xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17 
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31 
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
33 	[XE_PL_SYSTEM] = "system",
34 	[XE_PL_TT] = "gtt",
35 	[XE_PL_VRAM0] = "vram0",
36 	[XE_PL_VRAM1] = "vram1",
37 	[XE_PL_STOLEN] = "stolen"
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = XE_PL_SYSTEM,
44 	.flags = 0,
45 };
46 
47 static struct ttm_placement sys_placement = {
48 	.num_placement = 1,
49 	.placement = &sys_placement_flags,
50 };
51 
52 static const struct ttm_place tt_placement_flags[] = {
53 	{
54 		.fpfn = 0,
55 		.lpfn = 0,
56 		.mem_type = XE_PL_TT,
57 		.flags = TTM_PL_FLAG_DESIRED,
58 	},
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_SYSTEM,
63 		.flags = TTM_PL_FLAG_FALLBACK,
64 	}
65 };
66 
67 static struct ttm_placement tt_placement = {
68 	.num_placement = 2,
69 	.placement = tt_placement_flags,
70 };
71 
72 bool mem_type_is_vram(u32 mem_type)
73 {
74 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76 
77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81 
82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 	return mem_type_is_vram(res->mem_type);
85 }
86 
87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 	return resource_is_vram(bo->ttm.resource) ||
90 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92 
93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97 
98 /**
99  * xe_bo_has_single_placement - check if BO is placed only in one memory location
100  * @bo: The BO
101  *
102  * This function checks whether a given BO is placed in only one memory location.
103  *
104  * Returns: true if the BO is placed in a single memory location, false otherwise.
105  *
106  */
107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 	return bo->placement.num_placement == 1;
110 }
111 
112 /**
113  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114  * @bo: The BO
115  *
116  * The stolen memory is accessed through the PCI BAR for both DGFX and some
117  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118  *
119  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120  */
121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 	return xe_bo_is_stolen(bo) &&
124 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126 
127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 	return bo->flags & XE_BO_FLAG_USER;
130 }
131 
132 static struct xe_migrate *
133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 	struct xe_tile *tile;
136 
137 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 	return tile->migrate;
140 }
141 
142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 	struct ttm_resource_manager *mgr;
146 
147 	xe_assert(xe, resource_is_vram(res));
148 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 	return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151 
152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 			   u32 bo_flags, u32 *c)
154 {
155 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157 
158 		bo->placements[*c] = (struct ttm_place) {
159 			.mem_type = XE_PL_TT,
160 		};
161 		*c += 1;
162 	}
163 }
164 
165 static bool force_contiguous(u32 bo_flags)
166 {
167 	/*
168 	 * For eviction / restore on suspend / resume objects pinned in VRAM
169 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
170 	 */
171 	return bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT);
172 }
173 
174 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
175 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
176 {
177 	struct ttm_place place = { .mem_type = mem_type };
178 	struct xe_mem_region *vram;
179 	u64 io_size;
180 
181 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
182 
183 	vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
184 	xe_assert(xe, vram && vram->usable_size);
185 	io_size = vram->io_size;
186 
187 	if (force_contiguous(bo_flags))
188 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
189 
190 	if (io_size < vram->usable_size) {
191 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
192 			place.fpfn = 0;
193 			place.lpfn = io_size >> PAGE_SHIFT;
194 		} else {
195 			place.flags |= TTM_PL_FLAG_TOPDOWN;
196 		}
197 	}
198 	places[*c] = place;
199 	*c += 1;
200 }
201 
202 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
203 			 u32 bo_flags, u32 *c)
204 {
205 	if (bo_flags & XE_BO_FLAG_VRAM0)
206 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
207 	if (bo_flags & XE_BO_FLAG_VRAM1)
208 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
209 }
210 
211 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
212 			   u32 bo_flags, u32 *c)
213 {
214 	if (bo_flags & XE_BO_FLAG_STOLEN) {
215 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
216 
217 		bo->placements[*c] = (struct ttm_place) {
218 			.mem_type = XE_PL_STOLEN,
219 			.flags = force_contiguous(bo_flags) ?
220 				TTM_PL_FLAG_CONTIGUOUS : 0,
221 		};
222 		*c += 1;
223 	}
224 }
225 
226 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
227 				       u32 bo_flags)
228 {
229 	u32 c = 0;
230 
231 	try_add_vram(xe, bo, bo_flags, &c);
232 	try_add_system(xe, bo, bo_flags, &c);
233 	try_add_stolen(xe, bo, bo_flags, &c);
234 
235 	if (!c)
236 		return -EINVAL;
237 
238 	bo->placement = (struct ttm_placement) {
239 		.num_placement = c,
240 		.placement = bo->placements,
241 	};
242 
243 	return 0;
244 }
245 
246 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
247 			      u32 bo_flags)
248 {
249 	xe_bo_assert_held(bo);
250 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
251 }
252 
253 static void xe_evict_flags(struct ttm_buffer_object *tbo,
254 			   struct ttm_placement *placement)
255 {
256 	if (!xe_bo_is_xe_bo(tbo)) {
257 		/* Don't handle scatter gather BOs */
258 		if (tbo->type == ttm_bo_type_sg) {
259 			placement->num_placement = 0;
260 			return;
261 		}
262 
263 		*placement = sys_placement;
264 		return;
265 	}
266 
267 	/*
268 	 * For xe, sg bos that are evicted to system just triggers a
269 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
270 	 */
271 	switch (tbo->resource->mem_type) {
272 	case XE_PL_VRAM0:
273 	case XE_PL_VRAM1:
274 	case XE_PL_STOLEN:
275 		*placement = tt_placement;
276 		break;
277 	case XE_PL_TT:
278 	default:
279 		*placement = sys_placement;
280 		break;
281 	}
282 }
283 
284 struct xe_ttm_tt {
285 	struct ttm_tt ttm;
286 	struct device *dev;
287 	struct sg_table sgt;
288 	struct sg_table *sg;
289 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
290 	bool purgeable;
291 };
292 
293 static int xe_tt_map_sg(struct ttm_tt *tt)
294 {
295 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
296 	unsigned long num_pages = tt->num_pages;
297 	int ret;
298 
299 	XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
300 
301 	if (xe_tt->sg)
302 		return 0;
303 
304 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
305 						num_pages, 0,
306 						(u64)num_pages << PAGE_SHIFT,
307 						xe_sg_segment_size(xe_tt->dev),
308 						GFP_KERNEL);
309 	if (ret)
310 		return ret;
311 
312 	xe_tt->sg = &xe_tt->sgt;
313 	ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
314 			      DMA_ATTR_SKIP_CPU_SYNC);
315 	if (ret) {
316 		sg_free_table(xe_tt->sg);
317 		xe_tt->sg = NULL;
318 		return ret;
319 	}
320 
321 	return 0;
322 }
323 
324 static void xe_tt_unmap_sg(struct ttm_tt *tt)
325 {
326 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
327 
328 	if (xe_tt->sg) {
329 		dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
330 				  DMA_BIDIRECTIONAL, 0);
331 		sg_free_table(xe_tt->sg);
332 		xe_tt->sg = NULL;
333 	}
334 }
335 
336 struct sg_table *xe_bo_sg(struct xe_bo *bo)
337 {
338 	struct ttm_tt *tt = bo->ttm.ttm;
339 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
340 
341 	return xe_tt->sg;
342 }
343 
344 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
345 				       u32 page_flags)
346 {
347 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
348 	struct xe_device *xe = xe_bo_device(bo);
349 	struct xe_ttm_tt *tt;
350 	unsigned long extra_pages;
351 	enum ttm_caching caching = ttm_cached;
352 	int err;
353 
354 	tt = kzalloc(sizeof(*tt), GFP_KERNEL);
355 	if (!tt)
356 		return NULL;
357 
358 	tt->dev = xe->drm.dev;
359 
360 	extra_pages = 0;
361 	if (xe_bo_needs_ccs_pages(bo))
362 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
363 					   PAGE_SIZE);
364 
365 	/*
366 	 * DGFX system memory is always WB / ttm_cached, since
367 	 * other caching modes are only supported on x86. DGFX
368 	 * GPU system memory accesses are always coherent with the
369 	 * CPU.
370 	 */
371 	if (!IS_DGFX(xe)) {
372 		switch (bo->cpu_caching) {
373 		case DRM_XE_GEM_CPU_CACHING_WC:
374 			caching = ttm_write_combined;
375 			break;
376 		default:
377 			caching = ttm_cached;
378 			break;
379 		}
380 
381 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
382 
383 		/*
384 		 * Display scanout is always non-coherent with the CPU cache.
385 		 *
386 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
387 		 * non-coherent and require a CPU:WC mapping.
388 		 */
389 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
390 		    (xe->info.graphics_verx100 >= 1270 &&
391 		     bo->flags & XE_BO_FLAG_PAGETABLE))
392 			caching = ttm_write_combined;
393 	}
394 
395 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
396 		/*
397 		 * Valid only for internally-created buffers only, for
398 		 * which cpu_caching is never initialized.
399 		 */
400 		xe_assert(xe, bo->cpu_caching == 0);
401 		caching = ttm_uncached;
402 	}
403 
404 	err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
405 	if (err) {
406 		kfree(tt);
407 		return NULL;
408 	}
409 
410 	return &tt->ttm;
411 }
412 
413 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
414 			      struct ttm_operation_ctx *ctx)
415 {
416 	int err;
417 
418 	/*
419 	 * dma-bufs are not populated with pages, and the dma-
420 	 * addresses are set up when moved to XE_PL_TT.
421 	 */
422 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
423 		return 0;
424 
425 	err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
426 	if (err)
427 		return err;
428 
429 	return err;
430 }
431 
432 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
433 {
434 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
435 		return;
436 
437 	xe_tt_unmap_sg(tt);
438 
439 	return ttm_pool_free(&ttm_dev->pool, tt);
440 }
441 
442 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
443 {
444 	ttm_tt_fini(tt);
445 	kfree(tt);
446 }
447 
448 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
449 {
450 	struct xe_ttm_vram_mgr_resource *vres =
451 		to_xe_ttm_vram_mgr_resource(mem);
452 
453 	return vres->used_visible_size == mem->size;
454 }
455 
456 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
457 				 struct ttm_resource *mem)
458 {
459 	struct xe_device *xe = ttm_to_xe_device(bdev);
460 
461 	switch (mem->mem_type) {
462 	case XE_PL_SYSTEM:
463 	case XE_PL_TT:
464 		return 0;
465 	case XE_PL_VRAM0:
466 	case XE_PL_VRAM1: {
467 		struct xe_mem_region *vram = res_to_mem_region(mem);
468 
469 		if (!xe_ttm_resource_visible(mem))
470 			return -EINVAL;
471 
472 		mem->bus.offset = mem->start << PAGE_SHIFT;
473 
474 		if (vram->mapping &&
475 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
476 			mem->bus.addr = (u8 __force *)vram->mapping +
477 				mem->bus.offset;
478 
479 		mem->bus.offset += vram->io_start;
480 		mem->bus.is_iomem = true;
481 
482 #if  !IS_ENABLED(CONFIG_X86)
483 		mem->bus.caching = ttm_write_combined;
484 #endif
485 		return 0;
486 	} case XE_PL_STOLEN:
487 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
488 	default:
489 		return -EINVAL;
490 	}
491 }
492 
493 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
494 				const struct ttm_operation_ctx *ctx)
495 {
496 	struct dma_resv_iter cursor;
497 	struct dma_fence *fence;
498 	struct drm_gem_object *obj = &bo->ttm.base;
499 	struct drm_gpuvm_bo *vm_bo;
500 	bool idle = false;
501 	int ret = 0;
502 
503 	dma_resv_assert_held(bo->ttm.base.resv);
504 
505 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
506 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
507 				    DMA_RESV_USAGE_BOOKKEEP);
508 		dma_resv_for_each_fence_unlocked(&cursor, fence)
509 			dma_fence_enable_sw_signaling(fence);
510 		dma_resv_iter_end(&cursor);
511 	}
512 
513 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
514 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
515 		struct drm_gpuva *gpuva;
516 
517 		if (!xe_vm_in_fault_mode(vm)) {
518 			drm_gpuvm_bo_evict(vm_bo, true);
519 			continue;
520 		}
521 
522 		if (!idle) {
523 			long timeout;
524 
525 			if (ctx->no_wait_gpu &&
526 			    !dma_resv_test_signaled(bo->ttm.base.resv,
527 						    DMA_RESV_USAGE_BOOKKEEP))
528 				return -EBUSY;
529 
530 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
531 							DMA_RESV_USAGE_BOOKKEEP,
532 							ctx->interruptible,
533 							MAX_SCHEDULE_TIMEOUT);
534 			if (!timeout)
535 				return -ETIME;
536 			if (timeout < 0)
537 				return timeout;
538 
539 			idle = true;
540 		}
541 
542 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
543 			struct xe_vma *vma = gpuva_to_vma(gpuva);
544 
545 			trace_xe_vma_evict(vma);
546 			ret = xe_vm_invalidate_vma(vma);
547 			if (XE_WARN_ON(ret))
548 				return ret;
549 		}
550 	}
551 
552 	return ret;
553 }
554 
555 /*
556  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
557  * Note that unmapping the attachment is deferred to the next
558  * map_attachment time, or to bo destroy (after idling) whichever comes first.
559  * This is to avoid syncing before unmap_attachment(), assuming that the
560  * caller relies on idling the reservation object before moving the
561  * backing store out. Should that assumption not hold, then we will be able
562  * to unconditionally call unmap_attachment() when moving out to system.
563  */
564 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
565 			     struct ttm_resource *new_res)
566 {
567 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
568 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
569 					       ttm);
570 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
571 	struct sg_table *sg;
572 
573 	xe_assert(xe, attach);
574 	xe_assert(xe, ttm_bo->ttm);
575 
576 	if (new_res->mem_type == XE_PL_SYSTEM)
577 		goto out;
578 
579 	if (ttm_bo->sg) {
580 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
581 		ttm_bo->sg = NULL;
582 	}
583 
584 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
585 	if (IS_ERR(sg))
586 		return PTR_ERR(sg);
587 
588 	ttm_bo->sg = sg;
589 	xe_tt->sg = sg;
590 
591 out:
592 	ttm_bo_move_null(ttm_bo, new_res);
593 
594 	return 0;
595 }
596 
597 /**
598  * xe_bo_move_notify - Notify subsystems of a pending move
599  * @bo: The buffer object
600  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
601  *
602  * This function notifies subsystems of an upcoming buffer move.
603  * Upon receiving such a notification, subsystems should schedule
604  * halting access to the underlying pages and optionally add a fence
605  * to the buffer object's dma_resv object, that signals when access is
606  * stopped. The caller will wait on all dma_resv fences before
607  * starting the move.
608  *
609  * A subsystem may commence access to the object after obtaining
610  * bindings to the new backing memory under the object lock.
611  *
612  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
613  * negative error code on error.
614  */
615 static int xe_bo_move_notify(struct xe_bo *bo,
616 			     const struct ttm_operation_ctx *ctx)
617 {
618 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
619 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
620 	struct ttm_resource *old_mem = ttm_bo->resource;
621 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
622 	int ret;
623 
624 	/*
625 	 * If this starts to call into many components, consider
626 	 * using a notification chain here.
627 	 */
628 
629 	if (xe_bo_is_pinned(bo))
630 		return -EINVAL;
631 
632 	xe_bo_vunmap(bo);
633 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
634 	if (ret)
635 		return ret;
636 
637 	/* Don't call move_notify() for imported dma-bufs. */
638 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
639 		dma_buf_move_notify(ttm_bo->base.dma_buf);
640 
641 	/*
642 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
643 	 * so if we moved from VRAM make sure to unlink this from the userfault
644 	 * tracking.
645 	 */
646 	if (mem_type_is_vram(old_mem_type)) {
647 		mutex_lock(&xe->mem_access.vram_userfault.lock);
648 		if (!list_empty(&bo->vram_userfault_link))
649 			list_del_init(&bo->vram_userfault_link);
650 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
651 	}
652 
653 	return 0;
654 }
655 
656 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
657 		      struct ttm_operation_ctx *ctx,
658 		      struct ttm_resource *new_mem,
659 		      struct ttm_place *hop)
660 {
661 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
662 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
663 	struct ttm_resource *old_mem = ttm_bo->resource;
664 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
665 	struct ttm_tt *ttm = ttm_bo->ttm;
666 	struct xe_migrate *migrate = NULL;
667 	struct dma_fence *fence;
668 	bool move_lacks_source;
669 	bool tt_has_data;
670 	bool needs_clear;
671 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
672 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
673 	int ret = 0;
674 
675 	/* Bo creation path, moving to system or TT. */
676 	if ((!old_mem && ttm) && !handle_system_ccs) {
677 		if (new_mem->mem_type == XE_PL_TT)
678 			ret = xe_tt_map_sg(ttm);
679 		if (!ret)
680 			ttm_bo_move_null(ttm_bo, new_mem);
681 		goto out;
682 	}
683 
684 	if (ttm_bo->type == ttm_bo_type_sg) {
685 		ret = xe_bo_move_notify(bo, ctx);
686 		if (!ret)
687 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
688 		return ret;
689 	}
690 
691 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
692 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
693 
694 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
695 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
696 
697 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
698 		(!ttm && ttm_bo->type == ttm_bo_type_device);
699 
700 	if (new_mem->mem_type == XE_PL_TT) {
701 		ret = xe_tt_map_sg(ttm);
702 		if (ret)
703 			goto out;
704 	}
705 
706 	if ((move_lacks_source && !needs_clear)) {
707 		ttm_bo_move_null(ttm_bo, new_mem);
708 		goto out;
709 	}
710 
711 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
712 		ttm_bo_move_null(ttm_bo, new_mem);
713 		goto out;
714 	}
715 
716 	/*
717 	 * Failed multi-hop where the old_mem is still marked as
718 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
719 	 */
720 	if (old_mem_type == XE_PL_TT &&
721 	    new_mem->mem_type == XE_PL_TT) {
722 		ttm_bo_move_null(ttm_bo, new_mem);
723 		goto out;
724 	}
725 
726 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
727 		ret = xe_bo_move_notify(bo, ctx);
728 		if (ret)
729 			goto out;
730 	}
731 
732 	if (old_mem_type == XE_PL_TT &&
733 	    new_mem->mem_type == XE_PL_SYSTEM) {
734 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
735 						     DMA_RESV_USAGE_BOOKKEEP,
736 						     false,
737 						     MAX_SCHEDULE_TIMEOUT);
738 		if (timeout < 0) {
739 			ret = timeout;
740 			goto out;
741 		}
742 
743 		if (!handle_system_ccs) {
744 			ttm_bo_move_null(ttm_bo, new_mem);
745 			goto out;
746 		}
747 	}
748 
749 	if (!move_lacks_source &&
750 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
751 	     (mem_type_is_vram(old_mem_type) &&
752 	      new_mem->mem_type == XE_PL_SYSTEM))) {
753 		hop->fpfn = 0;
754 		hop->lpfn = 0;
755 		hop->mem_type = XE_PL_TT;
756 		hop->flags = TTM_PL_FLAG_TEMPORARY;
757 		ret = -EMULTIHOP;
758 		goto out;
759 	}
760 
761 	if (bo->tile)
762 		migrate = bo->tile->migrate;
763 	else if (resource_is_vram(new_mem))
764 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
765 	else if (mem_type_is_vram(old_mem_type))
766 		migrate = mem_type_to_migrate(xe, old_mem_type);
767 	else
768 		migrate = xe->tiles[0].migrate;
769 
770 	xe_assert(xe, migrate);
771 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
772 	if (xe_rpm_reclaim_safe(xe)) {
773 		/*
774 		 * We might be called through swapout in the validation path of
775 		 * another TTM device, so acquire rpm here.
776 		 */
777 		xe_pm_runtime_get(xe);
778 	} else {
779 		drm_WARN_ON(&xe->drm, handle_system_ccs);
780 		xe_pm_runtime_get_noresume(xe);
781 	}
782 
783 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
784 		/*
785 		 * Kernel memory that is pinned should only be moved on suspend
786 		 * / resume, some of the pinned memory is required for the
787 		 * device to resume / use the GPU to move other evicted memory
788 		 * (user memory) around. This likely could be optimized a bit
789 		 * further where we find the minimum set of pinned memory
790 		 * required for resume but for simplity doing a memcpy for all
791 		 * pinned memory.
792 		 */
793 		ret = xe_bo_vmap(bo);
794 		if (!ret) {
795 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
796 
797 			/* Create a new VMAP once kernel BO back in VRAM */
798 			if (!ret && resource_is_vram(new_mem)) {
799 				struct xe_mem_region *vram = res_to_mem_region(new_mem);
800 				void __iomem *new_addr = vram->mapping +
801 					(new_mem->start << PAGE_SHIFT);
802 
803 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
804 					ret = -EINVAL;
805 					xe_pm_runtime_put(xe);
806 					goto out;
807 				}
808 
809 				xe_assert(xe, new_mem->start ==
810 					  bo->placements->fpfn);
811 
812 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
813 			}
814 		}
815 	} else {
816 		if (move_lacks_source) {
817 			u32 flags = 0;
818 
819 			if (mem_type_is_vram(new_mem->mem_type))
820 				flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
821 			else if (handle_system_ccs)
822 				flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
823 
824 			fence = xe_migrate_clear(migrate, bo, new_mem, flags);
825 		}
826 		else
827 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
828 						new_mem, handle_system_ccs);
829 		if (IS_ERR(fence)) {
830 			ret = PTR_ERR(fence);
831 			xe_pm_runtime_put(xe);
832 			goto out;
833 		}
834 		if (!move_lacks_source) {
835 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
836 							true, new_mem);
837 			if (ret) {
838 				dma_fence_wait(fence, false);
839 				ttm_bo_move_null(ttm_bo, new_mem);
840 				ret = 0;
841 			}
842 		} else {
843 			/*
844 			 * ttm_bo_move_accel_cleanup() may blow up if
845 			 * bo->resource == NULL, so just attach the
846 			 * fence and set the new resource.
847 			 */
848 			dma_resv_add_fence(ttm_bo->base.resv, fence,
849 					   DMA_RESV_USAGE_KERNEL);
850 			ttm_bo_move_null(ttm_bo, new_mem);
851 		}
852 
853 		dma_fence_put(fence);
854 	}
855 
856 	xe_pm_runtime_put(xe);
857 
858 out:
859 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
860 	    ttm_bo->ttm) {
861 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
862 						     DMA_RESV_USAGE_KERNEL,
863 						     false,
864 						     MAX_SCHEDULE_TIMEOUT);
865 		if (timeout < 0)
866 			ret = timeout;
867 
868 		xe_tt_unmap_sg(ttm_bo->ttm);
869 	}
870 
871 	return ret;
872 }
873 
874 /**
875  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
876  * @bo: The buffer object to move.
877  *
878  * On successful completion, the object memory will be moved to system memory.
879  *
880  * This is needed to for special handling of pinned VRAM object during
881  * suspend-resume.
882  *
883  * Return: 0 on success. Negative error code on failure.
884  */
885 int xe_bo_evict_pinned(struct xe_bo *bo)
886 {
887 	struct ttm_place place = {
888 		.mem_type = XE_PL_TT,
889 	};
890 	struct ttm_placement placement = {
891 		.placement = &place,
892 		.num_placement = 1,
893 	};
894 	struct ttm_operation_ctx ctx = {
895 		.interruptible = false,
896 		.gfp_retry_mayfail = true,
897 	};
898 	struct ttm_resource *new_mem;
899 	int ret;
900 
901 	xe_bo_assert_held(bo);
902 
903 	if (WARN_ON(!bo->ttm.resource))
904 		return -EINVAL;
905 
906 	if (WARN_ON(!xe_bo_is_pinned(bo)))
907 		return -EINVAL;
908 
909 	if (!xe_bo_is_vram(bo))
910 		return 0;
911 
912 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
913 	if (ret)
914 		return ret;
915 
916 	if (!bo->ttm.ttm) {
917 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
918 		if (!bo->ttm.ttm) {
919 			ret = -ENOMEM;
920 			goto err_res_free;
921 		}
922 	}
923 
924 	ret = ttm_bo_populate(&bo->ttm, &ctx);
925 	if (ret)
926 		goto err_res_free;
927 
928 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
929 	if (ret)
930 		goto err_res_free;
931 
932 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
933 	if (ret)
934 		goto err_res_free;
935 
936 	return 0;
937 
938 err_res_free:
939 	ttm_resource_free(&bo->ttm, &new_mem);
940 	return ret;
941 }
942 
943 /**
944  * xe_bo_restore_pinned() - Restore a pinned VRAM object
945  * @bo: The buffer object to move.
946  *
947  * On successful completion, the object memory will be moved back to VRAM.
948  *
949  * This is needed to for special handling of pinned VRAM object during
950  * suspend-resume.
951  *
952  * Return: 0 on success. Negative error code on failure.
953  */
954 int xe_bo_restore_pinned(struct xe_bo *bo)
955 {
956 	struct ttm_operation_ctx ctx = {
957 		.interruptible = false,
958 		.gfp_retry_mayfail = false,
959 	};
960 	struct ttm_resource *new_mem;
961 	struct ttm_place *place = &bo->placements[0];
962 	int ret;
963 
964 	xe_bo_assert_held(bo);
965 
966 	if (WARN_ON(!bo->ttm.resource))
967 		return -EINVAL;
968 
969 	if (WARN_ON(!xe_bo_is_pinned(bo)))
970 		return -EINVAL;
971 
972 	if (WARN_ON(xe_bo_is_vram(bo)))
973 		return -EINVAL;
974 
975 	if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
976 		return -EINVAL;
977 
978 	if (!mem_type_is_vram(place->mem_type))
979 		return 0;
980 
981 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
982 	if (ret)
983 		return ret;
984 
985 	ret = ttm_bo_populate(&bo->ttm, &ctx);
986 	if (ret)
987 		goto err_res_free;
988 
989 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
990 	if (ret)
991 		goto err_res_free;
992 
993 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
994 	if (ret)
995 		goto err_res_free;
996 
997 	return 0;
998 
999 err_res_free:
1000 	ttm_resource_free(&bo->ttm, &new_mem);
1001 	return ret;
1002 }
1003 
1004 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1005 				       unsigned long page_offset)
1006 {
1007 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1008 	struct xe_res_cursor cursor;
1009 	struct xe_mem_region *vram;
1010 
1011 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1012 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1013 
1014 	vram = res_to_mem_region(ttm_bo->resource);
1015 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1016 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1017 }
1018 
1019 static void __xe_bo_vunmap(struct xe_bo *bo);
1020 
1021 /*
1022  * TODO: Move this function to TTM so we don't rely on how TTM does its
1023  * locking, thereby abusing TTM internals.
1024  */
1025 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1026 {
1027 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1028 	bool locked;
1029 
1030 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1031 
1032 	/*
1033 	 * We can typically only race with TTM trylocking under the
1034 	 * lru_lock, which will immediately be unlocked again since
1035 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1036 	 * always succeed here, as long as we hold the lru lock.
1037 	 */
1038 	spin_lock(&ttm_bo->bdev->lru_lock);
1039 	locked = dma_resv_trylock(ttm_bo->base.resv);
1040 	spin_unlock(&ttm_bo->bdev->lru_lock);
1041 	xe_assert(xe, locked);
1042 
1043 	return locked;
1044 }
1045 
1046 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1047 {
1048 	struct dma_resv_iter cursor;
1049 	struct dma_fence *fence;
1050 	struct dma_fence *replacement = NULL;
1051 	struct xe_bo *bo;
1052 
1053 	if (!xe_bo_is_xe_bo(ttm_bo))
1054 		return;
1055 
1056 	bo = ttm_to_xe_bo(ttm_bo);
1057 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1058 
1059 	/*
1060 	 * Corner case where TTM fails to allocate memory and this BOs resv
1061 	 * still points the VMs resv
1062 	 */
1063 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1064 		return;
1065 
1066 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1067 		return;
1068 
1069 	/*
1070 	 * Scrub the preempt fences if any. The unbind fence is already
1071 	 * attached to the resv.
1072 	 * TODO: Don't do this for external bos once we scrub them after
1073 	 * unbind.
1074 	 */
1075 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1076 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1077 		if (xe_fence_is_xe_preempt(fence) &&
1078 		    !dma_fence_is_signaled(fence)) {
1079 			if (!replacement)
1080 				replacement = dma_fence_get_stub();
1081 
1082 			dma_resv_replace_fences(ttm_bo->base.resv,
1083 						fence->context,
1084 						replacement,
1085 						DMA_RESV_USAGE_BOOKKEEP);
1086 		}
1087 	}
1088 	dma_fence_put(replacement);
1089 
1090 	dma_resv_unlock(ttm_bo->base.resv);
1091 }
1092 
1093 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1094 {
1095 	if (!xe_bo_is_xe_bo(ttm_bo))
1096 		return;
1097 
1098 	/*
1099 	 * Object is idle and about to be destroyed. Release the
1100 	 * dma-buf attachment.
1101 	 */
1102 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1103 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1104 						       struct xe_ttm_tt, ttm);
1105 
1106 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1107 					 DMA_BIDIRECTIONAL);
1108 		ttm_bo->sg = NULL;
1109 		xe_tt->sg = NULL;
1110 	}
1111 }
1112 
1113 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1114 {
1115 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1116 
1117 	if (ttm_bo->ttm) {
1118 		struct ttm_placement place = {};
1119 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1120 
1121 		drm_WARN_ON(&xe->drm, ret);
1122 	}
1123 }
1124 
1125 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1126 {
1127 	struct ttm_operation_ctx ctx = {
1128 		.interruptible = false,
1129 		.gfp_retry_mayfail = false,
1130 	};
1131 
1132 	if (ttm_bo->ttm) {
1133 		struct xe_ttm_tt *xe_tt =
1134 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1135 
1136 		if (xe_tt->purgeable)
1137 			xe_ttm_bo_purge(ttm_bo, &ctx);
1138 	}
1139 }
1140 
1141 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1142 				unsigned long offset, void *buf, int len,
1143 				int write)
1144 {
1145 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1146 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1147 	struct iosys_map vmap;
1148 	struct xe_res_cursor cursor;
1149 	struct xe_mem_region *vram;
1150 	int bytes_left = len;
1151 
1152 	xe_bo_assert_held(bo);
1153 	xe_device_assert_mem_access(xe);
1154 
1155 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1156 		return -EIO;
1157 
1158 	/* FIXME: Use GPU for non-visible VRAM */
1159 	if (!xe_ttm_resource_visible(ttm_bo->resource))
1160 		return -EIO;
1161 
1162 	vram = res_to_mem_region(ttm_bo->resource);
1163 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1164 		     bo->size - (offset & PAGE_MASK), &cursor);
1165 
1166 	do {
1167 		unsigned long page_offset = (offset & ~PAGE_MASK);
1168 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1169 
1170 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1171 					  cursor.start);
1172 		if (write)
1173 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1174 		else
1175 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1176 
1177 		buf += byte_count;
1178 		offset += byte_count;
1179 		bytes_left -= byte_count;
1180 		if (bytes_left)
1181 			xe_res_next(&cursor, PAGE_SIZE);
1182 	} while (bytes_left);
1183 
1184 	return len;
1185 }
1186 
1187 const struct ttm_device_funcs xe_ttm_funcs = {
1188 	.ttm_tt_create = xe_ttm_tt_create,
1189 	.ttm_tt_populate = xe_ttm_tt_populate,
1190 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1191 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1192 	.evict_flags = xe_evict_flags,
1193 	.move = xe_bo_move,
1194 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1195 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1196 	.access_memory = xe_ttm_access_memory,
1197 	.release_notify = xe_ttm_bo_release_notify,
1198 	.eviction_valuable = ttm_bo_eviction_valuable,
1199 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1200 	.swap_notify = xe_ttm_bo_swap_notify,
1201 };
1202 
1203 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1204 {
1205 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1206 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1207 	struct xe_tile *tile;
1208 	u8 id;
1209 
1210 	if (bo->ttm.base.import_attach)
1211 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1212 	drm_gem_object_release(&bo->ttm.base);
1213 
1214 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1215 
1216 	for_each_tile(tile, xe, id)
1217 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1218 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1219 
1220 #ifdef CONFIG_PROC_FS
1221 	if (bo->client)
1222 		xe_drm_client_remove_bo(bo);
1223 #endif
1224 
1225 	if (bo->vm && xe_bo_is_user(bo))
1226 		xe_vm_put(bo->vm);
1227 
1228 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1229 	if (!list_empty(&bo->vram_userfault_link))
1230 		list_del(&bo->vram_userfault_link);
1231 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1232 
1233 	kfree(bo);
1234 }
1235 
1236 static void xe_gem_object_free(struct drm_gem_object *obj)
1237 {
1238 	/* Our BO reference counting scheme works as follows:
1239 	 *
1240 	 * The gem object kref is typically used throughout the driver,
1241 	 * and the gem object holds a ttm_buffer_object refcount, so
1242 	 * that when the last gem object reference is put, which is when
1243 	 * we end up in this function, we put also that ttm_buffer_object
1244 	 * refcount. Anything using gem interfaces is then no longer
1245 	 * allowed to access the object in a way that requires a gem
1246 	 * refcount, including locking the object.
1247 	 *
1248 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1249 	 * refcount directly if needed.
1250 	 */
1251 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1252 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1253 }
1254 
1255 static void xe_gem_object_close(struct drm_gem_object *obj,
1256 				struct drm_file *file_priv)
1257 {
1258 	struct xe_bo *bo = gem_to_xe_bo(obj);
1259 
1260 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1261 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1262 
1263 		xe_bo_lock(bo, false);
1264 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1265 		xe_bo_unlock(bo);
1266 	}
1267 }
1268 
1269 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1270 {
1271 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1272 	struct drm_device *ddev = tbo->base.dev;
1273 	struct xe_device *xe = to_xe_device(ddev);
1274 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1275 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1276 	vm_fault_t ret;
1277 	int idx;
1278 
1279 	if (needs_rpm)
1280 		xe_pm_runtime_get(xe);
1281 
1282 	ret = ttm_bo_vm_reserve(tbo, vmf);
1283 	if (ret)
1284 		goto out;
1285 
1286 	if (drm_dev_enter(ddev, &idx)) {
1287 		trace_xe_bo_cpu_fault(bo);
1288 
1289 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1290 					       TTM_BO_VM_NUM_PREFAULT);
1291 		drm_dev_exit(idx);
1292 	} else {
1293 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1294 	}
1295 
1296 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1297 		goto out;
1298 	/*
1299 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1300 	 */
1301 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1302 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1303 		if (list_empty(&bo->vram_userfault_link))
1304 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1305 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1306 	}
1307 
1308 	dma_resv_unlock(tbo->base.resv);
1309 out:
1310 	if (needs_rpm)
1311 		xe_pm_runtime_put(xe);
1312 
1313 	return ret;
1314 }
1315 
1316 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
1317 			   void *buf, int len, int write)
1318 {
1319 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
1320 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1321 	struct xe_device *xe = xe_bo_device(bo);
1322 	int ret;
1323 
1324 	xe_pm_runtime_get(xe);
1325 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
1326 	xe_pm_runtime_put(xe);
1327 
1328 	return ret;
1329 }
1330 
1331 /**
1332  * xe_bo_read() - Read from an xe_bo
1333  * @bo: The buffer object to read from.
1334  * @offset: The byte offset to start reading from.
1335  * @dst: Location to store the read.
1336  * @size: Size in bytes for the read.
1337  *
1338  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
1339  *
1340  * Return: Zero on success, or negative error.
1341  */
1342 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
1343 {
1344 	int ret;
1345 
1346 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
1347 	if (ret >= 0 && ret != size)
1348 		ret = -EIO;
1349 	else if (ret == size)
1350 		ret = 0;
1351 
1352 	return ret;
1353 }
1354 
1355 static const struct vm_operations_struct xe_gem_vm_ops = {
1356 	.fault = xe_gem_fault,
1357 	.open = ttm_bo_vm_open,
1358 	.close = ttm_bo_vm_close,
1359 	.access = xe_bo_vm_access,
1360 };
1361 
1362 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1363 	.free = xe_gem_object_free,
1364 	.close = xe_gem_object_close,
1365 	.mmap = drm_gem_ttm_mmap,
1366 	.export = xe_gem_prime_export,
1367 	.vm_ops = &xe_gem_vm_ops,
1368 };
1369 
1370 /**
1371  * xe_bo_alloc - Allocate storage for a struct xe_bo
1372  *
1373  * This function is intended to allocate storage to be used for input
1374  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1375  * created is needed before the call to __xe_bo_create_locked().
1376  * If __xe_bo_create_locked ends up never to be called, then the
1377  * storage allocated with this function needs to be freed using
1378  * xe_bo_free().
1379  *
1380  * Return: A pointer to an uninitialized struct xe_bo on success,
1381  * ERR_PTR(-ENOMEM) on error.
1382  */
1383 struct xe_bo *xe_bo_alloc(void)
1384 {
1385 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1386 
1387 	if (!bo)
1388 		return ERR_PTR(-ENOMEM);
1389 
1390 	return bo;
1391 }
1392 
1393 /**
1394  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1395  * @bo: The buffer object storage.
1396  *
1397  * Refer to xe_bo_alloc() documentation for valid use-cases.
1398  */
1399 void xe_bo_free(struct xe_bo *bo)
1400 {
1401 	kfree(bo);
1402 }
1403 
1404 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1405 				     struct xe_tile *tile, struct dma_resv *resv,
1406 				     struct ttm_lru_bulk_move *bulk, size_t size,
1407 				     u16 cpu_caching, enum ttm_bo_type type,
1408 				     u32 flags)
1409 {
1410 	struct ttm_operation_ctx ctx = {
1411 		.interruptible = true,
1412 		.no_wait_gpu = false,
1413 		.gfp_retry_mayfail = true,
1414 	};
1415 	struct ttm_placement *placement;
1416 	uint32_t alignment;
1417 	size_t aligned_size;
1418 	int err;
1419 
1420 	/* Only kernel objects should set GT */
1421 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1422 
1423 	if (XE_WARN_ON(!size)) {
1424 		xe_bo_free(bo);
1425 		return ERR_PTR(-EINVAL);
1426 	}
1427 
1428 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
1429 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
1430 		return ERR_PTR(-EINVAL);
1431 
1432 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1433 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1434 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1435 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1436 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1437 
1438 		aligned_size = ALIGN(size, align);
1439 		if (type != ttm_bo_type_device)
1440 			size = ALIGN(size, align);
1441 		flags |= XE_BO_FLAG_INTERNAL_64K;
1442 		alignment = align >> PAGE_SHIFT;
1443 	} else {
1444 		aligned_size = ALIGN(size, SZ_4K);
1445 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1446 		alignment = SZ_4K >> PAGE_SHIFT;
1447 	}
1448 
1449 	if (type == ttm_bo_type_device && aligned_size != size)
1450 		return ERR_PTR(-EINVAL);
1451 
1452 	if (!bo) {
1453 		bo = xe_bo_alloc();
1454 		if (IS_ERR(bo))
1455 			return bo;
1456 	}
1457 
1458 	bo->ccs_cleared = false;
1459 	bo->tile = tile;
1460 	bo->size = size;
1461 	bo->flags = flags;
1462 	bo->cpu_caching = cpu_caching;
1463 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1464 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1465 	INIT_LIST_HEAD(&bo->pinned_link);
1466 #ifdef CONFIG_PROC_FS
1467 	INIT_LIST_HEAD(&bo->client_link);
1468 #endif
1469 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1470 
1471 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1472 
1473 	if (resv) {
1474 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1475 		ctx.resv = resv;
1476 	}
1477 
1478 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1479 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1480 		if (WARN_ON(err)) {
1481 			xe_ttm_bo_destroy(&bo->ttm);
1482 			return ERR_PTR(err);
1483 		}
1484 	}
1485 
1486 	/* Defer populating type_sg bos */
1487 	placement = (type == ttm_bo_type_sg ||
1488 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1489 		&bo->placement;
1490 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1491 				   placement, alignment,
1492 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1493 	if (err)
1494 		return ERR_PTR(err);
1495 
1496 	/*
1497 	 * The VRAM pages underneath are potentially still being accessed by the
1498 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1499 	 * sure to add any corresponding move/clear fences into the objects
1500 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1501 	 *
1502 	 * For KMD internal buffers we don't care about GPU clearing, however we
1503 	 * still need to handle async evictions, where the VRAM is still being
1504 	 * accessed by the GPU. Most internal callers are not expecting this,
1505 	 * since they are missing the required synchronisation before accessing
1506 	 * the memory. To keep things simple just sync wait any kernel fences
1507 	 * here, if the buffer is designated KMD internal.
1508 	 *
1509 	 * For normal userspace objects we should already have the required
1510 	 * pipelining or sync waiting elsewhere, since we already have to deal
1511 	 * with things like async GPU clearing.
1512 	 */
1513 	if (type == ttm_bo_type_kernel) {
1514 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1515 						     DMA_RESV_USAGE_KERNEL,
1516 						     ctx.interruptible,
1517 						     MAX_SCHEDULE_TIMEOUT);
1518 
1519 		if (timeout < 0) {
1520 			if (!resv)
1521 				dma_resv_unlock(bo->ttm.base.resv);
1522 			xe_bo_put(bo);
1523 			return ERR_PTR(timeout);
1524 		}
1525 	}
1526 
1527 	bo->created = true;
1528 	if (bulk)
1529 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1530 	else
1531 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1532 
1533 	return bo;
1534 }
1535 
1536 static int __xe_bo_fixed_placement(struct xe_device *xe,
1537 				   struct xe_bo *bo,
1538 				   u32 flags,
1539 				   u64 start, u64 end, u64 size)
1540 {
1541 	struct ttm_place *place = bo->placements;
1542 
1543 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1544 		return -EINVAL;
1545 
1546 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1547 	place->fpfn = start >> PAGE_SHIFT;
1548 	place->lpfn = end >> PAGE_SHIFT;
1549 
1550 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1551 	case XE_BO_FLAG_VRAM0:
1552 		place->mem_type = XE_PL_VRAM0;
1553 		break;
1554 	case XE_BO_FLAG_VRAM1:
1555 		place->mem_type = XE_PL_VRAM1;
1556 		break;
1557 	case XE_BO_FLAG_STOLEN:
1558 		place->mem_type = XE_PL_STOLEN;
1559 		break;
1560 
1561 	default:
1562 		/* 0 or multiple of the above set */
1563 		return -EINVAL;
1564 	}
1565 
1566 	bo->placement = (struct ttm_placement) {
1567 		.num_placement = 1,
1568 		.placement = place,
1569 	};
1570 
1571 	return 0;
1572 }
1573 
1574 static struct xe_bo *
1575 __xe_bo_create_locked(struct xe_device *xe,
1576 		      struct xe_tile *tile, struct xe_vm *vm,
1577 		      size_t size, u64 start, u64 end,
1578 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1579 		      u64 alignment)
1580 {
1581 	struct xe_bo *bo = NULL;
1582 	int err;
1583 
1584 	if (vm)
1585 		xe_vm_assert_held(vm);
1586 
1587 	if (start || end != ~0ULL) {
1588 		bo = xe_bo_alloc();
1589 		if (IS_ERR(bo))
1590 			return bo;
1591 
1592 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1593 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1594 		if (err) {
1595 			xe_bo_free(bo);
1596 			return ERR_PTR(err);
1597 		}
1598 	}
1599 
1600 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1601 				    vm && !xe_vm_in_fault_mode(vm) &&
1602 				    flags & XE_BO_FLAG_USER ?
1603 				    &vm->lru_bulk_move : NULL, size,
1604 				    cpu_caching, type, flags);
1605 	if (IS_ERR(bo))
1606 		return bo;
1607 
1608 	bo->min_align = alignment;
1609 
1610 	/*
1611 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1612 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1613 	 * will keep a reference to the vm, and avoid circular references
1614 	 * by having all the vm's bo refereferences released at vm close
1615 	 * time.
1616 	 */
1617 	if (vm && xe_bo_is_user(bo))
1618 		xe_vm_get(vm);
1619 	bo->vm = vm;
1620 
1621 	if (bo->flags & XE_BO_FLAG_GGTT) {
1622 		struct xe_tile *t;
1623 		u8 id;
1624 
1625 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
1626 			if (!tile && flags & XE_BO_FLAG_STOLEN)
1627 				tile = xe_device_get_root_tile(xe);
1628 
1629 			xe_assert(xe, tile);
1630 		}
1631 
1632 		for_each_tile(t, xe, id) {
1633 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
1634 				continue;
1635 
1636 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1637 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
1638 							   start + bo->size, U64_MAX);
1639 			} else {
1640 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo);
1641 			}
1642 			if (err)
1643 				goto err_unlock_put_bo;
1644 		}
1645 	}
1646 
1647 	return bo;
1648 
1649 err_unlock_put_bo:
1650 	__xe_bo_unset_bulk_move(bo);
1651 	xe_bo_unlock_vm_held(bo);
1652 	xe_bo_put(bo);
1653 	return ERR_PTR(err);
1654 }
1655 
1656 struct xe_bo *
1657 xe_bo_create_locked_range(struct xe_device *xe,
1658 			  struct xe_tile *tile, struct xe_vm *vm,
1659 			  size_t size, u64 start, u64 end,
1660 			  enum ttm_bo_type type, u32 flags, u64 alignment)
1661 {
1662 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
1663 				     flags, alignment);
1664 }
1665 
1666 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1667 				  struct xe_vm *vm, size_t size,
1668 				  enum ttm_bo_type type, u32 flags)
1669 {
1670 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
1671 				     flags, 0);
1672 }
1673 
1674 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1675 				struct xe_vm *vm, size_t size,
1676 				u16 cpu_caching,
1677 				u32 flags)
1678 {
1679 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1680 						 cpu_caching, ttm_bo_type_device,
1681 						 flags | XE_BO_FLAG_USER, 0);
1682 	if (!IS_ERR(bo))
1683 		xe_bo_unlock_vm_held(bo);
1684 
1685 	return bo;
1686 }
1687 
1688 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1689 			   struct xe_vm *vm, size_t size,
1690 			   enum ttm_bo_type type, u32 flags)
1691 {
1692 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1693 
1694 	if (!IS_ERR(bo))
1695 		xe_bo_unlock_vm_held(bo);
1696 
1697 	return bo;
1698 }
1699 
1700 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1701 				      struct xe_vm *vm,
1702 				      size_t size, u64 offset,
1703 				      enum ttm_bo_type type, u32 flags)
1704 {
1705 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
1706 					       type, flags, 0);
1707 }
1708 
1709 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
1710 					      struct xe_tile *tile,
1711 					      struct xe_vm *vm,
1712 					      size_t size, u64 offset,
1713 					      enum ttm_bo_type type, u32 flags,
1714 					      u64 alignment)
1715 {
1716 	struct xe_bo *bo;
1717 	int err;
1718 	u64 start = offset == ~0ull ? 0 : offset;
1719 	u64 end = offset == ~0ull ? offset : start + size;
1720 
1721 	if (flags & XE_BO_FLAG_STOLEN &&
1722 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1723 		flags |= XE_BO_FLAG_GGTT;
1724 
1725 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1726 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
1727 				       alignment);
1728 	if (IS_ERR(bo))
1729 		return bo;
1730 
1731 	err = xe_bo_pin(bo);
1732 	if (err)
1733 		goto err_put;
1734 
1735 	err = xe_bo_vmap(bo);
1736 	if (err)
1737 		goto err_unpin;
1738 
1739 	xe_bo_unlock_vm_held(bo);
1740 
1741 	return bo;
1742 
1743 err_unpin:
1744 	xe_bo_unpin(bo);
1745 err_put:
1746 	xe_bo_unlock_vm_held(bo);
1747 	xe_bo_put(bo);
1748 	return ERR_PTR(err);
1749 }
1750 
1751 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1752 				   struct xe_vm *vm, size_t size,
1753 				   enum ttm_bo_type type, u32 flags)
1754 {
1755 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1756 }
1757 
1758 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1759 				     const void *data, size_t size,
1760 				     enum ttm_bo_type type, u32 flags)
1761 {
1762 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1763 						ALIGN(size, PAGE_SIZE),
1764 						type, flags);
1765 	if (IS_ERR(bo))
1766 		return bo;
1767 
1768 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1769 
1770 	return bo;
1771 }
1772 
1773 static void __xe_bo_unpin_map_no_vm(void *arg)
1774 {
1775 	xe_bo_unpin_map_no_vm(arg);
1776 }
1777 
1778 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1779 					   size_t size, u32 flags)
1780 {
1781 	struct xe_bo *bo;
1782 	int ret;
1783 
1784 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1785 	if (IS_ERR(bo))
1786 		return bo;
1787 
1788 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1789 	if (ret)
1790 		return ERR_PTR(ret);
1791 
1792 	return bo;
1793 }
1794 
1795 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1796 					     const void *data, size_t size, u32 flags)
1797 {
1798 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1799 
1800 	if (IS_ERR(bo))
1801 		return bo;
1802 
1803 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1804 
1805 	return bo;
1806 }
1807 
1808 /**
1809  * xe_managed_bo_reinit_in_vram
1810  * @xe: xe device
1811  * @tile: Tile where the new buffer will be created
1812  * @src: Managed buffer object allocated in system memory
1813  *
1814  * Replace a managed src buffer object allocated in system memory with a new
1815  * one allocated in vram, copying the data between them.
1816  * Buffer object in VRAM is not going to have the same GGTT address, the caller
1817  * is responsible for making sure that any old references to it are updated.
1818  *
1819  * Returns 0 for success, negative error code otherwise.
1820  */
1821 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1822 {
1823 	struct xe_bo *bo;
1824 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1825 
1826 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1827 
1828 	xe_assert(xe, IS_DGFX(xe));
1829 	xe_assert(xe, !(*src)->vmap.is_iomem);
1830 
1831 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1832 					    (*src)->size, dst_flags);
1833 	if (IS_ERR(bo))
1834 		return PTR_ERR(bo);
1835 
1836 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1837 	*src = bo;
1838 
1839 	return 0;
1840 }
1841 
1842 /*
1843  * XXX: This is in the VM bind data path, likely should calculate this once and
1844  * store, with a recalculation if the BO is moved.
1845  */
1846 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1847 {
1848 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1849 
1850 	if (res->mem_type == XE_PL_STOLEN)
1851 		return xe_ttm_stolen_gpu_offset(xe);
1852 
1853 	return res_to_mem_region(res)->dpa_base;
1854 }
1855 
1856 /**
1857  * xe_bo_pin_external - pin an external BO
1858  * @bo: buffer object to be pinned
1859  *
1860  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1861  * BO. Unique call compared to xe_bo_pin as this function has it own set of
1862  * asserts and code to ensure evict / restore on suspend / resume.
1863  *
1864  * Returns 0 for success, negative error code otherwise.
1865  */
1866 int xe_bo_pin_external(struct xe_bo *bo)
1867 {
1868 	struct xe_device *xe = xe_bo_device(bo);
1869 	int err;
1870 
1871 	xe_assert(xe, !bo->vm);
1872 	xe_assert(xe, xe_bo_is_user(bo));
1873 
1874 	if (!xe_bo_is_pinned(bo)) {
1875 		err = xe_bo_validate(bo, NULL, false);
1876 		if (err)
1877 			return err;
1878 
1879 		if (xe_bo_is_vram(bo)) {
1880 			spin_lock(&xe->pinned.lock);
1881 			list_add_tail(&bo->pinned_link,
1882 				      &xe->pinned.external_vram);
1883 			spin_unlock(&xe->pinned.lock);
1884 		}
1885 	}
1886 
1887 	ttm_bo_pin(&bo->ttm);
1888 
1889 	/*
1890 	 * FIXME: If we always use the reserve / unreserve functions for locking
1891 	 * we do not need this.
1892 	 */
1893 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1894 
1895 	return 0;
1896 }
1897 
1898 int xe_bo_pin(struct xe_bo *bo)
1899 {
1900 	struct ttm_place *place = &bo->placements[0];
1901 	struct xe_device *xe = xe_bo_device(bo);
1902 	int err;
1903 
1904 	/* We currently don't expect user BO to be pinned */
1905 	xe_assert(xe, !xe_bo_is_user(bo));
1906 
1907 	/* Pinned object must be in GGTT or have pinned flag */
1908 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1909 				   XE_BO_FLAG_GGTT));
1910 
1911 	/*
1912 	 * No reason we can't support pinning imported dma-bufs we just don't
1913 	 * expect to pin an imported dma-buf.
1914 	 */
1915 	xe_assert(xe, !bo->ttm.base.import_attach);
1916 
1917 	/* We only expect at most 1 pin */
1918 	xe_assert(xe, !xe_bo_is_pinned(bo));
1919 
1920 	err = xe_bo_validate(bo, NULL, false);
1921 	if (err)
1922 		return err;
1923 
1924 	/*
1925 	 * For pinned objects in on DGFX, which are also in vram, we expect
1926 	 * these to be in contiguous VRAM memory. Required eviction / restore
1927 	 * during suspend / resume (force restore to same physical address).
1928 	 */
1929 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1930 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1931 		if (mem_type_is_vram(place->mem_type)) {
1932 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1933 
1934 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1935 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1936 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1937 		}
1938 	}
1939 
1940 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1941 		spin_lock(&xe->pinned.lock);
1942 		list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1943 		spin_unlock(&xe->pinned.lock);
1944 	}
1945 
1946 	ttm_bo_pin(&bo->ttm);
1947 
1948 	/*
1949 	 * FIXME: If we always use the reserve / unreserve functions for locking
1950 	 * we do not need this.
1951 	 */
1952 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1953 
1954 	return 0;
1955 }
1956 
1957 /**
1958  * xe_bo_unpin_external - unpin an external BO
1959  * @bo: buffer object to be unpinned
1960  *
1961  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1962  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1963  * asserts and code to ensure evict / restore on suspend / resume.
1964  *
1965  * Returns 0 for success, negative error code otherwise.
1966  */
1967 void xe_bo_unpin_external(struct xe_bo *bo)
1968 {
1969 	struct xe_device *xe = xe_bo_device(bo);
1970 
1971 	xe_assert(xe, !bo->vm);
1972 	xe_assert(xe, xe_bo_is_pinned(bo));
1973 	xe_assert(xe, xe_bo_is_user(bo));
1974 
1975 	spin_lock(&xe->pinned.lock);
1976 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1977 		list_del_init(&bo->pinned_link);
1978 	spin_unlock(&xe->pinned.lock);
1979 
1980 	ttm_bo_unpin(&bo->ttm);
1981 
1982 	/*
1983 	 * FIXME: If we always use the reserve / unreserve functions for locking
1984 	 * we do not need this.
1985 	 */
1986 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1987 }
1988 
1989 void xe_bo_unpin(struct xe_bo *bo)
1990 {
1991 	struct ttm_place *place = &bo->placements[0];
1992 	struct xe_device *xe = xe_bo_device(bo);
1993 
1994 	xe_assert(xe, !bo->ttm.base.import_attach);
1995 	xe_assert(xe, xe_bo_is_pinned(bo));
1996 
1997 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1998 		spin_lock(&xe->pinned.lock);
1999 		xe_assert(xe, !list_empty(&bo->pinned_link));
2000 		list_del_init(&bo->pinned_link);
2001 		spin_unlock(&xe->pinned.lock);
2002 	}
2003 	ttm_bo_unpin(&bo->ttm);
2004 }
2005 
2006 /**
2007  * xe_bo_validate() - Make sure the bo is in an allowed placement
2008  * @bo: The bo,
2009  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2010  *      NULL. Used together with @allow_res_evict.
2011  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2012  *                   reservation object.
2013  *
2014  * Make sure the bo is in allowed placement, migrating it if necessary. If
2015  * needed, other bos will be evicted. If bos selected for eviction shares
2016  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2017  * set to true, otherwise they will be bypassed.
2018  *
2019  * Return: 0 on success, negative error code on failure. May return
2020  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2021  */
2022 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
2023 {
2024 	struct ttm_operation_ctx ctx = {
2025 		.interruptible = true,
2026 		.no_wait_gpu = false,
2027 		.gfp_retry_mayfail = true,
2028 	};
2029 
2030 	if (vm) {
2031 		lockdep_assert_held(&vm->lock);
2032 		xe_vm_assert_held(vm);
2033 
2034 		ctx.allow_res_evict = allow_res_evict;
2035 		ctx.resv = xe_vm_resv(vm);
2036 	}
2037 
2038 	trace_xe_bo_validate(bo);
2039 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2040 }
2041 
2042 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2043 {
2044 	if (bo->destroy == &xe_ttm_bo_destroy)
2045 		return true;
2046 
2047 	return false;
2048 }
2049 
2050 /*
2051  * Resolve a BO address. There is no assert to check if the proper lock is held
2052  * so it should only be used in cases where it is not fatal to get the wrong
2053  * address, such as printing debug information, but not in cases where memory is
2054  * written based on this result.
2055  */
2056 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2057 {
2058 	struct xe_device *xe = xe_bo_device(bo);
2059 	struct xe_res_cursor cur;
2060 	u64 page;
2061 
2062 	xe_assert(xe, page_size <= PAGE_SIZE);
2063 	page = offset >> PAGE_SHIFT;
2064 	offset &= (PAGE_SIZE - 1);
2065 
2066 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
2067 		xe_assert(xe, bo->ttm.ttm);
2068 
2069 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
2070 				page_size, &cur);
2071 		return xe_res_dma(&cur) + offset;
2072 	} else {
2073 		struct xe_res_cursor cur;
2074 
2075 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
2076 			     page_size, &cur);
2077 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
2078 	}
2079 }
2080 
2081 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2082 {
2083 	if (!READ_ONCE(bo->ttm.pin_count))
2084 		xe_bo_assert_held(bo);
2085 	return __xe_bo_addr(bo, offset, page_size);
2086 }
2087 
2088 int xe_bo_vmap(struct xe_bo *bo)
2089 {
2090 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2091 	void *virtual;
2092 	bool is_iomem;
2093 	int ret;
2094 
2095 	xe_bo_assert_held(bo);
2096 
2097 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
2098 			!force_contiguous(bo->flags)))
2099 		return -EINVAL;
2100 
2101 	if (!iosys_map_is_null(&bo->vmap))
2102 		return 0;
2103 
2104 	/*
2105 	 * We use this more or less deprecated interface for now since
2106 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
2107 	 * single page bos, which is done here.
2108 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
2109 	 * to use struct iosys_map.
2110 	 */
2111 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
2112 	if (ret)
2113 		return ret;
2114 
2115 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
2116 	if (is_iomem)
2117 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
2118 	else
2119 		iosys_map_set_vaddr(&bo->vmap, virtual);
2120 
2121 	return 0;
2122 }
2123 
2124 static void __xe_bo_vunmap(struct xe_bo *bo)
2125 {
2126 	if (!iosys_map_is_null(&bo->vmap)) {
2127 		iosys_map_clear(&bo->vmap);
2128 		ttm_bo_kunmap(&bo->kmap);
2129 	}
2130 }
2131 
2132 void xe_bo_vunmap(struct xe_bo *bo)
2133 {
2134 	xe_bo_assert_held(bo);
2135 	__xe_bo_vunmap(bo);
2136 }
2137 
2138 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2139 			struct drm_file *file)
2140 {
2141 	struct xe_device *xe = to_xe_device(dev);
2142 	struct xe_file *xef = to_xe_file(file);
2143 	struct drm_xe_gem_create *args = data;
2144 	struct xe_vm *vm = NULL;
2145 	struct xe_bo *bo;
2146 	unsigned int bo_flags;
2147 	u32 handle;
2148 	int err;
2149 
2150 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2151 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2152 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2153 		return -EINVAL;
2154 
2155 	/* at least one valid memory placement must be specified */
2156 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2157 			 !args->placement))
2158 		return -EINVAL;
2159 
2160 	if (XE_IOCTL_DBG(xe, args->flags &
2161 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2162 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2163 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2164 		return -EINVAL;
2165 
2166 	if (XE_IOCTL_DBG(xe, args->handle))
2167 		return -EINVAL;
2168 
2169 	if (XE_IOCTL_DBG(xe, !args->size))
2170 		return -EINVAL;
2171 
2172 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2173 		return -EINVAL;
2174 
2175 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2176 		return -EINVAL;
2177 
2178 	bo_flags = 0;
2179 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2180 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2181 
2182 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2183 		bo_flags |= XE_BO_FLAG_SCANOUT;
2184 
2185 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2186 
2187 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2188 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2189 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2190 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2191 	    IS_ALIGNED(args->size, SZ_64K))
2192 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2193 
2194 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2195 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2196 			return -EINVAL;
2197 
2198 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2199 	}
2200 
2201 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2202 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2203 		return -EINVAL;
2204 
2205 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2206 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2207 		return -EINVAL;
2208 
2209 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2210 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2211 		return -EINVAL;
2212 
2213 	if (args->vm_id) {
2214 		vm = xe_vm_lookup(xef, args->vm_id);
2215 		if (XE_IOCTL_DBG(xe, !vm))
2216 			return -ENOENT;
2217 		err = xe_vm_lock(vm, true);
2218 		if (err)
2219 			goto out_vm;
2220 	}
2221 
2222 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2223 			       bo_flags);
2224 
2225 	if (vm)
2226 		xe_vm_unlock(vm);
2227 
2228 	if (IS_ERR(bo)) {
2229 		err = PTR_ERR(bo);
2230 		goto out_vm;
2231 	}
2232 
2233 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2234 	if (err)
2235 		goto out_bulk;
2236 
2237 	args->handle = handle;
2238 	goto out_put;
2239 
2240 out_bulk:
2241 	if (vm && !xe_vm_in_fault_mode(vm)) {
2242 		xe_vm_lock(vm, false);
2243 		__xe_bo_unset_bulk_move(bo);
2244 		xe_vm_unlock(vm);
2245 	}
2246 out_put:
2247 	xe_bo_put(bo);
2248 out_vm:
2249 	if (vm)
2250 		xe_vm_put(vm);
2251 
2252 	return err;
2253 }
2254 
2255 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2256 			     struct drm_file *file)
2257 {
2258 	struct xe_device *xe = to_xe_device(dev);
2259 	struct drm_xe_gem_mmap_offset *args = data;
2260 	struct drm_gem_object *gem_obj;
2261 
2262 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2263 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2264 		return -EINVAL;
2265 
2266 	if (XE_IOCTL_DBG(xe, args->flags))
2267 		return -EINVAL;
2268 
2269 	gem_obj = drm_gem_object_lookup(file, args->handle);
2270 	if (XE_IOCTL_DBG(xe, !gem_obj))
2271 		return -ENOENT;
2272 
2273 	/* The mmap offset was set up at BO allocation time. */
2274 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2275 
2276 	xe_bo_put(gem_to_xe_bo(gem_obj));
2277 	return 0;
2278 }
2279 
2280 /**
2281  * xe_bo_lock() - Lock the buffer object's dma_resv object
2282  * @bo: The struct xe_bo whose lock is to be taken
2283  * @intr: Whether to perform any wait interruptible
2284  *
2285  * Locks the buffer object's dma_resv object. If the buffer object is
2286  * pointing to a shared dma_resv object, that shared lock is locked.
2287  *
2288  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2289  * contended lock was interrupted. If @intr is set to false, the
2290  * function always returns 0.
2291  */
2292 int xe_bo_lock(struct xe_bo *bo, bool intr)
2293 {
2294 	if (intr)
2295 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2296 
2297 	dma_resv_lock(bo->ttm.base.resv, NULL);
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2304  * @bo: The struct xe_bo whose lock is to be released.
2305  *
2306  * Unlock a buffer object lock that was locked by xe_bo_lock().
2307  */
2308 void xe_bo_unlock(struct xe_bo *bo)
2309 {
2310 	dma_resv_unlock(bo->ttm.base.resv);
2311 }
2312 
2313 /**
2314  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2315  * @bo: The buffer object to migrate
2316  * @mem_type: The TTM memory type intended to migrate to
2317  *
2318  * Check whether the buffer object supports migration to the
2319  * given memory type. Note that pinning may affect the ability to migrate as
2320  * returned by this function.
2321  *
2322  * This function is primarily intended as a helper for checking the
2323  * possibility to migrate buffer objects and can be called without
2324  * the object lock held.
2325  *
2326  * Return: true if migration is possible, false otherwise.
2327  */
2328 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2329 {
2330 	unsigned int cur_place;
2331 
2332 	if (bo->ttm.type == ttm_bo_type_kernel)
2333 		return true;
2334 
2335 	if (bo->ttm.type == ttm_bo_type_sg)
2336 		return false;
2337 
2338 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2339 	     cur_place++) {
2340 		if (bo->placements[cur_place].mem_type == mem_type)
2341 			return true;
2342 	}
2343 
2344 	return false;
2345 }
2346 
2347 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2348 {
2349 	memset(place, 0, sizeof(*place));
2350 	place->mem_type = mem_type;
2351 }
2352 
2353 /**
2354  * xe_bo_migrate - Migrate an object to the desired region id
2355  * @bo: The buffer object to migrate.
2356  * @mem_type: The TTM region type to migrate to.
2357  *
2358  * Attempt to migrate the buffer object to the desired memory region. The
2359  * buffer object may not be pinned, and must be locked.
2360  * On successful completion, the object memory type will be updated,
2361  * but an async migration task may not have completed yet, and to
2362  * accomplish that, the object's kernel fences must be signaled with
2363  * the object lock held.
2364  *
2365  * Return: 0 on success. Negative error code on failure. In particular may
2366  * return -EINTR or -ERESTARTSYS if signal pending.
2367  */
2368 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2369 {
2370 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2371 	struct ttm_operation_ctx ctx = {
2372 		.interruptible = true,
2373 		.no_wait_gpu = false,
2374 		.gfp_retry_mayfail = true,
2375 	};
2376 	struct ttm_placement placement;
2377 	struct ttm_place requested;
2378 
2379 	xe_bo_assert_held(bo);
2380 
2381 	if (bo->ttm.resource->mem_type == mem_type)
2382 		return 0;
2383 
2384 	if (xe_bo_is_pinned(bo))
2385 		return -EBUSY;
2386 
2387 	if (!xe_bo_can_migrate(bo, mem_type))
2388 		return -EINVAL;
2389 
2390 	xe_place_from_ttm_type(mem_type, &requested);
2391 	placement.num_placement = 1;
2392 	placement.placement = &requested;
2393 
2394 	/*
2395 	 * Stolen needs to be handled like below VRAM handling if we ever need
2396 	 * to support it.
2397 	 */
2398 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2399 
2400 	if (mem_type_is_vram(mem_type)) {
2401 		u32 c = 0;
2402 
2403 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2404 	}
2405 
2406 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2407 }
2408 
2409 /**
2410  * xe_bo_evict - Evict an object to evict placement
2411  * @bo: The buffer object to migrate.
2412  * @force_alloc: Set force_alloc in ttm_operation_ctx
2413  *
2414  * On successful completion, the object memory will be moved to evict
2415  * placement. This function blocks until the object has been fully moved.
2416  *
2417  * Return: 0 on success. Negative error code on failure.
2418  */
2419 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2420 {
2421 	struct ttm_operation_ctx ctx = {
2422 		.interruptible = false,
2423 		.no_wait_gpu = false,
2424 		.force_alloc = force_alloc,
2425 		.gfp_retry_mayfail = true,
2426 	};
2427 	struct ttm_placement placement;
2428 	int ret;
2429 
2430 	xe_evict_flags(&bo->ttm, &placement);
2431 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2432 	if (ret)
2433 		return ret;
2434 
2435 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2436 			      false, MAX_SCHEDULE_TIMEOUT);
2437 
2438 	return 0;
2439 }
2440 
2441 /**
2442  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2443  * placed in system memory.
2444  * @bo: The xe_bo
2445  *
2446  * Return: true if extra pages need to be allocated, false otherwise.
2447  */
2448 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2449 {
2450 	struct xe_device *xe = xe_bo_device(bo);
2451 
2452 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2453 		return false;
2454 
2455 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2456 		return false;
2457 
2458 	/* On discrete GPUs, if the GPU can access this buffer from
2459 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2460 	 * can't be used since there's no CCS storage associated with
2461 	 * non-VRAM addresses.
2462 	 */
2463 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2464 		return false;
2465 
2466 	return true;
2467 }
2468 
2469 /**
2470  * __xe_bo_release_dummy() - Dummy kref release function
2471  * @kref: The embedded struct kref.
2472  *
2473  * Dummy release function for xe_bo_put_deferred(). Keep off.
2474  */
2475 void __xe_bo_release_dummy(struct kref *kref)
2476 {
2477 }
2478 
2479 /**
2480  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2481  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2482  *
2483  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2484  * The @deferred list can be either an onstack local list or a global
2485  * shared list used by a workqueue.
2486  */
2487 void xe_bo_put_commit(struct llist_head *deferred)
2488 {
2489 	struct llist_node *freed;
2490 	struct xe_bo *bo, *next;
2491 
2492 	if (!deferred)
2493 		return;
2494 
2495 	freed = llist_del_all(deferred);
2496 	if (!freed)
2497 		return;
2498 
2499 	llist_for_each_entry_safe(bo, next, freed, freed)
2500 		drm_gem_object_free(&bo->ttm.base.refcount);
2501 }
2502 
2503 void xe_bo_put(struct xe_bo *bo)
2504 {
2505 	struct xe_tile *tile;
2506 	u8 id;
2507 
2508 	might_sleep();
2509 	if (bo) {
2510 #ifdef CONFIG_PROC_FS
2511 		if (bo->client)
2512 			might_lock(&bo->client->bos_lock);
2513 #endif
2514 		for_each_tile(tile, xe_bo_device(bo), id)
2515 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
2516 				might_lock(&bo->ggtt_node[id]->ggtt->lock);
2517 		drm_gem_object_put(&bo->ttm.base);
2518 	}
2519 }
2520 
2521 /**
2522  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2523  * @file_priv: ...
2524  * @dev: ...
2525  * @args: ...
2526  *
2527  * See dumb_create() hook in include/drm/drm_drv.h
2528  *
2529  * Return: ...
2530  */
2531 int xe_bo_dumb_create(struct drm_file *file_priv,
2532 		      struct drm_device *dev,
2533 		      struct drm_mode_create_dumb *args)
2534 {
2535 	struct xe_device *xe = to_xe_device(dev);
2536 	struct xe_bo *bo;
2537 	uint32_t handle;
2538 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2539 	int err;
2540 	u32 page_size = max_t(u32, PAGE_SIZE,
2541 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2542 
2543 	args->pitch = ALIGN(args->width * cpp, 64);
2544 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2545 			   page_size);
2546 
2547 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2548 			       DRM_XE_GEM_CPU_CACHING_WC,
2549 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2550 			       XE_BO_FLAG_SCANOUT |
2551 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2552 	if (IS_ERR(bo))
2553 		return PTR_ERR(bo);
2554 
2555 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2556 	/* drop reference from allocate - handle holds it now */
2557 	drm_gem_object_put(&bo->ttm.base);
2558 	if (!err)
2559 		args->handle = handle;
2560 	return err;
2561 }
2562 
2563 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2564 {
2565 	struct ttm_buffer_object *tbo = &bo->ttm;
2566 	struct ttm_device *bdev = tbo->bdev;
2567 
2568 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2569 
2570 	list_del_init(&bo->vram_userfault_link);
2571 }
2572 
2573 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2574 #include "tests/xe_bo.c"
2575 #endif
2576