1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <uapi/drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace_bo.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static bool force_contiguous(u32 bo_flags) 166 { 167 /* 168 * For eviction / restore on suspend / resume objects pinned in VRAM 169 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 170 */ 171 return bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT); 172 } 173 174 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 175 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 176 { 177 struct ttm_place place = { .mem_type = mem_type }; 178 struct xe_mem_region *vram; 179 u64 io_size; 180 181 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 182 183 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 184 xe_assert(xe, vram && vram->usable_size); 185 io_size = vram->io_size; 186 187 if (force_contiguous(bo_flags)) 188 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 189 190 if (io_size < vram->usable_size) { 191 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 192 place.fpfn = 0; 193 place.lpfn = io_size >> PAGE_SHIFT; 194 } else { 195 place.flags |= TTM_PL_FLAG_TOPDOWN; 196 } 197 } 198 places[*c] = place; 199 *c += 1; 200 } 201 202 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 203 u32 bo_flags, u32 *c) 204 { 205 if (bo_flags & XE_BO_FLAG_VRAM0) 206 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 207 if (bo_flags & XE_BO_FLAG_VRAM1) 208 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 209 } 210 211 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 212 u32 bo_flags, u32 *c) 213 { 214 if (bo_flags & XE_BO_FLAG_STOLEN) { 215 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 216 217 bo->placements[*c] = (struct ttm_place) { 218 .mem_type = XE_PL_STOLEN, 219 .flags = force_contiguous(bo_flags) ? 220 TTM_PL_FLAG_CONTIGUOUS : 0, 221 }; 222 *c += 1; 223 } 224 } 225 226 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 227 u32 bo_flags) 228 { 229 u32 c = 0; 230 231 try_add_vram(xe, bo, bo_flags, &c); 232 try_add_system(xe, bo, bo_flags, &c); 233 try_add_stolen(xe, bo, bo_flags, &c); 234 235 if (!c) 236 return -EINVAL; 237 238 bo->placement = (struct ttm_placement) { 239 .num_placement = c, 240 .placement = bo->placements, 241 }; 242 243 return 0; 244 } 245 246 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 247 u32 bo_flags) 248 { 249 xe_bo_assert_held(bo); 250 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 251 } 252 253 static void xe_evict_flags(struct ttm_buffer_object *tbo, 254 struct ttm_placement *placement) 255 { 256 if (!xe_bo_is_xe_bo(tbo)) { 257 /* Don't handle scatter gather BOs */ 258 if (tbo->type == ttm_bo_type_sg) { 259 placement->num_placement = 0; 260 return; 261 } 262 263 *placement = sys_placement; 264 return; 265 } 266 267 /* 268 * For xe, sg bos that are evicted to system just triggers a 269 * rebind of the sg list upon subsequent validation to XE_PL_TT. 270 */ 271 switch (tbo->resource->mem_type) { 272 case XE_PL_VRAM0: 273 case XE_PL_VRAM1: 274 case XE_PL_STOLEN: 275 *placement = tt_placement; 276 break; 277 case XE_PL_TT: 278 default: 279 *placement = sys_placement; 280 break; 281 } 282 } 283 284 struct xe_ttm_tt { 285 struct ttm_tt ttm; 286 struct device *dev; 287 struct sg_table sgt; 288 struct sg_table *sg; 289 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 290 bool purgeable; 291 }; 292 293 static int xe_tt_map_sg(struct ttm_tt *tt) 294 { 295 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 296 unsigned long num_pages = tt->num_pages; 297 int ret; 298 299 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 300 301 if (xe_tt->sg) 302 return 0; 303 304 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 305 num_pages, 0, 306 (u64)num_pages << PAGE_SHIFT, 307 xe_sg_segment_size(xe_tt->dev), 308 GFP_KERNEL); 309 if (ret) 310 return ret; 311 312 xe_tt->sg = &xe_tt->sgt; 313 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 314 DMA_ATTR_SKIP_CPU_SYNC); 315 if (ret) { 316 sg_free_table(xe_tt->sg); 317 xe_tt->sg = NULL; 318 return ret; 319 } 320 321 return 0; 322 } 323 324 static void xe_tt_unmap_sg(struct ttm_tt *tt) 325 { 326 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 327 328 if (xe_tt->sg) { 329 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 330 DMA_BIDIRECTIONAL, 0); 331 sg_free_table(xe_tt->sg); 332 xe_tt->sg = NULL; 333 } 334 } 335 336 struct sg_table *xe_bo_sg(struct xe_bo *bo) 337 { 338 struct ttm_tt *tt = bo->ttm.ttm; 339 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 340 341 return xe_tt->sg; 342 } 343 344 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 345 u32 page_flags) 346 { 347 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 348 struct xe_device *xe = xe_bo_device(bo); 349 struct xe_ttm_tt *tt; 350 unsigned long extra_pages; 351 enum ttm_caching caching = ttm_cached; 352 int err; 353 354 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 355 if (!tt) 356 return NULL; 357 358 tt->dev = xe->drm.dev; 359 360 extra_pages = 0; 361 if (xe_bo_needs_ccs_pages(bo)) 362 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 363 PAGE_SIZE); 364 365 /* 366 * DGFX system memory is always WB / ttm_cached, since 367 * other caching modes are only supported on x86. DGFX 368 * GPU system memory accesses are always coherent with the 369 * CPU. 370 */ 371 if (!IS_DGFX(xe)) { 372 switch (bo->cpu_caching) { 373 case DRM_XE_GEM_CPU_CACHING_WC: 374 caching = ttm_write_combined; 375 break; 376 default: 377 caching = ttm_cached; 378 break; 379 } 380 381 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 382 383 /* 384 * Display scanout is always non-coherent with the CPU cache. 385 * 386 * For Xe_LPG and beyond, PPGTT PTE lookups are also 387 * non-coherent and require a CPU:WC mapping. 388 */ 389 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 390 (xe->info.graphics_verx100 >= 1270 && 391 bo->flags & XE_BO_FLAG_PAGETABLE)) 392 caching = ttm_write_combined; 393 } 394 395 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 396 /* 397 * Valid only for internally-created buffers only, for 398 * which cpu_caching is never initialized. 399 */ 400 xe_assert(xe, bo->cpu_caching == 0); 401 caching = ttm_uncached; 402 } 403 404 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 405 if (err) { 406 kfree(tt); 407 return NULL; 408 } 409 410 return &tt->ttm; 411 } 412 413 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 414 struct ttm_operation_ctx *ctx) 415 { 416 int err; 417 418 /* 419 * dma-bufs are not populated with pages, and the dma- 420 * addresses are set up when moved to XE_PL_TT. 421 */ 422 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 423 return 0; 424 425 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 426 if (err) 427 return err; 428 429 return err; 430 } 431 432 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 433 { 434 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 435 return; 436 437 xe_tt_unmap_sg(tt); 438 439 return ttm_pool_free(&ttm_dev->pool, tt); 440 } 441 442 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 443 { 444 ttm_tt_fini(tt); 445 kfree(tt); 446 } 447 448 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 449 { 450 struct xe_ttm_vram_mgr_resource *vres = 451 to_xe_ttm_vram_mgr_resource(mem); 452 453 return vres->used_visible_size == mem->size; 454 } 455 456 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 457 struct ttm_resource *mem) 458 { 459 struct xe_device *xe = ttm_to_xe_device(bdev); 460 461 switch (mem->mem_type) { 462 case XE_PL_SYSTEM: 463 case XE_PL_TT: 464 return 0; 465 case XE_PL_VRAM0: 466 case XE_PL_VRAM1: { 467 struct xe_mem_region *vram = res_to_mem_region(mem); 468 469 if (!xe_ttm_resource_visible(mem)) 470 return -EINVAL; 471 472 mem->bus.offset = mem->start << PAGE_SHIFT; 473 474 if (vram->mapping && 475 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 476 mem->bus.addr = (u8 __force *)vram->mapping + 477 mem->bus.offset; 478 479 mem->bus.offset += vram->io_start; 480 mem->bus.is_iomem = true; 481 482 #if !IS_ENABLED(CONFIG_X86) 483 mem->bus.caching = ttm_write_combined; 484 #endif 485 return 0; 486 } case XE_PL_STOLEN: 487 return xe_ttm_stolen_io_mem_reserve(xe, mem); 488 default: 489 return -EINVAL; 490 } 491 } 492 493 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 494 const struct ttm_operation_ctx *ctx) 495 { 496 struct dma_resv_iter cursor; 497 struct dma_fence *fence; 498 struct drm_gem_object *obj = &bo->ttm.base; 499 struct drm_gpuvm_bo *vm_bo; 500 bool idle = false; 501 int ret = 0; 502 503 dma_resv_assert_held(bo->ttm.base.resv); 504 505 if (!list_empty(&bo->ttm.base.gpuva.list)) { 506 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 507 DMA_RESV_USAGE_BOOKKEEP); 508 dma_resv_for_each_fence_unlocked(&cursor, fence) 509 dma_fence_enable_sw_signaling(fence); 510 dma_resv_iter_end(&cursor); 511 } 512 513 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 514 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 515 struct drm_gpuva *gpuva; 516 517 if (!xe_vm_in_fault_mode(vm)) { 518 drm_gpuvm_bo_evict(vm_bo, true); 519 continue; 520 } 521 522 if (!idle) { 523 long timeout; 524 525 if (ctx->no_wait_gpu && 526 !dma_resv_test_signaled(bo->ttm.base.resv, 527 DMA_RESV_USAGE_BOOKKEEP)) 528 return -EBUSY; 529 530 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 531 DMA_RESV_USAGE_BOOKKEEP, 532 ctx->interruptible, 533 MAX_SCHEDULE_TIMEOUT); 534 if (!timeout) 535 return -ETIME; 536 if (timeout < 0) 537 return timeout; 538 539 idle = true; 540 } 541 542 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 543 struct xe_vma *vma = gpuva_to_vma(gpuva); 544 545 trace_xe_vma_evict(vma); 546 ret = xe_vm_invalidate_vma(vma); 547 if (XE_WARN_ON(ret)) 548 return ret; 549 } 550 } 551 552 return ret; 553 } 554 555 /* 556 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 557 * Note that unmapping the attachment is deferred to the next 558 * map_attachment time, or to bo destroy (after idling) whichever comes first. 559 * This is to avoid syncing before unmap_attachment(), assuming that the 560 * caller relies on idling the reservation object before moving the 561 * backing store out. Should that assumption not hold, then we will be able 562 * to unconditionally call unmap_attachment() when moving out to system. 563 */ 564 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 565 struct ttm_resource *new_res) 566 { 567 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 568 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 569 ttm); 570 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 571 struct sg_table *sg; 572 573 xe_assert(xe, attach); 574 xe_assert(xe, ttm_bo->ttm); 575 576 if (new_res->mem_type == XE_PL_SYSTEM) 577 goto out; 578 579 if (ttm_bo->sg) { 580 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 581 ttm_bo->sg = NULL; 582 } 583 584 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 585 if (IS_ERR(sg)) 586 return PTR_ERR(sg); 587 588 ttm_bo->sg = sg; 589 xe_tt->sg = sg; 590 591 out: 592 ttm_bo_move_null(ttm_bo, new_res); 593 594 return 0; 595 } 596 597 /** 598 * xe_bo_move_notify - Notify subsystems of a pending move 599 * @bo: The buffer object 600 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 601 * 602 * This function notifies subsystems of an upcoming buffer move. 603 * Upon receiving such a notification, subsystems should schedule 604 * halting access to the underlying pages and optionally add a fence 605 * to the buffer object's dma_resv object, that signals when access is 606 * stopped. The caller will wait on all dma_resv fences before 607 * starting the move. 608 * 609 * A subsystem may commence access to the object after obtaining 610 * bindings to the new backing memory under the object lock. 611 * 612 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 613 * negative error code on error. 614 */ 615 static int xe_bo_move_notify(struct xe_bo *bo, 616 const struct ttm_operation_ctx *ctx) 617 { 618 struct ttm_buffer_object *ttm_bo = &bo->ttm; 619 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 620 struct ttm_resource *old_mem = ttm_bo->resource; 621 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 622 int ret; 623 624 /* 625 * If this starts to call into many components, consider 626 * using a notification chain here. 627 */ 628 629 if (xe_bo_is_pinned(bo)) 630 return -EINVAL; 631 632 xe_bo_vunmap(bo); 633 ret = xe_bo_trigger_rebind(xe, bo, ctx); 634 if (ret) 635 return ret; 636 637 /* Don't call move_notify() for imported dma-bufs. */ 638 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 639 dma_buf_move_notify(ttm_bo->base.dma_buf); 640 641 /* 642 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 643 * so if we moved from VRAM make sure to unlink this from the userfault 644 * tracking. 645 */ 646 if (mem_type_is_vram(old_mem_type)) { 647 mutex_lock(&xe->mem_access.vram_userfault.lock); 648 if (!list_empty(&bo->vram_userfault_link)) 649 list_del_init(&bo->vram_userfault_link); 650 mutex_unlock(&xe->mem_access.vram_userfault.lock); 651 } 652 653 return 0; 654 } 655 656 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 657 struct ttm_operation_ctx *ctx, 658 struct ttm_resource *new_mem, 659 struct ttm_place *hop) 660 { 661 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 662 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 663 struct ttm_resource *old_mem = ttm_bo->resource; 664 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 665 struct ttm_tt *ttm = ttm_bo->ttm; 666 struct xe_migrate *migrate = NULL; 667 struct dma_fence *fence; 668 bool move_lacks_source; 669 bool tt_has_data; 670 bool needs_clear; 671 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 672 ttm && ttm_tt_is_populated(ttm)) ? true : false; 673 int ret = 0; 674 675 /* Bo creation path, moving to system or TT. */ 676 if ((!old_mem && ttm) && !handle_system_ccs) { 677 if (new_mem->mem_type == XE_PL_TT) 678 ret = xe_tt_map_sg(ttm); 679 if (!ret) 680 ttm_bo_move_null(ttm_bo, new_mem); 681 goto out; 682 } 683 684 if (ttm_bo->type == ttm_bo_type_sg) { 685 ret = xe_bo_move_notify(bo, ctx); 686 if (!ret) 687 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 688 return ret; 689 } 690 691 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 692 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 693 694 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 695 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 696 697 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 698 (!ttm && ttm_bo->type == ttm_bo_type_device); 699 700 if (new_mem->mem_type == XE_PL_TT) { 701 ret = xe_tt_map_sg(ttm); 702 if (ret) 703 goto out; 704 } 705 706 if ((move_lacks_source && !needs_clear)) { 707 ttm_bo_move_null(ttm_bo, new_mem); 708 goto out; 709 } 710 711 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 712 ttm_bo_move_null(ttm_bo, new_mem); 713 goto out; 714 } 715 716 /* 717 * Failed multi-hop where the old_mem is still marked as 718 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 719 */ 720 if (old_mem_type == XE_PL_TT && 721 new_mem->mem_type == XE_PL_TT) { 722 ttm_bo_move_null(ttm_bo, new_mem); 723 goto out; 724 } 725 726 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 727 ret = xe_bo_move_notify(bo, ctx); 728 if (ret) 729 goto out; 730 } 731 732 if (old_mem_type == XE_PL_TT && 733 new_mem->mem_type == XE_PL_SYSTEM) { 734 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 735 DMA_RESV_USAGE_BOOKKEEP, 736 false, 737 MAX_SCHEDULE_TIMEOUT); 738 if (timeout < 0) { 739 ret = timeout; 740 goto out; 741 } 742 743 if (!handle_system_ccs) { 744 ttm_bo_move_null(ttm_bo, new_mem); 745 goto out; 746 } 747 } 748 749 if (!move_lacks_source && 750 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 751 (mem_type_is_vram(old_mem_type) && 752 new_mem->mem_type == XE_PL_SYSTEM))) { 753 hop->fpfn = 0; 754 hop->lpfn = 0; 755 hop->mem_type = XE_PL_TT; 756 hop->flags = TTM_PL_FLAG_TEMPORARY; 757 ret = -EMULTIHOP; 758 goto out; 759 } 760 761 if (bo->tile) 762 migrate = bo->tile->migrate; 763 else if (resource_is_vram(new_mem)) 764 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 765 else if (mem_type_is_vram(old_mem_type)) 766 migrate = mem_type_to_migrate(xe, old_mem_type); 767 else 768 migrate = xe->tiles[0].migrate; 769 770 xe_assert(xe, migrate); 771 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 772 if (xe_rpm_reclaim_safe(xe)) { 773 /* 774 * We might be called through swapout in the validation path of 775 * another TTM device, so acquire rpm here. 776 */ 777 xe_pm_runtime_get(xe); 778 } else { 779 drm_WARN_ON(&xe->drm, handle_system_ccs); 780 xe_pm_runtime_get_noresume(xe); 781 } 782 783 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 784 /* 785 * Kernel memory that is pinned should only be moved on suspend 786 * / resume, some of the pinned memory is required for the 787 * device to resume / use the GPU to move other evicted memory 788 * (user memory) around. This likely could be optimized a bit 789 * further where we find the minimum set of pinned memory 790 * required for resume but for simplity doing a memcpy for all 791 * pinned memory. 792 */ 793 ret = xe_bo_vmap(bo); 794 if (!ret) { 795 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 796 797 /* Create a new VMAP once kernel BO back in VRAM */ 798 if (!ret && resource_is_vram(new_mem)) { 799 struct xe_mem_region *vram = res_to_mem_region(new_mem); 800 void __iomem *new_addr = vram->mapping + 801 (new_mem->start << PAGE_SHIFT); 802 803 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 804 ret = -EINVAL; 805 xe_pm_runtime_put(xe); 806 goto out; 807 } 808 809 xe_assert(xe, new_mem->start == 810 bo->placements->fpfn); 811 812 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 813 } 814 } 815 } else { 816 if (move_lacks_source) { 817 u32 flags = 0; 818 819 if (mem_type_is_vram(new_mem->mem_type)) 820 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 821 else if (handle_system_ccs) 822 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 823 824 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 825 } 826 else 827 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 828 new_mem, handle_system_ccs); 829 if (IS_ERR(fence)) { 830 ret = PTR_ERR(fence); 831 xe_pm_runtime_put(xe); 832 goto out; 833 } 834 if (!move_lacks_source) { 835 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 836 true, new_mem); 837 if (ret) { 838 dma_fence_wait(fence, false); 839 ttm_bo_move_null(ttm_bo, new_mem); 840 ret = 0; 841 } 842 } else { 843 /* 844 * ttm_bo_move_accel_cleanup() may blow up if 845 * bo->resource == NULL, so just attach the 846 * fence and set the new resource. 847 */ 848 dma_resv_add_fence(ttm_bo->base.resv, fence, 849 DMA_RESV_USAGE_KERNEL); 850 ttm_bo_move_null(ttm_bo, new_mem); 851 } 852 853 dma_fence_put(fence); 854 } 855 856 xe_pm_runtime_put(xe); 857 858 out: 859 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 860 ttm_bo->ttm) { 861 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 862 DMA_RESV_USAGE_KERNEL, 863 false, 864 MAX_SCHEDULE_TIMEOUT); 865 if (timeout < 0) 866 ret = timeout; 867 868 xe_tt_unmap_sg(ttm_bo->ttm); 869 } 870 871 return ret; 872 } 873 874 /** 875 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 876 * @bo: The buffer object to move. 877 * 878 * On successful completion, the object memory will be moved to system memory. 879 * 880 * This is needed to for special handling of pinned VRAM object during 881 * suspend-resume. 882 * 883 * Return: 0 on success. Negative error code on failure. 884 */ 885 int xe_bo_evict_pinned(struct xe_bo *bo) 886 { 887 struct ttm_place place = { 888 .mem_type = XE_PL_TT, 889 }; 890 struct ttm_placement placement = { 891 .placement = &place, 892 .num_placement = 1, 893 }; 894 struct ttm_operation_ctx ctx = { 895 .interruptible = false, 896 .gfp_retry_mayfail = true, 897 }; 898 struct ttm_resource *new_mem; 899 int ret; 900 901 xe_bo_assert_held(bo); 902 903 if (WARN_ON(!bo->ttm.resource)) 904 return -EINVAL; 905 906 if (WARN_ON(!xe_bo_is_pinned(bo))) 907 return -EINVAL; 908 909 if (!xe_bo_is_vram(bo)) 910 return 0; 911 912 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 913 if (ret) 914 return ret; 915 916 if (!bo->ttm.ttm) { 917 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 918 if (!bo->ttm.ttm) { 919 ret = -ENOMEM; 920 goto err_res_free; 921 } 922 } 923 924 ret = ttm_bo_populate(&bo->ttm, &ctx); 925 if (ret) 926 goto err_res_free; 927 928 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 929 if (ret) 930 goto err_res_free; 931 932 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 933 if (ret) 934 goto err_res_free; 935 936 return 0; 937 938 err_res_free: 939 ttm_resource_free(&bo->ttm, &new_mem); 940 return ret; 941 } 942 943 /** 944 * xe_bo_restore_pinned() - Restore a pinned VRAM object 945 * @bo: The buffer object to move. 946 * 947 * On successful completion, the object memory will be moved back to VRAM. 948 * 949 * This is needed to for special handling of pinned VRAM object during 950 * suspend-resume. 951 * 952 * Return: 0 on success. Negative error code on failure. 953 */ 954 int xe_bo_restore_pinned(struct xe_bo *bo) 955 { 956 struct ttm_operation_ctx ctx = { 957 .interruptible = false, 958 .gfp_retry_mayfail = false, 959 }; 960 struct ttm_resource *new_mem; 961 struct ttm_place *place = &bo->placements[0]; 962 int ret; 963 964 xe_bo_assert_held(bo); 965 966 if (WARN_ON(!bo->ttm.resource)) 967 return -EINVAL; 968 969 if (WARN_ON(!xe_bo_is_pinned(bo))) 970 return -EINVAL; 971 972 if (WARN_ON(xe_bo_is_vram(bo))) 973 return -EINVAL; 974 975 if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo))) 976 return -EINVAL; 977 978 if (!mem_type_is_vram(place->mem_type)) 979 return 0; 980 981 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 982 if (ret) 983 return ret; 984 985 ret = ttm_bo_populate(&bo->ttm, &ctx); 986 if (ret) 987 goto err_res_free; 988 989 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 990 if (ret) 991 goto err_res_free; 992 993 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 994 if (ret) 995 goto err_res_free; 996 997 return 0; 998 999 err_res_free: 1000 ttm_resource_free(&bo->ttm, &new_mem); 1001 return ret; 1002 } 1003 1004 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1005 unsigned long page_offset) 1006 { 1007 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1008 struct xe_res_cursor cursor; 1009 struct xe_mem_region *vram; 1010 1011 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1012 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1013 1014 vram = res_to_mem_region(ttm_bo->resource); 1015 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1016 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1017 } 1018 1019 static void __xe_bo_vunmap(struct xe_bo *bo); 1020 1021 /* 1022 * TODO: Move this function to TTM so we don't rely on how TTM does its 1023 * locking, thereby abusing TTM internals. 1024 */ 1025 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1026 { 1027 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1028 bool locked; 1029 1030 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1031 1032 /* 1033 * We can typically only race with TTM trylocking under the 1034 * lru_lock, which will immediately be unlocked again since 1035 * the ttm_bo refcount is zero at this point. So trylocking *should* 1036 * always succeed here, as long as we hold the lru lock. 1037 */ 1038 spin_lock(&ttm_bo->bdev->lru_lock); 1039 locked = dma_resv_trylock(ttm_bo->base.resv); 1040 spin_unlock(&ttm_bo->bdev->lru_lock); 1041 xe_assert(xe, locked); 1042 1043 return locked; 1044 } 1045 1046 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1047 { 1048 struct dma_resv_iter cursor; 1049 struct dma_fence *fence; 1050 struct dma_fence *replacement = NULL; 1051 struct xe_bo *bo; 1052 1053 if (!xe_bo_is_xe_bo(ttm_bo)) 1054 return; 1055 1056 bo = ttm_to_xe_bo(ttm_bo); 1057 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1058 1059 /* 1060 * Corner case where TTM fails to allocate memory and this BOs resv 1061 * still points the VMs resv 1062 */ 1063 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1064 return; 1065 1066 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1067 return; 1068 1069 /* 1070 * Scrub the preempt fences if any. The unbind fence is already 1071 * attached to the resv. 1072 * TODO: Don't do this for external bos once we scrub them after 1073 * unbind. 1074 */ 1075 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1076 DMA_RESV_USAGE_BOOKKEEP, fence) { 1077 if (xe_fence_is_xe_preempt(fence) && 1078 !dma_fence_is_signaled(fence)) { 1079 if (!replacement) 1080 replacement = dma_fence_get_stub(); 1081 1082 dma_resv_replace_fences(ttm_bo->base.resv, 1083 fence->context, 1084 replacement, 1085 DMA_RESV_USAGE_BOOKKEEP); 1086 } 1087 } 1088 dma_fence_put(replacement); 1089 1090 dma_resv_unlock(ttm_bo->base.resv); 1091 } 1092 1093 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1094 { 1095 if (!xe_bo_is_xe_bo(ttm_bo)) 1096 return; 1097 1098 /* 1099 * Object is idle and about to be destroyed. Release the 1100 * dma-buf attachment. 1101 */ 1102 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1103 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1104 struct xe_ttm_tt, ttm); 1105 1106 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1107 DMA_BIDIRECTIONAL); 1108 ttm_bo->sg = NULL; 1109 xe_tt->sg = NULL; 1110 } 1111 } 1112 1113 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1114 { 1115 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1116 1117 if (ttm_bo->ttm) { 1118 struct ttm_placement place = {}; 1119 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1120 1121 drm_WARN_ON(&xe->drm, ret); 1122 } 1123 } 1124 1125 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1126 { 1127 struct ttm_operation_ctx ctx = { 1128 .interruptible = false, 1129 .gfp_retry_mayfail = false, 1130 }; 1131 1132 if (ttm_bo->ttm) { 1133 struct xe_ttm_tt *xe_tt = 1134 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1135 1136 if (xe_tt->purgeable) 1137 xe_ttm_bo_purge(ttm_bo, &ctx); 1138 } 1139 } 1140 1141 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1142 unsigned long offset, void *buf, int len, 1143 int write) 1144 { 1145 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1146 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1147 struct iosys_map vmap; 1148 struct xe_res_cursor cursor; 1149 struct xe_mem_region *vram; 1150 int bytes_left = len; 1151 1152 xe_bo_assert_held(bo); 1153 xe_device_assert_mem_access(xe); 1154 1155 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1156 return -EIO; 1157 1158 /* FIXME: Use GPU for non-visible VRAM */ 1159 if (!xe_ttm_resource_visible(ttm_bo->resource)) 1160 return -EIO; 1161 1162 vram = res_to_mem_region(ttm_bo->resource); 1163 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1164 bo->size - (offset & PAGE_MASK), &cursor); 1165 1166 do { 1167 unsigned long page_offset = (offset & ~PAGE_MASK); 1168 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1169 1170 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1171 cursor.start); 1172 if (write) 1173 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1174 else 1175 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1176 1177 buf += byte_count; 1178 offset += byte_count; 1179 bytes_left -= byte_count; 1180 if (bytes_left) 1181 xe_res_next(&cursor, PAGE_SIZE); 1182 } while (bytes_left); 1183 1184 return len; 1185 } 1186 1187 const struct ttm_device_funcs xe_ttm_funcs = { 1188 .ttm_tt_create = xe_ttm_tt_create, 1189 .ttm_tt_populate = xe_ttm_tt_populate, 1190 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1191 .ttm_tt_destroy = xe_ttm_tt_destroy, 1192 .evict_flags = xe_evict_flags, 1193 .move = xe_bo_move, 1194 .io_mem_reserve = xe_ttm_io_mem_reserve, 1195 .io_mem_pfn = xe_ttm_io_mem_pfn, 1196 .access_memory = xe_ttm_access_memory, 1197 .release_notify = xe_ttm_bo_release_notify, 1198 .eviction_valuable = ttm_bo_eviction_valuable, 1199 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1200 .swap_notify = xe_ttm_bo_swap_notify, 1201 }; 1202 1203 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1204 { 1205 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1206 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1207 struct xe_tile *tile; 1208 u8 id; 1209 1210 if (bo->ttm.base.import_attach) 1211 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1212 drm_gem_object_release(&bo->ttm.base); 1213 1214 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1215 1216 for_each_tile(tile, xe, id) 1217 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1218 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1219 1220 #ifdef CONFIG_PROC_FS 1221 if (bo->client) 1222 xe_drm_client_remove_bo(bo); 1223 #endif 1224 1225 if (bo->vm && xe_bo_is_user(bo)) 1226 xe_vm_put(bo->vm); 1227 1228 mutex_lock(&xe->mem_access.vram_userfault.lock); 1229 if (!list_empty(&bo->vram_userfault_link)) 1230 list_del(&bo->vram_userfault_link); 1231 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1232 1233 kfree(bo); 1234 } 1235 1236 static void xe_gem_object_free(struct drm_gem_object *obj) 1237 { 1238 /* Our BO reference counting scheme works as follows: 1239 * 1240 * The gem object kref is typically used throughout the driver, 1241 * and the gem object holds a ttm_buffer_object refcount, so 1242 * that when the last gem object reference is put, which is when 1243 * we end up in this function, we put also that ttm_buffer_object 1244 * refcount. Anything using gem interfaces is then no longer 1245 * allowed to access the object in a way that requires a gem 1246 * refcount, including locking the object. 1247 * 1248 * driver ttm callbacks is allowed to use the ttm_buffer_object 1249 * refcount directly if needed. 1250 */ 1251 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1252 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1253 } 1254 1255 static void xe_gem_object_close(struct drm_gem_object *obj, 1256 struct drm_file *file_priv) 1257 { 1258 struct xe_bo *bo = gem_to_xe_bo(obj); 1259 1260 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1261 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1262 1263 xe_bo_lock(bo, false); 1264 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1265 xe_bo_unlock(bo); 1266 } 1267 } 1268 1269 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1270 { 1271 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1272 struct drm_device *ddev = tbo->base.dev; 1273 struct xe_device *xe = to_xe_device(ddev); 1274 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1275 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1276 vm_fault_t ret; 1277 int idx; 1278 1279 if (needs_rpm) 1280 xe_pm_runtime_get(xe); 1281 1282 ret = ttm_bo_vm_reserve(tbo, vmf); 1283 if (ret) 1284 goto out; 1285 1286 if (drm_dev_enter(ddev, &idx)) { 1287 trace_xe_bo_cpu_fault(bo); 1288 1289 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1290 TTM_BO_VM_NUM_PREFAULT); 1291 drm_dev_exit(idx); 1292 } else { 1293 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1294 } 1295 1296 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1297 goto out; 1298 /* 1299 * ttm_bo_vm_reserve() already has dma_resv_lock. 1300 */ 1301 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1302 mutex_lock(&xe->mem_access.vram_userfault.lock); 1303 if (list_empty(&bo->vram_userfault_link)) 1304 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1305 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1306 } 1307 1308 dma_resv_unlock(tbo->base.resv); 1309 out: 1310 if (needs_rpm) 1311 xe_pm_runtime_put(xe); 1312 1313 return ret; 1314 } 1315 1316 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1317 void *buf, int len, int write) 1318 { 1319 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1320 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1321 struct xe_device *xe = xe_bo_device(bo); 1322 int ret; 1323 1324 xe_pm_runtime_get(xe); 1325 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1326 xe_pm_runtime_put(xe); 1327 1328 return ret; 1329 } 1330 1331 /** 1332 * xe_bo_read() - Read from an xe_bo 1333 * @bo: The buffer object to read from. 1334 * @offset: The byte offset to start reading from. 1335 * @dst: Location to store the read. 1336 * @size: Size in bytes for the read. 1337 * 1338 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1339 * 1340 * Return: Zero on success, or negative error. 1341 */ 1342 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1343 { 1344 int ret; 1345 1346 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1347 if (ret >= 0 && ret != size) 1348 ret = -EIO; 1349 else if (ret == size) 1350 ret = 0; 1351 1352 return ret; 1353 } 1354 1355 static const struct vm_operations_struct xe_gem_vm_ops = { 1356 .fault = xe_gem_fault, 1357 .open = ttm_bo_vm_open, 1358 .close = ttm_bo_vm_close, 1359 .access = xe_bo_vm_access, 1360 }; 1361 1362 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1363 .free = xe_gem_object_free, 1364 .close = xe_gem_object_close, 1365 .mmap = drm_gem_ttm_mmap, 1366 .export = xe_gem_prime_export, 1367 .vm_ops = &xe_gem_vm_ops, 1368 }; 1369 1370 /** 1371 * xe_bo_alloc - Allocate storage for a struct xe_bo 1372 * 1373 * This function is intended to allocate storage to be used for input 1374 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1375 * created is needed before the call to __xe_bo_create_locked(). 1376 * If __xe_bo_create_locked ends up never to be called, then the 1377 * storage allocated with this function needs to be freed using 1378 * xe_bo_free(). 1379 * 1380 * Return: A pointer to an uninitialized struct xe_bo on success, 1381 * ERR_PTR(-ENOMEM) on error. 1382 */ 1383 struct xe_bo *xe_bo_alloc(void) 1384 { 1385 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1386 1387 if (!bo) 1388 return ERR_PTR(-ENOMEM); 1389 1390 return bo; 1391 } 1392 1393 /** 1394 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1395 * @bo: The buffer object storage. 1396 * 1397 * Refer to xe_bo_alloc() documentation for valid use-cases. 1398 */ 1399 void xe_bo_free(struct xe_bo *bo) 1400 { 1401 kfree(bo); 1402 } 1403 1404 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1405 struct xe_tile *tile, struct dma_resv *resv, 1406 struct ttm_lru_bulk_move *bulk, size_t size, 1407 u16 cpu_caching, enum ttm_bo_type type, 1408 u32 flags) 1409 { 1410 struct ttm_operation_ctx ctx = { 1411 .interruptible = true, 1412 .no_wait_gpu = false, 1413 .gfp_retry_mayfail = true, 1414 }; 1415 struct ttm_placement *placement; 1416 uint32_t alignment; 1417 size_t aligned_size; 1418 int err; 1419 1420 /* Only kernel objects should set GT */ 1421 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1422 1423 if (XE_WARN_ON(!size)) { 1424 xe_bo_free(bo); 1425 return ERR_PTR(-EINVAL); 1426 } 1427 1428 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1429 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1430 return ERR_PTR(-EINVAL); 1431 1432 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1433 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1434 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1435 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1436 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1437 1438 aligned_size = ALIGN(size, align); 1439 if (type != ttm_bo_type_device) 1440 size = ALIGN(size, align); 1441 flags |= XE_BO_FLAG_INTERNAL_64K; 1442 alignment = align >> PAGE_SHIFT; 1443 } else { 1444 aligned_size = ALIGN(size, SZ_4K); 1445 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1446 alignment = SZ_4K >> PAGE_SHIFT; 1447 } 1448 1449 if (type == ttm_bo_type_device && aligned_size != size) 1450 return ERR_PTR(-EINVAL); 1451 1452 if (!bo) { 1453 bo = xe_bo_alloc(); 1454 if (IS_ERR(bo)) 1455 return bo; 1456 } 1457 1458 bo->ccs_cleared = false; 1459 bo->tile = tile; 1460 bo->size = size; 1461 bo->flags = flags; 1462 bo->cpu_caching = cpu_caching; 1463 bo->ttm.base.funcs = &xe_gem_object_funcs; 1464 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1465 INIT_LIST_HEAD(&bo->pinned_link); 1466 #ifdef CONFIG_PROC_FS 1467 INIT_LIST_HEAD(&bo->client_link); 1468 #endif 1469 INIT_LIST_HEAD(&bo->vram_userfault_link); 1470 1471 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1472 1473 if (resv) { 1474 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1475 ctx.resv = resv; 1476 } 1477 1478 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1479 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1480 if (WARN_ON(err)) { 1481 xe_ttm_bo_destroy(&bo->ttm); 1482 return ERR_PTR(err); 1483 } 1484 } 1485 1486 /* Defer populating type_sg bos */ 1487 placement = (type == ttm_bo_type_sg || 1488 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1489 &bo->placement; 1490 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1491 placement, alignment, 1492 &ctx, NULL, resv, xe_ttm_bo_destroy); 1493 if (err) 1494 return ERR_PTR(err); 1495 1496 /* 1497 * The VRAM pages underneath are potentially still being accessed by the 1498 * GPU, as per async GPU clearing and async evictions. However TTM makes 1499 * sure to add any corresponding move/clear fences into the objects 1500 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1501 * 1502 * For KMD internal buffers we don't care about GPU clearing, however we 1503 * still need to handle async evictions, where the VRAM is still being 1504 * accessed by the GPU. Most internal callers are not expecting this, 1505 * since they are missing the required synchronisation before accessing 1506 * the memory. To keep things simple just sync wait any kernel fences 1507 * here, if the buffer is designated KMD internal. 1508 * 1509 * For normal userspace objects we should already have the required 1510 * pipelining or sync waiting elsewhere, since we already have to deal 1511 * with things like async GPU clearing. 1512 */ 1513 if (type == ttm_bo_type_kernel) { 1514 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1515 DMA_RESV_USAGE_KERNEL, 1516 ctx.interruptible, 1517 MAX_SCHEDULE_TIMEOUT); 1518 1519 if (timeout < 0) { 1520 if (!resv) 1521 dma_resv_unlock(bo->ttm.base.resv); 1522 xe_bo_put(bo); 1523 return ERR_PTR(timeout); 1524 } 1525 } 1526 1527 bo->created = true; 1528 if (bulk) 1529 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1530 else 1531 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1532 1533 return bo; 1534 } 1535 1536 static int __xe_bo_fixed_placement(struct xe_device *xe, 1537 struct xe_bo *bo, 1538 u32 flags, 1539 u64 start, u64 end, u64 size) 1540 { 1541 struct ttm_place *place = bo->placements; 1542 1543 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1544 return -EINVAL; 1545 1546 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1547 place->fpfn = start >> PAGE_SHIFT; 1548 place->lpfn = end >> PAGE_SHIFT; 1549 1550 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1551 case XE_BO_FLAG_VRAM0: 1552 place->mem_type = XE_PL_VRAM0; 1553 break; 1554 case XE_BO_FLAG_VRAM1: 1555 place->mem_type = XE_PL_VRAM1; 1556 break; 1557 case XE_BO_FLAG_STOLEN: 1558 place->mem_type = XE_PL_STOLEN; 1559 break; 1560 1561 default: 1562 /* 0 or multiple of the above set */ 1563 return -EINVAL; 1564 } 1565 1566 bo->placement = (struct ttm_placement) { 1567 .num_placement = 1, 1568 .placement = place, 1569 }; 1570 1571 return 0; 1572 } 1573 1574 static struct xe_bo * 1575 __xe_bo_create_locked(struct xe_device *xe, 1576 struct xe_tile *tile, struct xe_vm *vm, 1577 size_t size, u64 start, u64 end, 1578 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 1579 u64 alignment) 1580 { 1581 struct xe_bo *bo = NULL; 1582 int err; 1583 1584 if (vm) 1585 xe_vm_assert_held(vm); 1586 1587 if (start || end != ~0ULL) { 1588 bo = xe_bo_alloc(); 1589 if (IS_ERR(bo)) 1590 return bo; 1591 1592 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1593 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1594 if (err) { 1595 xe_bo_free(bo); 1596 return ERR_PTR(err); 1597 } 1598 } 1599 1600 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1601 vm && !xe_vm_in_fault_mode(vm) && 1602 flags & XE_BO_FLAG_USER ? 1603 &vm->lru_bulk_move : NULL, size, 1604 cpu_caching, type, flags); 1605 if (IS_ERR(bo)) 1606 return bo; 1607 1608 bo->min_align = alignment; 1609 1610 /* 1611 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1612 * to ensure the shared resv doesn't disappear under the bo, the bo 1613 * will keep a reference to the vm, and avoid circular references 1614 * by having all the vm's bo refereferences released at vm close 1615 * time. 1616 */ 1617 if (vm && xe_bo_is_user(bo)) 1618 xe_vm_get(vm); 1619 bo->vm = vm; 1620 1621 if (bo->flags & XE_BO_FLAG_GGTT) { 1622 struct xe_tile *t; 1623 u8 id; 1624 1625 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 1626 if (!tile && flags & XE_BO_FLAG_STOLEN) 1627 tile = xe_device_get_root_tile(xe); 1628 1629 xe_assert(xe, tile); 1630 } 1631 1632 for_each_tile(t, xe, id) { 1633 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 1634 continue; 1635 1636 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1637 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 1638 start + bo->size, U64_MAX); 1639 } else { 1640 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 1641 } 1642 if (err) 1643 goto err_unlock_put_bo; 1644 } 1645 } 1646 1647 return bo; 1648 1649 err_unlock_put_bo: 1650 __xe_bo_unset_bulk_move(bo); 1651 xe_bo_unlock_vm_held(bo); 1652 xe_bo_put(bo); 1653 return ERR_PTR(err); 1654 } 1655 1656 struct xe_bo * 1657 xe_bo_create_locked_range(struct xe_device *xe, 1658 struct xe_tile *tile, struct xe_vm *vm, 1659 size_t size, u64 start, u64 end, 1660 enum ttm_bo_type type, u32 flags, u64 alignment) 1661 { 1662 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 1663 flags, alignment); 1664 } 1665 1666 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1667 struct xe_vm *vm, size_t size, 1668 enum ttm_bo_type type, u32 flags) 1669 { 1670 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 1671 flags, 0); 1672 } 1673 1674 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1675 struct xe_vm *vm, size_t size, 1676 u16 cpu_caching, 1677 u32 flags) 1678 { 1679 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1680 cpu_caching, ttm_bo_type_device, 1681 flags | XE_BO_FLAG_USER, 0); 1682 if (!IS_ERR(bo)) 1683 xe_bo_unlock_vm_held(bo); 1684 1685 return bo; 1686 } 1687 1688 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1689 struct xe_vm *vm, size_t size, 1690 enum ttm_bo_type type, u32 flags) 1691 { 1692 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1693 1694 if (!IS_ERR(bo)) 1695 xe_bo_unlock_vm_held(bo); 1696 1697 return bo; 1698 } 1699 1700 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1701 struct xe_vm *vm, 1702 size_t size, u64 offset, 1703 enum ttm_bo_type type, u32 flags) 1704 { 1705 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 1706 type, flags, 0); 1707 } 1708 1709 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 1710 struct xe_tile *tile, 1711 struct xe_vm *vm, 1712 size_t size, u64 offset, 1713 enum ttm_bo_type type, u32 flags, 1714 u64 alignment) 1715 { 1716 struct xe_bo *bo; 1717 int err; 1718 u64 start = offset == ~0ull ? 0 : offset; 1719 u64 end = offset == ~0ull ? offset : start + size; 1720 1721 if (flags & XE_BO_FLAG_STOLEN && 1722 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1723 flags |= XE_BO_FLAG_GGTT; 1724 1725 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1726 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS, 1727 alignment); 1728 if (IS_ERR(bo)) 1729 return bo; 1730 1731 err = xe_bo_pin(bo); 1732 if (err) 1733 goto err_put; 1734 1735 err = xe_bo_vmap(bo); 1736 if (err) 1737 goto err_unpin; 1738 1739 xe_bo_unlock_vm_held(bo); 1740 1741 return bo; 1742 1743 err_unpin: 1744 xe_bo_unpin(bo); 1745 err_put: 1746 xe_bo_unlock_vm_held(bo); 1747 xe_bo_put(bo); 1748 return ERR_PTR(err); 1749 } 1750 1751 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1752 struct xe_vm *vm, size_t size, 1753 enum ttm_bo_type type, u32 flags) 1754 { 1755 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1756 } 1757 1758 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1759 const void *data, size_t size, 1760 enum ttm_bo_type type, u32 flags) 1761 { 1762 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1763 ALIGN(size, PAGE_SIZE), 1764 type, flags); 1765 if (IS_ERR(bo)) 1766 return bo; 1767 1768 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1769 1770 return bo; 1771 } 1772 1773 static void __xe_bo_unpin_map_no_vm(void *arg) 1774 { 1775 xe_bo_unpin_map_no_vm(arg); 1776 } 1777 1778 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1779 size_t size, u32 flags) 1780 { 1781 struct xe_bo *bo; 1782 int ret; 1783 1784 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1785 if (IS_ERR(bo)) 1786 return bo; 1787 1788 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 1789 if (ret) 1790 return ERR_PTR(ret); 1791 1792 return bo; 1793 } 1794 1795 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1796 const void *data, size_t size, u32 flags) 1797 { 1798 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1799 1800 if (IS_ERR(bo)) 1801 return bo; 1802 1803 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1804 1805 return bo; 1806 } 1807 1808 /** 1809 * xe_managed_bo_reinit_in_vram 1810 * @xe: xe device 1811 * @tile: Tile where the new buffer will be created 1812 * @src: Managed buffer object allocated in system memory 1813 * 1814 * Replace a managed src buffer object allocated in system memory with a new 1815 * one allocated in vram, copying the data between them. 1816 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1817 * is responsible for making sure that any old references to it are updated. 1818 * 1819 * Returns 0 for success, negative error code otherwise. 1820 */ 1821 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1822 { 1823 struct xe_bo *bo; 1824 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1825 1826 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1827 1828 xe_assert(xe, IS_DGFX(xe)); 1829 xe_assert(xe, !(*src)->vmap.is_iomem); 1830 1831 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1832 (*src)->size, dst_flags); 1833 if (IS_ERR(bo)) 1834 return PTR_ERR(bo); 1835 1836 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 1837 *src = bo; 1838 1839 return 0; 1840 } 1841 1842 /* 1843 * XXX: This is in the VM bind data path, likely should calculate this once and 1844 * store, with a recalculation if the BO is moved. 1845 */ 1846 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1847 { 1848 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1849 1850 if (res->mem_type == XE_PL_STOLEN) 1851 return xe_ttm_stolen_gpu_offset(xe); 1852 1853 return res_to_mem_region(res)->dpa_base; 1854 } 1855 1856 /** 1857 * xe_bo_pin_external - pin an external BO 1858 * @bo: buffer object to be pinned 1859 * 1860 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1861 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1862 * asserts and code to ensure evict / restore on suspend / resume. 1863 * 1864 * Returns 0 for success, negative error code otherwise. 1865 */ 1866 int xe_bo_pin_external(struct xe_bo *bo) 1867 { 1868 struct xe_device *xe = xe_bo_device(bo); 1869 int err; 1870 1871 xe_assert(xe, !bo->vm); 1872 xe_assert(xe, xe_bo_is_user(bo)); 1873 1874 if (!xe_bo_is_pinned(bo)) { 1875 err = xe_bo_validate(bo, NULL, false); 1876 if (err) 1877 return err; 1878 1879 if (xe_bo_is_vram(bo)) { 1880 spin_lock(&xe->pinned.lock); 1881 list_add_tail(&bo->pinned_link, 1882 &xe->pinned.external_vram); 1883 spin_unlock(&xe->pinned.lock); 1884 } 1885 } 1886 1887 ttm_bo_pin(&bo->ttm); 1888 1889 /* 1890 * FIXME: If we always use the reserve / unreserve functions for locking 1891 * we do not need this. 1892 */ 1893 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1894 1895 return 0; 1896 } 1897 1898 int xe_bo_pin(struct xe_bo *bo) 1899 { 1900 struct ttm_place *place = &bo->placements[0]; 1901 struct xe_device *xe = xe_bo_device(bo); 1902 int err; 1903 1904 /* We currently don't expect user BO to be pinned */ 1905 xe_assert(xe, !xe_bo_is_user(bo)); 1906 1907 /* Pinned object must be in GGTT or have pinned flag */ 1908 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1909 XE_BO_FLAG_GGTT)); 1910 1911 /* 1912 * No reason we can't support pinning imported dma-bufs we just don't 1913 * expect to pin an imported dma-buf. 1914 */ 1915 xe_assert(xe, !bo->ttm.base.import_attach); 1916 1917 /* We only expect at most 1 pin */ 1918 xe_assert(xe, !xe_bo_is_pinned(bo)); 1919 1920 err = xe_bo_validate(bo, NULL, false); 1921 if (err) 1922 return err; 1923 1924 /* 1925 * For pinned objects in on DGFX, which are also in vram, we expect 1926 * these to be in contiguous VRAM memory. Required eviction / restore 1927 * during suspend / resume (force restore to same physical address). 1928 */ 1929 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1930 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1931 if (mem_type_is_vram(place->mem_type)) { 1932 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1933 1934 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1935 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1936 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1937 } 1938 } 1939 1940 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 1941 spin_lock(&xe->pinned.lock); 1942 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1943 spin_unlock(&xe->pinned.lock); 1944 } 1945 1946 ttm_bo_pin(&bo->ttm); 1947 1948 /* 1949 * FIXME: If we always use the reserve / unreserve functions for locking 1950 * we do not need this. 1951 */ 1952 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1953 1954 return 0; 1955 } 1956 1957 /** 1958 * xe_bo_unpin_external - unpin an external BO 1959 * @bo: buffer object to be unpinned 1960 * 1961 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1962 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1963 * asserts and code to ensure evict / restore on suspend / resume. 1964 * 1965 * Returns 0 for success, negative error code otherwise. 1966 */ 1967 void xe_bo_unpin_external(struct xe_bo *bo) 1968 { 1969 struct xe_device *xe = xe_bo_device(bo); 1970 1971 xe_assert(xe, !bo->vm); 1972 xe_assert(xe, xe_bo_is_pinned(bo)); 1973 xe_assert(xe, xe_bo_is_user(bo)); 1974 1975 spin_lock(&xe->pinned.lock); 1976 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1977 list_del_init(&bo->pinned_link); 1978 spin_unlock(&xe->pinned.lock); 1979 1980 ttm_bo_unpin(&bo->ttm); 1981 1982 /* 1983 * FIXME: If we always use the reserve / unreserve functions for locking 1984 * we do not need this. 1985 */ 1986 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1987 } 1988 1989 void xe_bo_unpin(struct xe_bo *bo) 1990 { 1991 struct ttm_place *place = &bo->placements[0]; 1992 struct xe_device *xe = xe_bo_device(bo); 1993 1994 xe_assert(xe, !bo->ttm.base.import_attach); 1995 xe_assert(xe, xe_bo_is_pinned(bo)); 1996 1997 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 1998 spin_lock(&xe->pinned.lock); 1999 xe_assert(xe, !list_empty(&bo->pinned_link)); 2000 list_del_init(&bo->pinned_link); 2001 spin_unlock(&xe->pinned.lock); 2002 } 2003 ttm_bo_unpin(&bo->ttm); 2004 } 2005 2006 /** 2007 * xe_bo_validate() - Make sure the bo is in an allowed placement 2008 * @bo: The bo, 2009 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2010 * NULL. Used together with @allow_res_evict. 2011 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2012 * reservation object. 2013 * 2014 * Make sure the bo is in allowed placement, migrating it if necessary. If 2015 * needed, other bos will be evicted. If bos selected for eviction shares 2016 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2017 * set to true, otherwise they will be bypassed. 2018 * 2019 * Return: 0 on success, negative error code on failure. May return 2020 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2021 */ 2022 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2023 { 2024 struct ttm_operation_ctx ctx = { 2025 .interruptible = true, 2026 .no_wait_gpu = false, 2027 .gfp_retry_mayfail = true, 2028 }; 2029 2030 if (vm) { 2031 lockdep_assert_held(&vm->lock); 2032 xe_vm_assert_held(vm); 2033 2034 ctx.allow_res_evict = allow_res_evict; 2035 ctx.resv = xe_vm_resv(vm); 2036 } 2037 2038 trace_xe_bo_validate(bo); 2039 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2040 } 2041 2042 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2043 { 2044 if (bo->destroy == &xe_ttm_bo_destroy) 2045 return true; 2046 2047 return false; 2048 } 2049 2050 /* 2051 * Resolve a BO address. There is no assert to check if the proper lock is held 2052 * so it should only be used in cases where it is not fatal to get the wrong 2053 * address, such as printing debug information, but not in cases where memory is 2054 * written based on this result. 2055 */ 2056 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2057 { 2058 struct xe_device *xe = xe_bo_device(bo); 2059 struct xe_res_cursor cur; 2060 u64 page; 2061 2062 xe_assert(xe, page_size <= PAGE_SIZE); 2063 page = offset >> PAGE_SHIFT; 2064 offset &= (PAGE_SIZE - 1); 2065 2066 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2067 xe_assert(xe, bo->ttm.ttm); 2068 2069 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2070 page_size, &cur); 2071 return xe_res_dma(&cur) + offset; 2072 } else { 2073 struct xe_res_cursor cur; 2074 2075 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2076 page_size, &cur); 2077 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2078 } 2079 } 2080 2081 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2082 { 2083 if (!READ_ONCE(bo->ttm.pin_count)) 2084 xe_bo_assert_held(bo); 2085 return __xe_bo_addr(bo, offset, page_size); 2086 } 2087 2088 int xe_bo_vmap(struct xe_bo *bo) 2089 { 2090 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2091 void *virtual; 2092 bool is_iomem; 2093 int ret; 2094 2095 xe_bo_assert_held(bo); 2096 2097 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2098 !force_contiguous(bo->flags))) 2099 return -EINVAL; 2100 2101 if (!iosys_map_is_null(&bo->vmap)) 2102 return 0; 2103 2104 /* 2105 * We use this more or less deprecated interface for now since 2106 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2107 * single page bos, which is done here. 2108 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2109 * to use struct iosys_map. 2110 */ 2111 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 2112 if (ret) 2113 return ret; 2114 2115 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2116 if (is_iomem) 2117 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2118 else 2119 iosys_map_set_vaddr(&bo->vmap, virtual); 2120 2121 return 0; 2122 } 2123 2124 static void __xe_bo_vunmap(struct xe_bo *bo) 2125 { 2126 if (!iosys_map_is_null(&bo->vmap)) { 2127 iosys_map_clear(&bo->vmap); 2128 ttm_bo_kunmap(&bo->kmap); 2129 } 2130 } 2131 2132 void xe_bo_vunmap(struct xe_bo *bo) 2133 { 2134 xe_bo_assert_held(bo); 2135 __xe_bo_vunmap(bo); 2136 } 2137 2138 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2139 struct drm_file *file) 2140 { 2141 struct xe_device *xe = to_xe_device(dev); 2142 struct xe_file *xef = to_xe_file(file); 2143 struct drm_xe_gem_create *args = data; 2144 struct xe_vm *vm = NULL; 2145 struct xe_bo *bo; 2146 unsigned int bo_flags; 2147 u32 handle; 2148 int err; 2149 2150 if (XE_IOCTL_DBG(xe, args->extensions) || 2151 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2152 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2153 return -EINVAL; 2154 2155 /* at least one valid memory placement must be specified */ 2156 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2157 !args->placement)) 2158 return -EINVAL; 2159 2160 if (XE_IOCTL_DBG(xe, args->flags & 2161 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2162 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2163 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2164 return -EINVAL; 2165 2166 if (XE_IOCTL_DBG(xe, args->handle)) 2167 return -EINVAL; 2168 2169 if (XE_IOCTL_DBG(xe, !args->size)) 2170 return -EINVAL; 2171 2172 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2173 return -EINVAL; 2174 2175 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2176 return -EINVAL; 2177 2178 bo_flags = 0; 2179 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2180 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2181 2182 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2183 bo_flags |= XE_BO_FLAG_SCANOUT; 2184 2185 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2186 2187 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2188 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2189 (bo_flags & XE_BO_FLAG_SCANOUT) && 2190 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2191 IS_ALIGNED(args->size, SZ_64K)) 2192 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2193 2194 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2195 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2196 return -EINVAL; 2197 2198 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2199 } 2200 2201 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2202 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2203 return -EINVAL; 2204 2205 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2206 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2207 return -EINVAL; 2208 2209 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2210 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2211 return -EINVAL; 2212 2213 if (args->vm_id) { 2214 vm = xe_vm_lookup(xef, args->vm_id); 2215 if (XE_IOCTL_DBG(xe, !vm)) 2216 return -ENOENT; 2217 err = xe_vm_lock(vm, true); 2218 if (err) 2219 goto out_vm; 2220 } 2221 2222 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2223 bo_flags); 2224 2225 if (vm) 2226 xe_vm_unlock(vm); 2227 2228 if (IS_ERR(bo)) { 2229 err = PTR_ERR(bo); 2230 goto out_vm; 2231 } 2232 2233 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2234 if (err) 2235 goto out_bulk; 2236 2237 args->handle = handle; 2238 goto out_put; 2239 2240 out_bulk: 2241 if (vm && !xe_vm_in_fault_mode(vm)) { 2242 xe_vm_lock(vm, false); 2243 __xe_bo_unset_bulk_move(bo); 2244 xe_vm_unlock(vm); 2245 } 2246 out_put: 2247 xe_bo_put(bo); 2248 out_vm: 2249 if (vm) 2250 xe_vm_put(vm); 2251 2252 return err; 2253 } 2254 2255 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2256 struct drm_file *file) 2257 { 2258 struct xe_device *xe = to_xe_device(dev); 2259 struct drm_xe_gem_mmap_offset *args = data; 2260 struct drm_gem_object *gem_obj; 2261 2262 if (XE_IOCTL_DBG(xe, args->extensions) || 2263 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2264 return -EINVAL; 2265 2266 if (XE_IOCTL_DBG(xe, args->flags)) 2267 return -EINVAL; 2268 2269 gem_obj = drm_gem_object_lookup(file, args->handle); 2270 if (XE_IOCTL_DBG(xe, !gem_obj)) 2271 return -ENOENT; 2272 2273 /* The mmap offset was set up at BO allocation time. */ 2274 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2275 2276 xe_bo_put(gem_to_xe_bo(gem_obj)); 2277 return 0; 2278 } 2279 2280 /** 2281 * xe_bo_lock() - Lock the buffer object's dma_resv object 2282 * @bo: The struct xe_bo whose lock is to be taken 2283 * @intr: Whether to perform any wait interruptible 2284 * 2285 * Locks the buffer object's dma_resv object. If the buffer object is 2286 * pointing to a shared dma_resv object, that shared lock is locked. 2287 * 2288 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2289 * contended lock was interrupted. If @intr is set to false, the 2290 * function always returns 0. 2291 */ 2292 int xe_bo_lock(struct xe_bo *bo, bool intr) 2293 { 2294 if (intr) 2295 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2296 2297 dma_resv_lock(bo->ttm.base.resv, NULL); 2298 2299 return 0; 2300 } 2301 2302 /** 2303 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2304 * @bo: The struct xe_bo whose lock is to be released. 2305 * 2306 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2307 */ 2308 void xe_bo_unlock(struct xe_bo *bo) 2309 { 2310 dma_resv_unlock(bo->ttm.base.resv); 2311 } 2312 2313 /** 2314 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2315 * @bo: The buffer object to migrate 2316 * @mem_type: The TTM memory type intended to migrate to 2317 * 2318 * Check whether the buffer object supports migration to the 2319 * given memory type. Note that pinning may affect the ability to migrate as 2320 * returned by this function. 2321 * 2322 * This function is primarily intended as a helper for checking the 2323 * possibility to migrate buffer objects and can be called without 2324 * the object lock held. 2325 * 2326 * Return: true if migration is possible, false otherwise. 2327 */ 2328 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2329 { 2330 unsigned int cur_place; 2331 2332 if (bo->ttm.type == ttm_bo_type_kernel) 2333 return true; 2334 2335 if (bo->ttm.type == ttm_bo_type_sg) 2336 return false; 2337 2338 for (cur_place = 0; cur_place < bo->placement.num_placement; 2339 cur_place++) { 2340 if (bo->placements[cur_place].mem_type == mem_type) 2341 return true; 2342 } 2343 2344 return false; 2345 } 2346 2347 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2348 { 2349 memset(place, 0, sizeof(*place)); 2350 place->mem_type = mem_type; 2351 } 2352 2353 /** 2354 * xe_bo_migrate - Migrate an object to the desired region id 2355 * @bo: The buffer object to migrate. 2356 * @mem_type: The TTM region type to migrate to. 2357 * 2358 * Attempt to migrate the buffer object to the desired memory region. The 2359 * buffer object may not be pinned, and must be locked. 2360 * On successful completion, the object memory type will be updated, 2361 * but an async migration task may not have completed yet, and to 2362 * accomplish that, the object's kernel fences must be signaled with 2363 * the object lock held. 2364 * 2365 * Return: 0 on success. Negative error code on failure. In particular may 2366 * return -EINTR or -ERESTARTSYS if signal pending. 2367 */ 2368 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2369 { 2370 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2371 struct ttm_operation_ctx ctx = { 2372 .interruptible = true, 2373 .no_wait_gpu = false, 2374 .gfp_retry_mayfail = true, 2375 }; 2376 struct ttm_placement placement; 2377 struct ttm_place requested; 2378 2379 xe_bo_assert_held(bo); 2380 2381 if (bo->ttm.resource->mem_type == mem_type) 2382 return 0; 2383 2384 if (xe_bo_is_pinned(bo)) 2385 return -EBUSY; 2386 2387 if (!xe_bo_can_migrate(bo, mem_type)) 2388 return -EINVAL; 2389 2390 xe_place_from_ttm_type(mem_type, &requested); 2391 placement.num_placement = 1; 2392 placement.placement = &requested; 2393 2394 /* 2395 * Stolen needs to be handled like below VRAM handling if we ever need 2396 * to support it. 2397 */ 2398 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2399 2400 if (mem_type_is_vram(mem_type)) { 2401 u32 c = 0; 2402 2403 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2404 } 2405 2406 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2407 } 2408 2409 /** 2410 * xe_bo_evict - Evict an object to evict placement 2411 * @bo: The buffer object to migrate. 2412 * @force_alloc: Set force_alloc in ttm_operation_ctx 2413 * 2414 * On successful completion, the object memory will be moved to evict 2415 * placement. This function blocks until the object has been fully moved. 2416 * 2417 * Return: 0 on success. Negative error code on failure. 2418 */ 2419 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2420 { 2421 struct ttm_operation_ctx ctx = { 2422 .interruptible = false, 2423 .no_wait_gpu = false, 2424 .force_alloc = force_alloc, 2425 .gfp_retry_mayfail = true, 2426 }; 2427 struct ttm_placement placement; 2428 int ret; 2429 2430 xe_evict_flags(&bo->ttm, &placement); 2431 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2432 if (ret) 2433 return ret; 2434 2435 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2436 false, MAX_SCHEDULE_TIMEOUT); 2437 2438 return 0; 2439 } 2440 2441 /** 2442 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2443 * placed in system memory. 2444 * @bo: The xe_bo 2445 * 2446 * Return: true if extra pages need to be allocated, false otherwise. 2447 */ 2448 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2449 { 2450 struct xe_device *xe = xe_bo_device(bo); 2451 2452 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2453 return false; 2454 2455 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2456 return false; 2457 2458 /* On discrete GPUs, if the GPU can access this buffer from 2459 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2460 * can't be used since there's no CCS storage associated with 2461 * non-VRAM addresses. 2462 */ 2463 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2464 return false; 2465 2466 return true; 2467 } 2468 2469 /** 2470 * __xe_bo_release_dummy() - Dummy kref release function 2471 * @kref: The embedded struct kref. 2472 * 2473 * Dummy release function for xe_bo_put_deferred(). Keep off. 2474 */ 2475 void __xe_bo_release_dummy(struct kref *kref) 2476 { 2477 } 2478 2479 /** 2480 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2481 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2482 * 2483 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2484 * The @deferred list can be either an onstack local list or a global 2485 * shared list used by a workqueue. 2486 */ 2487 void xe_bo_put_commit(struct llist_head *deferred) 2488 { 2489 struct llist_node *freed; 2490 struct xe_bo *bo, *next; 2491 2492 if (!deferred) 2493 return; 2494 2495 freed = llist_del_all(deferred); 2496 if (!freed) 2497 return; 2498 2499 llist_for_each_entry_safe(bo, next, freed, freed) 2500 drm_gem_object_free(&bo->ttm.base.refcount); 2501 } 2502 2503 void xe_bo_put(struct xe_bo *bo) 2504 { 2505 struct xe_tile *tile; 2506 u8 id; 2507 2508 might_sleep(); 2509 if (bo) { 2510 #ifdef CONFIG_PROC_FS 2511 if (bo->client) 2512 might_lock(&bo->client->bos_lock); 2513 #endif 2514 for_each_tile(tile, xe_bo_device(bo), id) 2515 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 2516 might_lock(&bo->ggtt_node[id]->ggtt->lock); 2517 drm_gem_object_put(&bo->ttm.base); 2518 } 2519 } 2520 2521 /** 2522 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2523 * @file_priv: ... 2524 * @dev: ... 2525 * @args: ... 2526 * 2527 * See dumb_create() hook in include/drm/drm_drv.h 2528 * 2529 * Return: ... 2530 */ 2531 int xe_bo_dumb_create(struct drm_file *file_priv, 2532 struct drm_device *dev, 2533 struct drm_mode_create_dumb *args) 2534 { 2535 struct xe_device *xe = to_xe_device(dev); 2536 struct xe_bo *bo; 2537 uint32_t handle; 2538 int cpp = DIV_ROUND_UP(args->bpp, 8); 2539 int err; 2540 u32 page_size = max_t(u32, PAGE_SIZE, 2541 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2542 2543 args->pitch = ALIGN(args->width * cpp, 64); 2544 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2545 page_size); 2546 2547 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2548 DRM_XE_GEM_CPU_CACHING_WC, 2549 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2550 XE_BO_FLAG_SCANOUT | 2551 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2552 if (IS_ERR(bo)) 2553 return PTR_ERR(bo); 2554 2555 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2556 /* drop reference from allocate - handle holds it now */ 2557 drm_gem_object_put(&bo->ttm.base); 2558 if (!err) 2559 args->handle = handle; 2560 return err; 2561 } 2562 2563 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2564 { 2565 struct ttm_buffer_object *tbo = &bo->ttm; 2566 struct ttm_device *bdev = tbo->bdev; 2567 2568 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2569 2570 list_del_init(&bo->vram_userfault_link); 2571 } 2572 2573 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2574 #include "tests/xe_bo.c" 2575 #endif 2576