tile used for
2400  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2401  * @vm: The local vm or NULL for external objects.
2402  * @size: The storage size to use for the bo.
2403  * @type: The TTM buffer object type.
2404  * @flags: XE_BO_FLAG_ flags.
2405  * @exec: The drm_exec transaction to use for exhaustive eviction.
2406  *
2407  * Create a locked xe BO with no range- nor alignment restrictions.
2408  *
2409  * Return: The buffer object on success. Negative error pointer on failure.
2410  */
2411 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
2412 				  struct xe_vm *vm, size_t size,
2413 				  enum ttm_bo_type type, u32 flags,
2414 				  struct drm_exec *exec)
2415 {
2416 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
2417 				     flags, 0, exec);
2418 }
2419 
2420 static struct xe_bo *xe_bo_create_novm(struct xe_device *xe, struct xe_tile *tile,
2421 				       size_t size, u16 cpu_caching,
2422 				       enum ttm_bo_type type, u32 flags,
2423 				       u64 alignment, bool intr)
2424 {
2425 	struct xe_validation_ctx ctx;
2426 	struct drm_exec exec;
2427 	struct xe_bo *bo;
2428 	int ret = 0;
2429 
2430 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr},
2431 			    ret) {
2432 		bo = __xe_bo_create_locked(xe, tile, NULL, size, 0, ~0ULL,
2433 					   cpu_caching, type, flags, alignment, &exec);
2434 		drm_exec_retry_on_contention(&exec);
2435 		if (IS_ERR(bo)) {
2436 			ret = PTR_ERR(bo);
2437 			xe_validation_retry_on_oom(&ctx, &ret);
2438 		} else {
2439 			xe_bo_unlock(bo);
2440 		}
2441 	}
2442 
2443 	return ret ? ERR_PTR(ret) : bo;
2444 }
2445 
2446 /**
2447  * xe_bo_create_user() - Create a user BO
2448  * @xe: The xe device.
2449  * @vm: The local vm or NULL for external objects.
2450  * @size: The storage size to use for the bo.
2451  * @cpu_caching: The caching mode to be used for system backing store.
2452  * @flags: XE_BO_FLAG_ flags.
2453  * @exec: The drm_exec transaction to use for exhaustive eviction, or NULL
2454  * if such a transaction should be initiated by the call.
2455  *
2456  * Create a bo on behalf of user-space.
2457  *
2458  * Return: The buffer object on success. Negative error pointer on failure.
2459  */
2460 struct xe_bo *xe_bo_create_user(struct xe_device *xe,
2461 				struct xe_vm *vm, size_t size,
2462 				u16 cpu_caching,
2463 				u32 flags, struct drm_exec *exec)
2464 {
2465 	struct xe_bo *bo;
2466 
2467 	flags |= XE_BO_FLAG_USER;
2468 
2469 	if (vm || exec) {
2470 		xe_assert(xe, exec);
2471 		bo = __xe_bo_create_locked(xe, NULL, vm, size, 0, ~0ULL,
2472 					   cpu_caching, ttm_bo_type_device,
2473 					   flags, 0, exec);
2474 		if (!IS_ERR(bo))
2475 			xe_bo_unlock_vm_held(bo);
2476 	} else {
2477 		bo = xe_bo_create_novm(xe, NULL, size, cpu_caching,
2478 				       ttm_bo_type_device, flags, 0, true);
2479 	}
2480 
2481 	return bo;
2482 }
2483 
2484 /**
2485  * xe_bo_create_pin_range_novm() - Create and pin a BO with range options.
2486  * @xe: The xe device.
2487  * @tile: The tile to select for migration of this bo, and the tile used for
2488  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2489  * @size: The storage size to use for the bo.
2490  * @start: Start of fixed VRAM range or 0.
2491  * @end: End of fixed VRAM range or ~0ULL.
2492  * @type: The TTM buffer object type.
2493  * @flags: XE_BO_FLAG_ flags.
2494  *
2495  * Create an Xe BO with range- and options. If @start and @end indicate
2496  * a fixed VRAM range, this must be a ttm_bo_type_kernel bo with VRAM placement
2497  * only.
2498  *
2499  * Return: The buffer object on success. Negative error pointer on failure.
2500  */
2501 struct xe_bo *xe_bo_create_pin_range_novm(struct xe_device *xe, struct xe_tile *tile,
2502 					  size_t size, u64 start, u64 end,
2503 					  enum ttm_bo_type type, u32 flags)
2504 {
2505 	struct xe_validation_ctx ctx;
2506 	struct drm_exec exec;
2507 	struct xe_bo *bo;
2508 	int err = 0;
2509 
2510 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
2511 		bo = __xe_bo_create_locked(xe, tile, NULL, size, start, end,
2512 					   0, type, flags, 0, &exec);
2513 		if (IS_ERR(bo)) {
2514 			drm_exec_retry_on_contention(&exec);
2515 			err = PTR_ERR(bo);
2516 			xe_validation_retry_on_oom(&ctx, &err);
2517 			break;
2518 		}
2519 
2520 		err = xe_bo_pin(bo, &exec);
2521 		xe_bo_unlock(bo);
2522 		if (err) {
2523 			xe_bo_put(bo);
2524 			drm_exec_retry_on_contention(&exec);
2525 			xe_validation_retry_on_oom(&ctx, &err);
2526 			break;
2527 		}
2528 	}
2529 
2530 	return err ? ERR_PTR(err) : bo;
2531 }
2532 
2533 static struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
2534 						     struct xe_tile *tile,
2535 						     struct xe_vm *vm,
2536 						     size_t size, u64 offset,
2537 						     enum ttm_bo_type type, u32 flags,
2538 						     u64 alignment, struct drm_exec *exec)
2539 {
2540 	struct xe_bo *bo;
2541 	int err;
2542 	u64 start = offset == ~0ull ? 0 : offset;
2543 	u64 end = offset == ~0ull ? ~0ull : start + size;
2544 
2545 	if (flags & XE_BO_FLAG_STOLEN &&
2546 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
2547 		flags |= XE_BO_FLAG_GGTT;
2548 
2549 	bo = __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
2550 				   flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED,
2551 				   alignment, exec);
2552 	if (IS_ERR(bo))
2553 		return bo;
2554 
2555 	err = xe_bo_pin(bo, exec);
2556 	if (err)
2557 		goto err_put;
2558 
2559 	err = xe_bo_vmap(bo);
2560 	if (err)
2561 		goto err_unpin;
2562 
2563 	xe_bo_unlock_vm_held(bo);
2564 
2565 	return bo;
2566 
2567 err_unpin:
2568 	xe_bo_unpin(bo);
2569 err_put:
2570 	xe_bo_unlock_vm_held(bo);
2571 	xe_bo_put(bo);
2572 	return ERR_PTR(err);
2573 }
2574 
2575 /**
2576  * xe_bo_create_pin_map_at_novm() - Create pinned and mapped bo at optional VRAM offset
2577  * @xe: The xe device.
2578  * @tile: The tile to select for migration of this bo, and the tile used for
2579  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2580  * @size: The storage size to use for the bo.
2581  * @offset: Optional VRAM offset or %~0ull for don't care.
2582  * @type: The TTM buffer object type.
2583  * @flags: XE_BO_FLAG_ flags.
2584  * @alignment: GGTT alignment.
2585  * @intr: Whether to execute any waits for backing store interruptible.
2586  *
2587  * Create a pinned and optionally mapped bo with VRAM offset and GGTT alignment
2588  * options. The bo will be external and not associated with a VM.
2589  *
2590  * Return: The buffer object on success. Negative error pointer on failure.
2591  * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set
2592  * to true on entry.
2593  */
2594 struct xe_bo *
2595 xe_bo_create_pin_map_at_novm(struct xe_device *xe, struct xe_tile *tile,
2596 			     size_t size, u64 offset, enum ttm_bo_type type, u32 flags,
2597 			     u64 alignment, bool intr)
2598 {
2599 	struct xe_validation_ctx ctx;
2600 	struct drm_exec exec;
2601 	struct xe_bo *bo;
2602 	int ret = 0;
2603 
2604 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = intr},
2605 			    ret) {
2606 		bo = xe_bo_create_pin_map_at_aligned(xe, tile, NULL, size, offset,
2607 						     type, flags, alignment, &exec);
2608 		if (IS_ERR(bo)) {
2609 			drm_exec_retry_on_contention(&exec);
2610 			ret = PTR_ERR(bo);
2611 			xe_validation_retry_on_oom(&ctx, &ret);
2612 		}
2613 	}
2614 
2615 	return ret ? ERR_PTR(ret) : bo;
2616 }
2617 
2618 /**
2619  * xe_bo_create_pin_map() - Create pinned and mapped bo
2620  * @xe: The xe device.
2621  * @tile: The tile to select for migration of this bo, and the tile used for
2622  * @vm: The vm to associate the buffer object with. The vm's resv must be locked
2623  * with the transaction represented by @exec.
2624  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2625  * @size: The storage size to use for the bo.
2626  * @type: The TTM buffer object type.
2627  * @flags: XE_BO_FLAG_ flags.
2628  * @exec: The drm_exec transaction to use for exhaustive eviction, and
2629  * previously used for locking @vm's resv.
2630  *
2631  * Create a pinned and mapped bo. The bo will be external and not associated
2632  * with a VM.
2633  *
2634  * Return: The buffer object on success. Negative error pointer on failure.
2635  * In particular, the function may return ERR_PTR(%-EINTR) if @exec was
2636  * configured for interruptible locking.
2637  */
2638 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2639 				   struct xe_vm *vm, size_t size,
2640 				   enum ttm_bo_type type, u32 flags,
2641 				   struct drm_exec *exec)
2642 {
2643 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, ~0ull, type, flags,
2644 					       0, exec);
2645 }
2646 
2647 /**
2648  * xe_bo_create_pin_map_novm() - Create pinned and mapped bo
2649  * @xe: The xe device.
2650  * @tile: The tile to select for migration of this bo, and the tile used for
2651  * GGTT binding if any. Only to be non-NULL for ttm_bo_type_kernel bos.
2652  * @size: The storage size to use for the bo.
2653  * @type: The TTM buffer object type.
2654  * @flags: XE_BO_FLAG_ flags.
2655  * @intr: Whether to execute any waits for backing store interruptible.
2656  *
2657  * Create a pinned and mapped bo. The bo will be external and not associated
2658  * with a VM.
2659  *
2660  * Return: The buffer object on success. Negative error pointer on failure.
2661  * In particular, the function may return ERR_PTR(%-EINTR) if @intr was set
2662  * to true on entry.
2663  */
2664 struct xe_bo *xe_bo_create_pin_map_novm(struct xe_device *xe, struct xe_tile *tile,
2665 					size_t size, enum ttm_bo_type type, u32 flags,
2666 					bool intr)
2667 {
2668 	return xe_bo_create_pin_map_at_novm(xe, tile, size, ~0ull, type, flags, 0, intr);
2669 }
2670 
2671 static void __xe_bo_unpin_map_no_vm(void *arg)
2672 {
2673 	xe_bo_unpin_map_no_vm(arg);
2674 }
2675 
2676 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2677 					   size_t size, u32 flags)
2678 {
2679 	struct xe_bo *bo;
2680 	int ret;
2681 
2682 	KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
2683 	bo = xe_bo_create_pin_map_novm(xe, tile, size, ttm_bo_type_kernel, flags, true);
2684 	if (IS_ERR(bo))
2685 		return bo;
2686 
2687 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2688 	if (ret)
2689 		return ERR_PTR(ret);
2690 
2691 	return bo;
2692 }
2693 
2694 void xe_managed_bo_unpin_map_no_vm(struct xe_bo *bo)
2695 {
2696 	devm_release_action(xe_bo_device(bo)->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2697 }
2698 
2699 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2700 					     const void *data, size_t size, u32 flags)
2701 {
2702 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
2703 
2704 	if (IS_ERR(bo))
2705 		return bo;
2706 
2707 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2708 
2709 	return bo;
2710 }
2711 
2712 /**
2713  * xe_managed_bo_reinit_in_vram
2714  * @xe: xe device
2715  * @tile: Tile where the new buffer will be created
2716  * @src: Managed buffer object allocated in system memory
2717  *
2718  * Replace a managed src buffer object allocated in system memory with a new
2719  * one allocated in vram, copying the data between them.
2720  * Buffer object in VRAM is not going to have the same GGTT address, the caller
2721  * is responsible for making sure that any old references to it are updated.
2722  *
2723  * Returns 0 for success, negative error code otherwise.
2724  */
2725 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
2726 {
2727 	struct xe_bo *bo;
2728 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
2729 
2730 	dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE |
2731 				      XE_BO_FLAG_PINNED_NORESTORE);
2732 
2733 	xe_assert(xe, IS_DGFX(xe));
2734 	xe_assert(xe, !(*src)->vmap.is_iomem);
2735 
2736 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
2737 					    xe_bo_size(*src), dst_flags);
2738 	if (IS_ERR(bo))
2739 		return PTR_ERR(bo);
2740 
2741 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
2742 	*src = bo;
2743 
2744 	return 0;
2745 }
2746 
2747 /*
2748  * XXX: This is in the VM bind data path, likely should calculate this once and
2749  * store, with a recalculation if the BO is moved.
2750  */
2751 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
2752 {
2753 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
2754 
2755 	switch (res->mem_type) {
2756 	case XE_PL_STOLEN:
2757 		return xe_ttm_stolen_gpu_offset(xe);
2758 	case XE_PL_TT:
2759 	case XE_PL_SYSTEM:
2760 		return 0;
2761 	default:
2762 		return res_to_mem_region(res)->dpa_base;
2763 	}
2764 	return 0;
2765 }
2766 
2767 /**
2768  * xe_bo_pin_external - pin an external BO
2769  * @bo: buffer object to be pinned
2770  * @in_place: Pin in current placement, don't attempt to migrate.
2771  * @exec: The drm_exec transaction to use for exhaustive eviction.
2772  *
2773  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2774  * BO. Unique call compared to xe_bo_pin as this function has it own set of
2775  * asserts and code to ensure evict / restore on suspend / resume.
2776  *
2777  * Returns 0 for success, negative error code otherwise.
2778  */
2779 int xe_bo_pin_external(struct xe_bo *bo, bool in_place, struct drm_exec *exec)
2780 {
2781 	struct xe_device *xe = xe_bo_device(bo);
2782 	int err;
2783 
2784 	xe_assert(xe, !bo->vm);
2785 	xe_assert(xe, xe_bo_is_user(bo));
2786 
2787 	if (!xe_bo_is_pinned(bo)) {
2788 		if (!in_place) {
2789 			err = xe_bo_validate(bo, NULL, false, exec);
2790 			if (err)
2791 				return err;
2792 		}
2793 
2794 		spin_lock(&xe->pinned.lock);
2795 		list_add_tail(&bo->pinned_link, &xe->pinned.late.external);
2796 		spin_unlock(&xe->pinned.lock);
2797 	}
2798 
2799 	ttm_bo_pin(&bo->ttm);
2800 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2801 		xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
2802 
2803 	/*
2804 	 * FIXME: If we always use the reserve / unreserve functions for locking
2805 	 * we do not need this.
2806 	 */
2807 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2808 
2809 	return 0;
2810 }
2811 
2812 /**
2813  * xe_bo_pin() - Pin a kernel bo after potentially migrating it
2814  * @bo: The kernel bo to pin.
2815  * @exec: The drm_exec transaction to use for exhaustive eviction.
2816  *
2817  * Attempts to migrate a bo to @bo->placement. If that succeeds,
2818  * pins the bo.
2819  *
2820  * Return: %0 on success, negative error code on migration failure.
2821  */
2822 int xe_bo_pin(struct xe_bo *bo, struct drm_exec *exec)
2823 {
2824 	struct ttm_place *place = &bo->placements[0];
2825 	struct xe_device *xe = xe_bo_device(bo);
2826 	int err;
2827 
2828 	/* We currently don't expect user BO to be pinned */
2829 	xe_assert(xe, !xe_bo_is_user(bo));
2830 
2831 	/* Pinned object must be in GGTT or have pinned flag */
2832 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
2833 				   XE_BO_FLAG_GGTT));
2834 
2835 	/*
2836 	 * No reason we can't support pinning imported dma-bufs we just don't
2837 	 * expect to pin an imported dma-buf.
2838 	 */
2839 	xe_assert(xe, !bo->ttm.base.import_attach);
2840 
2841 	/* We only expect at most 1 pin */
2842 	xe_assert(xe, !xe_bo_is_pinned(bo));
2843 
2844 	err = xe_bo_validate(bo, NULL, false, exec);
2845 	if (err)
2846 		return err;
2847 
2848 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2849 		spin_lock(&xe->pinned.lock);
2850 		if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)
2851 			list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present);
2852 		else
2853 			list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present);
2854 		spin_unlock(&xe->pinned.lock);
2855 	}
2856 
2857 	ttm_bo_pin(&bo->ttm);
2858 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2859 		xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
2860 
2861 	/*
2862 	 * FIXME: If we always use the reserve / unreserve functions for locking
2863 	 * we do not need this.
2864 	 */
2865 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2866 
2867 	return 0;
2868 }
2869 
2870 /**
2871  * xe_bo_unpin_external - unpin an external BO
2872  * @bo: buffer object to be unpinned
2873  *
2874  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2875  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
2876  * asserts and code to ensure evict / restore on suspend / resume.
2877  *
2878  * Returns 0 for success, negative error code otherwise.
2879  */
2880 void xe_bo_unpin_external(struct xe_bo *bo)
2881 {
2882 	struct xe_device *xe = xe_bo_device(bo);
2883 
2884 	xe_assert(xe, !bo->vm);
2885 	xe_assert(xe, xe_bo_is_pinned(bo));
2886 	xe_assert(xe, xe_bo_is_user(bo));
2887 
2888 	spin_lock(&xe->pinned.lock);
2889 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
2890 		list_del_init(&bo->pinned_link);
2891 	spin_unlock(&xe->pinned.lock);
2892 
2893 	ttm_bo_unpin(&bo->ttm);
2894 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2895 		xe_ttm_tt_account_add(xe, bo->ttm.ttm);
2896 
2897 	/*
2898 	 * FIXME: If we always use the reserve / unreserve functions for locking
2899 	 * we do not need this.
2900 	 */
2901 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2902 }
2903 
2904 void xe_bo_unpin(struct xe_bo *bo)
2905 {
2906 	struct ttm_place *place = &bo->placements[0];
2907 	struct xe_device *xe = xe_bo_device(bo);
2908 
2909 	xe_assert(xe, !bo->ttm.base.import_attach);
2910 	xe_assert(xe, xe_bo_is_pinned(bo));
2911 
2912 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2913 		spin_lock(&xe->pinned.lock);
2914 		xe_assert(xe, !list_empty(&bo->pinned_link));
2915 		list_del_init(&bo->pinned_link);
2916 		spin_unlock(&xe->pinned.lock);
2917 
2918 		if (bo->backup_obj) {
2919 			if (xe_bo_is_pinned(bo->backup_obj))
2920 				ttm_bo_unpin(&bo->backup_obj->ttm);
2921 			xe_bo_put(bo->backup_obj);
2922 			bo->backup_obj = NULL;
2923 		}
2924 	}
2925 	ttm_bo_unpin(&bo->ttm);
2926 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2927 		xe_ttm_tt_account_add(xe, bo->ttm.ttm);
2928 }
2929 
2930 /**
2931  * xe_bo_validate() - Make sure the bo is in an allowed placement
2932  * @bo: The bo,
2933  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2934  *      NULL. Used together with @allow_res_evict.
2935  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2936  *                   reservation object.
2937  * @exec: The drm_exec transaction to use for exhaustive eviction.
2938  *
2939  * Make sure the bo is in allowed placement, migrating it if necessary. If
2940  * needed, other bos will be evicted. If bos selected for eviction shares
2941  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2942  * set to true, otherwise they will be bypassed.
2943  *
2944  * Return: 0 on success, negative error code on failure. May return
2945  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2946  */
2947 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict,
2948 		   struct drm_exec *exec)
2949 {
2950 	struct ttm_operation_ctx ctx = {
2951 		.interruptible = true,
2952 		.no_wait_gpu = false,
2953 		.gfp_retry_mayfail = true,
2954 	};
2955 	int ret;
2956 
2957 	if (xe_bo_is_pinned(bo))
2958 		return 0;
2959 
2960 	if (vm) {
2961 		lockdep_assert_held(&vm->lock);
2962 		xe_vm_assert_held(vm);
2963 
2964 		ctx.allow_res_evict = allow_res_evict;
2965 		ctx.resv = xe_vm_resv(vm);
2966 	}
2967 
2968 	xe_vm_set_validating(vm, allow_res_evict);
2969 	trace_xe_bo_validate(bo);
2970 	xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base);
2971 	ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2972 	xe_vm_clear_validating(vm, allow_res_evict);
2973 
2974 	return ret;
2975 }
2976 
2977 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2978 {
2979 	if (bo->destroy == &xe_ttm_bo_destroy)
2980 		return true;
2981 
2982 	return false;
2983 }
2984 
2985 /*
2986  * Resolve a BO address. There is no assert to check if the proper lock is held
2987  * so it should only be used in cases where it is not fatal to get the wrong
2988  * address, such as printing debug information, but not in cases where memory is
2989  * written based on this result.
2990  */
2991 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2992 {
2993 	struct xe_device *xe = xe_bo_device(bo);
2994 	struct xe_res_cursor cur;
2995 	u64 page;
2996 
2997 	xe_assert(xe, page_size <= PAGE_SIZE);
2998 	page = offset >> PAGE_SHIFT;
2999 	offset &= (PAGE_SIZE - 1);
3000 
3001 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
3002 		xe_assert(xe, bo->ttm.ttm);
3003 
3004 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
3005 				page_size, &cur);
3006 		return xe_res_dma(&cur) + offset;
3007 	} else {
3008 		struct xe_res_cursor cur;
3009 
3010 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
3011 			     page_size, &cur);
3012 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
3013 	}
3014 }
3015 
3016 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
3017 {
3018 	if (!READ_ONCE(bo->ttm.pin_count))
3019 		xe_bo_assert_held(bo);
3020 	return __xe_bo_addr(bo, offset, page_size);
3021 }
3022 
3023 int xe_bo_vmap(struct xe_bo *bo)
3024 {
3025 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
3026 	void *virtual;
3027 	bool is_iomem;
3028 	int ret;
3029 
3030 	xe_bo_assert_held(bo);
3031 
3032 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
3033 			!force_contiguous(bo->flags)))
3034 		return -EINVAL;
3035 
3036 	if (!iosys_map_is_null(&bo->vmap))
3037 		return 0;
3038 
3039 	/*
3040 	 * We use this more or less deprecated interface for now since
3041 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
3042 	 * single page bos, which is done here.
3043 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
3044 	 * to use struct iosys_map.
3045 	 */
3046 	ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap);
3047 	if (ret)
3048 		return ret;
3049 
3050 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
3051 	if (is_iomem)
3052 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
3053 	else
3054 		iosys_map_set_vaddr(&bo->vmap, virtual);
3055 
3056 	return 0;
3057 }
3058 
3059 static void __xe_bo_vunmap(struct xe_bo *bo)
3060 {
3061 	if (!iosys_map_is_null(&bo->vmap)) {
3062 		iosys_map_clear(&bo->vmap);
3063 		ttm_bo_kunmap(&bo->kmap);
3064 	}
3065 }
3066 
3067 void xe_bo_vunmap(struct xe_bo *bo)
3068 {
3069 	xe_bo_assert_held(bo);
3070 	__xe_bo_vunmap(bo);
3071 }
3072 
3073 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
3074 {
3075 	if (value == DRM_XE_PXP_TYPE_NONE)
3076 		return 0;
3077 
3078 	/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
3079 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
3080 		return -EINVAL;
3081 
3082 	return xe_pxp_key_assign(xe->pxp, bo);
3083 }
3084 
3085 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
3086 					     struct xe_bo *bo,
3087 					     u64 value);
3088 
3089 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
3090 	[DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type,
3091 };
3092 
3093 static int gem_create_user_ext_set_property(struct xe_device *xe,
3094 					    struct xe_bo *bo,
3095 					    u64 extension)
3096 {
3097 	u64 __user *address = u64_to_user_ptr(extension);
3098 	struct drm_xe_ext_set_property ext;
3099 	int err;
3100 	u32 idx;
3101 
3102 	err = copy_from_user(&ext, address, sizeof(ext));
3103 	if (XE_IOCTL_DBG(xe, err))
3104 		return -EFAULT;
3105 
3106 	if (XE_IOCTL_DBG(xe, ext.property >=
3107 			 ARRAY_SIZE(gem_create_set_property_funcs)) ||
3108 	    XE_IOCTL_DBG(xe, ext.pad) ||
3109 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
3110 		return -EINVAL;
3111 
3112 	idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
3113 	if (!gem_create_set_property_funcs[idx])
3114 		return -EINVAL;
3115 
3116 	return gem_create_set_property_funcs[idx](xe, bo, ext.value);
3117 }
3118 
3119 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
3120 					       struct xe_bo *bo,
3121 					       u64 extension);
3122 
3123 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
3124 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
3125 };
3126 
3127 #define MAX_USER_EXTENSIONS	16
3128 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
3129 				      u64 extensions, int ext_number)
3130 {
3131 	u64 __user *address = u64_to_user_ptr(extensions);
3132 	struct drm_xe_user_extension ext;
3133 	int err;
3134 	u32 idx;
3135 
3136 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
3137 		return -E2BIG;
3138 
3139 	err = copy_from_user(&ext, address, sizeof(ext));
3140 	if (XE_IOCTL_DBG(xe, err))
3141 		return -EFAULT;
3142 
3143 	if (XE_IOCTL_DBG(xe, ext.pad) ||
3144 	    XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
3145 		return -EINVAL;
3146 
3147 	idx = array_index_nospec(ext.name,
3148 				 ARRAY_SIZE(gem_create_user_extension_funcs));
3149 	err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
3150 	if (XE_IOCTL_DBG(xe, err))
3151 		return err;
3152 
3153 	if (ext.next_extension)
3154 		return gem_create_user_extensions(xe, bo, ext.next_extension,
3155 						  ++ext_number);
3156 
3157 	return 0;
3158 }
3159 
3160 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
3161 			struct drm_file *file)
3162 {
3163 	struct xe_device *xe = to_xe_device(dev);
3164 	struct xe_file *xef = to_xe_file(file);
3165 	struct drm_xe_gem_create *args = data;
3166 	struct xe_validation_ctx ctx;
3167 	struct drm_exec exec;
3168 	struct xe_vm *vm = NULL;
3169 	struct xe_bo *bo;
3170 	unsigned int bo_flags;
3171 	u32 handle;
3172 	int err;
3173 
3174 	if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
3175 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
3176 		return -EINVAL;
3177 
3178 	/* at least one valid memory placement must be specified */
3179 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
3180 			 !args->placement))
3181 		return -EINVAL;
3182 
3183 	if (XE_IOCTL_DBG(xe, args->flags &
3184 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
3185 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
3186 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
3187 		return -EINVAL;
3188 
3189 	if (XE_IOCTL_DBG(xe, args->handle))
3190 		return -EINVAL;
3191 
3192 	if (XE_IOCTL_DBG(xe, !args->size))
3193 		return -EINVAL;
3194 
3195 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
3196 		return -EINVAL;
3197 
3198 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
3199 		return -EINVAL;
3200 
3201 	bo_flags = 0;
3202 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
3203 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
3204 
3205 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
3206 		bo_flags |= XE_BO_FLAG_SCANOUT;
3207 
3208 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
3209 
3210 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
3211 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
3212 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
3213 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
3214 	    IS_ALIGNED(args->size, SZ_64K))
3215 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
3216 
3217 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
3218 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
3219 			return -EINVAL;
3220 
3221 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
3222 	}
3223 
3224 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
3225 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
3226 		return -EINVAL;
3227 
3228 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
3229 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
3230 		return -EINVAL;
3231 
3232 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
3233 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
3234 		return -EINVAL;
3235 
3236 	if (args->vm_id) {
3237 		vm = xe_vm_lookup(xef, args->vm_id);
3238 		if (XE_IOCTL_DBG(xe, !vm))
3239 			return -ENOENT;
3240 	}
3241 
3242 	err = 0;
3243 	xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {.interruptible = true},
3244 			    err) {
3245 		if (vm) {
3246 			err = xe_vm_drm_exec_lock(vm, &exec);
3247 			drm_exec_retry_on_contention(&exec);
3248 			if (err)
3249 				break;
3250 		}
3251 		bo = xe_bo_create_user(xe, vm, args->size, args->cpu_caching,
3252 				       bo_flags, &exec);
3253 		drm_exec_retry_on_contention(&exec);
3254 		if (IS_ERR(bo)) {
3255 			err = PTR_ERR(bo);
3256 			xe_validation_retry_on_oom(&ctx, &err);
3257 			break;
3258 		}
3259 	}
3260 	if (err)
3261 		goto out_vm;
3262 
3263 	if (args->extensions) {
3264 		err = gem_create_user_extensions(xe, bo, args->extensions, 0);
3265 		if (err)
3266 			goto out_bulk;
3267 	}
3268 
3269 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
3270 	if (err)
3271 		goto out_bulk;
3272 
3273 	args->handle = handle;
3274 	goto out_put;
3275 
3276 out_bulk:
3277 	if (vm && !xe_vm_in_fault_mode(vm)) {
3278 		xe_vm_lock(vm, false);
3279 		__xe_bo_unset_bulk_move(bo);
3280 		xe_vm_unlock(vm);
3281 	}
3282 out_put:
3283 	xe_bo_put(bo);
3284 out_vm:
3285 	if (vm)
3286 		xe_vm_put(vm);
3287 
3288 	return err;
3289 }
3290 
3291 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
3292 			     struct drm_file *file)
3293 {
3294 	struct xe_device *xe = to_xe_device(dev);
3295 	struct drm_xe_gem_mmap_offset *args = data;
3296 	struct drm_gem_object *gem_obj;
3297 
3298 	if (XE_IOCTL_DBG(xe, args->extensions) ||
3299 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
3300 		return -EINVAL;
3301 
3302 	if (XE_IOCTL_DBG(xe, args->flags &
3303 			 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
3304 		return -EINVAL;
3305 
3306 	if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
3307 		if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
3308 			return -EINVAL;
3309 
3310 		if (XE_IOCTL_DBG(xe, args->handle))
3311 			return -EINVAL;
3312 
3313 		if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
3314 			return -EINVAL;
3315 
3316 		BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
3317 			      SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
3318 		args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
3319 		return 0;
3320 	}
3321 
3322 	gem_obj = drm_gem_object_lookup(file, args->handle);
3323 	if (XE_IOCTL_DBG(xe, !gem_obj))
3324 		return -ENOENT;
3325 
3326 	/* The mmap offset was set up at BO allocation time. */
3327 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
3328 
3329 	xe_bo_put(gem_to_xe_bo(gem_obj));
3330 	return 0;
3331 }
3332 
3333 /**
3334  * xe_bo_lock() - Lock the buffer object's dma_resv object
3335  * @bo: The struct xe_bo whose lock is to be taken
3336  * @intr: Whether to perform any wait interruptible
3337  *
3338  * Locks the buffer object's dma_resv object. If the buffer object is
3339  * pointing to a shared dma_resv object, that shared lock is locked.
3340  *
3341  * Return: 0 on success, -EINTR if @intr is true and the wait for a
3342  * contended lock was interrupted. If @intr is set to false, the
3343  * function always returns 0.
3344  */
3345 int xe_bo_lock(struct xe_bo *bo, bool intr)
3346 {
3347 	if (intr)
3348 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
3349 
3350 	dma_resv_lock(bo->ttm.base.resv, NULL);
3351 
3352 	return 0;
3353 }
3354 
3355 /**
3356  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
3357  * @bo: The struct xe_bo whose lock is to be released.
3358  *
3359  * Unlock a buffer object lock that was locked by xe_bo_lock().
3360  */
3361 void xe_bo_unlock(struct xe_bo *bo)
3362 {
3363 	dma_resv_unlock(bo->ttm.base.resv);
3364 }
3365 
3366 /**
3367  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
3368  * @bo: The buffer object to migrate
3369  * @mem_type: The TTM memory type intended to migrate to
3370  *
3371  * Check whether the buffer object supports migration to the
3372  * given memory type. Note that pinning may affect the ability to migrate as
3373  * returned by this function.
3374  *
3375  * This function is primarily intended as a helper for checking the
3376  * possibility to migrate buffer objects and can be called without
3377  * the object lock held.
3378  *
3379  * Return: true if migration is possible, false otherwise.
3380  */
3381 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
3382 {
3383 	unsigned int cur_place;
3384 
3385 	if (bo->ttm.type == ttm_bo_type_kernel)
3386 		return true;
3387 
3388 	if (bo->ttm.type == ttm_bo_type_sg)
3389 		return false;
3390 
3391 	for (cur_place = 0; cur_place < bo->placement.num_placement;
3392 	     cur_place++) {
3393 		if (bo->placements[cur_place].mem_type == mem_type)
3394 			return true;
3395 	}
3396 
3397 	return false;
3398 }
3399 
3400 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
3401 {
3402 	memset(place, 0, sizeof(*place));
3403 	place->mem_type = mem_type;
3404 }
3405 
3406 /**
3407  * xe_bo_migrate - Migrate an object to the desired region id
3408  * @bo: The buffer object to migrate.
3409  * @mem_type: The TTM region type to migrate to.
3410  * @tctx: A pointer to a struct ttm_operation_ctx or NULL if
3411  * a default interruptibe ctx is to be used.
3412  * @exec: The drm_exec transaction to use for exhaustive eviction.
3413  *
3414  * Attempt to migrate the buffer object to the desired memory region. The
3415  * buffer object may not be pinned, and must be locked.
3416  * On successful completion, the object memory type will be updated,
3417  * but an async migration task may not have completed yet, and to
3418  * accomplish that, the object's kernel fences must be signaled with
3419  * the object lock held.
3420  *
3421  * Return: 0 on success. Negative error code on failure. In particular may
3422  * return -EINTR or -ERESTARTSYS if signal pending.
3423  */
3424 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type, struct ttm_operation_ctx *tctx,
3425 		  struct drm_exec *exec)
3426 {
3427 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
3428 	struct ttm_operation_ctx ctx = {
3429 		.interruptible = true,
3430 		.no_wait_gpu = false,
3431 		.gfp_retry_mayfail = true,
3432 	};
3433 	struct ttm_placement placement;
3434 	struct ttm_place requested;
3435 
3436 	xe_bo_assert_held(bo);
3437 	tctx = tctx ? tctx : &ctx;
3438 
3439 	if (bo->ttm.resource->mem_type == mem_type)
3440 		return 0;
3441 
3442 	if (xe_bo_is_pinned(bo))
3443 		return -EBUSY;
3444 
3445 	if (!xe_bo_can_migrate(bo, mem_type))
3446 		return -EINVAL;
3447 
3448 	xe_place_from_ttm_type(mem_type, &requested);
3449 	placement.num_placement = 1;
3450 	placement.placement = &requested;
3451 
3452 	/*
3453 	 * Stolen needs to be handled like below VRAM handling if we ever need
3454 	 * to support it.
3455 	 */
3456 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
3457 
3458 	if (mem_type_is_vram(mem_type)) {
3459 		u32 c = 0;
3460 
3461 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
3462 	}
3463 
3464 	if (!tctx->no_wait_gpu)
3465 		xe_validation_assert_exec(xe_bo_device(bo), exec, &bo->ttm.base);
3466 	return ttm_bo_validate(&bo->ttm, &placement, tctx);
3467 }
3468 
3469 /**
3470  * xe_bo_evict - Evict an object to evict placement
3471  * @bo: The buffer object to migrate.
3472  * @exec: The drm_exec transaction to use for exhaustive eviction.
3473  *
3474  * On successful completion, the object memory will be moved to evict
3475  * placement. This function blocks until the object has been fully moved.
3476  *
3477  * Return: 0 on success. Negative error code on failure.
3478  */
3479 int xe_bo_evict(struct xe_bo *bo, struct drm_exec *exec)
3480 {
3481 	struct ttm_operation_ctx ctx = {
3482 		.interruptible = false,
3483 		.no_wait_gpu = false,
3484 		.gfp_retry_mayfail = true,
3485 	};
3486 	struct ttm_placement placement;
3487 	int ret;
3488 
3489 	xe_evict_flags(&bo->ttm, &placement);
3490 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
3491 	if (ret)
3492 		return ret;
3493 
3494 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
3495 			      false, MAX_SCHEDULE_TIMEOUT);
3496 
3497 	return 0;
3498 }
3499 
3500 /**
3501  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
3502  * placed in system memory.
3503  * @bo: The xe_bo
3504  *
3505  * Return: true if extra pages need to be allocated, false otherwise.
3506  */
3507 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
3508 {
3509 	struct xe_device *xe = xe_bo_device(bo);
3510 
3511 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
3512 		return false;
3513 
3514 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
3515 		return false;
3516 
3517 	/* On discrete GPUs, if the GPU can access this buffer from
3518 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
3519 	 * can't be used since there's no CCS storage associated with
3520 	 * non-VRAM addresses.
3521 	 */
3522 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
3523 		return false;
3524 
3525 	/*
3526 	 * Compression implies coh_none, therefore we know for sure that WB
3527 	 * memory can't currently use compression, which is likely one of the
3528 	 * common cases.
3529 	 */
3530 	if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)
3531 		return false;
3532 
3533 	return true;
3534 }
3535 
3536 /**
3537  * __xe_bo_release_dummy() - Dummy kref release function
3538  * @kref: The embedded struct kref.
3539  *
3540  * Dummy release function for xe_bo_put_deferred(). Keep off.
3541  */
3542 void __xe_bo_release_dummy(struct kref *kref)
3543 {
3544 }
3545 
3546 /**
3547  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
3548  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
3549  *
3550  * Puts all bos whose put was deferred by xe_bo_put_deferred().
3551  * The @deferred list can be either an onstack local list or a global
3552  * shared list used by a workqueue.
3553  */
3554 void xe_bo_put_commit(struct llist_head *deferred)
3555 {
3556 	struct llist_node *freed;
3557 	struct xe_bo *bo, *next;
3558 
3559 	if (!deferred)
3560 		return;
3561 
3562 	freed = llist_del_all(deferred);
3563 	if (!freed)
3564 		return;
3565 
3566 	llist_for_each_entry_safe(bo, next, freed, freed)
3567 		drm_gem_object_free(&bo->ttm.base.refcount);
3568 }
3569 
3570 static void xe_bo_dev_work_func(struct work_struct *work)
3571 {
3572 	struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
3573 
3574 	xe_bo_put_commit(&bo_dev->async_list);
3575 }
3576 
3577 /**
3578  * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
3579  * @bo_dev: The BO dev structure
3580  */
3581 void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
3582 {
3583 	INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
3584 }
3585 
3586 /**
3587  * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
3588  * @bo_dev: The BO dev structure
3589  */
3590 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
3591 {
3592 	flush_work(&bo_dev->async_free);
3593 }
3594 
3595 void xe_bo_put(struct xe_bo *bo)
3596 {
3597 	struct xe_tile *tile;
3598 	u8 id;
3599 
3600 	might_sleep();
3601 	if (bo) {
3602 #ifdef CONFIG_PROC_FS
3603 		if (bo->client)
3604 			might_lock(&bo->client->bos_lock);
3605 #endif
3606 		for_each_tile(tile, xe_bo_device(bo), id)
3607 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
3608 				xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt);
3609 		drm_gem_object_put(&bo->ttm.base);
3610 	}
3611 }
3612 
3613 /**
3614  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
3615  * @file_priv: ...
3616  * @dev: ...
3617  * @args: ...
3618  *
3619  * See dumb_create() hook in include/drm/drm_drv.h
3620  *
3621  * Return: ...
3622  */
3623 int xe_bo_dumb_create(struct drm_file *file_priv,
3624 		      struct drm_device *dev,
3625 		      struct drm_mode_create_dumb *args)
3626 {
3627 	struct xe_device *xe = to_xe_device(dev);
3628 	struct xe_bo *bo;
3629 	uint32_t handle;
3630 	int err;
3631 	u32 page_size = max_t(u32, PAGE_SIZE,
3632 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
3633 
3634 	err = drm_mode_size_dumb(dev, args, SZ_64, page_size);
3635 	if (err)
3636 		return err;
3637 
3638 	bo = xe_bo_create_user(xe, NULL, args->size,
3639 			       DRM_XE_GEM_CPU_CACHING_WC,
3640 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
3641 			       XE_BO_FLAG_SCANOUT |
3642 			       XE_BO_FLAG_NEEDS_CPU_ACCESS, NULL);
3643 	if (IS_ERR(bo))
3644 		return PTR_ERR(bo);
3645 
3646 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
3647 	/* drop reference from allocate - handle holds it now */
3648 	drm_gem_object_put(&bo->ttm.base);
3649 	if (!err)
3650 		args->handle = handle;
3651 	return err;
3652 }
3653 
3654 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
3655 {
3656 	struct ttm_buffer_object *tbo = &bo->ttm;
3657 	struct ttm_device *bdev = tbo->bdev;
3658 
3659 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
3660 
3661 	list_del_init(&bo->vram_userfault_link);
3662 }
3663 
3664 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
3665 #include "tests/xe_bo.c"
3666 #endif
3667