1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 167 { 168 struct ttm_place place = { .mem_type = mem_type }; 169 struct xe_mem_region *vram; 170 u64 io_size; 171 172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 173 174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 175 xe_assert(xe, vram && vram->usable_size); 176 io_size = vram->io_size; 177 178 /* 179 * For eviction / restore on suspend / resume objects 180 * pinned in VRAM must be contiguous 181 */ 182 if (bo_flags & (XE_BO_FLAG_PINNED | 183 XE_BO_FLAG_GGTT)) 184 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 185 186 if (io_size < vram->usable_size) { 187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 188 place.fpfn = 0; 189 place.lpfn = io_size >> PAGE_SHIFT; 190 } else { 191 place.flags |= TTM_PL_FLAG_TOPDOWN; 192 } 193 } 194 places[*c] = place; 195 *c += 1; 196 } 197 198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 199 u32 bo_flags, u32 *c) 200 { 201 if (bo_flags & XE_BO_FLAG_VRAM0) 202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 203 if (bo_flags & XE_BO_FLAG_VRAM1) 204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 205 } 206 207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 208 u32 bo_flags, u32 *c) 209 { 210 if (bo_flags & XE_BO_FLAG_STOLEN) { 211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 212 213 bo->placements[*c] = (struct ttm_place) { 214 .mem_type = XE_PL_STOLEN, 215 .flags = bo_flags & (XE_BO_FLAG_PINNED | 216 XE_BO_FLAG_GGTT) ? 217 TTM_PL_FLAG_CONTIGUOUS : 0, 218 }; 219 *c += 1; 220 } 221 } 222 223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 224 u32 bo_flags) 225 { 226 u32 c = 0; 227 228 try_add_vram(xe, bo, bo_flags, &c); 229 try_add_system(xe, bo, bo_flags, &c); 230 try_add_stolen(xe, bo, bo_flags, &c); 231 232 if (!c) 233 return -EINVAL; 234 235 bo->placement = (struct ttm_placement) { 236 .num_placement = c, 237 .placement = bo->placements, 238 }; 239 240 return 0; 241 } 242 243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 244 u32 bo_flags) 245 { 246 xe_bo_assert_held(bo); 247 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 248 } 249 250 static void xe_evict_flags(struct ttm_buffer_object *tbo, 251 struct ttm_placement *placement) 252 { 253 if (!xe_bo_is_xe_bo(tbo)) { 254 /* Don't handle scatter gather BOs */ 255 if (tbo->type == ttm_bo_type_sg) { 256 placement->num_placement = 0; 257 return; 258 } 259 260 *placement = sys_placement; 261 return; 262 } 263 264 /* 265 * For xe, sg bos that are evicted to system just triggers a 266 * rebind of the sg list upon subsequent validation to XE_PL_TT. 267 */ 268 switch (tbo->resource->mem_type) { 269 case XE_PL_VRAM0: 270 case XE_PL_VRAM1: 271 case XE_PL_STOLEN: 272 *placement = tt_placement; 273 break; 274 case XE_PL_TT: 275 default: 276 *placement = sys_placement; 277 break; 278 } 279 } 280 281 struct xe_ttm_tt { 282 struct ttm_tt ttm; 283 struct device *dev; 284 struct sg_table sgt; 285 struct sg_table *sg; 286 }; 287 288 static int xe_tt_map_sg(struct ttm_tt *tt) 289 { 290 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 291 unsigned long num_pages = tt->num_pages; 292 int ret; 293 294 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 295 296 if (xe_tt->sg) 297 return 0; 298 299 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 300 num_pages, 0, 301 (u64)num_pages << PAGE_SHIFT, 302 xe_sg_segment_size(xe_tt->dev), 303 GFP_KERNEL); 304 if (ret) 305 return ret; 306 307 xe_tt->sg = &xe_tt->sgt; 308 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 309 DMA_ATTR_SKIP_CPU_SYNC); 310 if (ret) { 311 sg_free_table(xe_tt->sg); 312 xe_tt->sg = NULL; 313 return ret; 314 } 315 316 return 0; 317 } 318 319 static void xe_tt_unmap_sg(struct ttm_tt *tt) 320 { 321 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 322 323 if (xe_tt->sg) { 324 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 325 DMA_BIDIRECTIONAL, 0); 326 sg_free_table(xe_tt->sg); 327 xe_tt->sg = NULL; 328 } 329 } 330 331 struct sg_table *xe_bo_sg(struct xe_bo *bo) 332 { 333 struct ttm_tt *tt = bo->ttm.ttm; 334 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 335 336 return xe_tt->sg; 337 } 338 339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 340 u32 page_flags) 341 { 342 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 343 struct xe_device *xe = xe_bo_device(bo); 344 struct xe_ttm_tt *tt; 345 unsigned long extra_pages; 346 enum ttm_caching caching; 347 int err; 348 349 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 350 if (!tt) 351 return NULL; 352 353 tt->dev = xe->drm.dev; 354 355 extra_pages = 0; 356 if (xe_bo_needs_ccs_pages(bo)) 357 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 358 PAGE_SIZE); 359 360 switch (bo->cpu_caching) { 361 case DRM_XE_GEM_CPU_CACHING_WC: 362 caching = ttm_write_combined; 363 break; 364 default: 365 caching = ttm_cached; 366 break; 367 } 368 369 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 370 371 /* 372 * Display scanout is always non-coherent with the CPU cache. 373 * 374 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 375 * require a CPU:WC mapping. 376 */ 377 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 378 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_FLAG_PAGETABLE)) 379 caching = ttm_write_combined; 380 381 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 382 if (err) { 383 kfree(tt); 384 return NULL; 385 } 386 387 return &tt->ttm; 388 } 389 390 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 391 struct ttm_operation_ctx *ctx) 392 { 393 int err; 394 395 /* 396 * dma-bufs are not populated with pages, and the dma- 397 * addresses are set up when moved to XE_PL_TT. 398 */ 399 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 400 return 0; 401 402 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 403 if (err) 404 return err; 405 406 return err; 407 } 408 409 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 410 { 411 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 412 return; 413 414 xe_tt_unmap_sg(tt); 415 416 return ttm_pool_free(&ttm_dev->pool, tt); 417 } 418 419 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 420 { 421 ttm_tt_fini(tt); 422 kfree(tt); 423 } 424 425 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 426 struct ttm_resource *mem) 427 { 428 struct xe_device *xe = ttm_to_xe_device(bdev); 429 430 switch (mem->mem_type) { 431 case XE_PL_SYSTEM: 432 case XE_PL_TT: 433 return 0; 434 case XE_PL_VRAM0: 435 case XE_PL_VRAM1: { 436 struct xe_ttm_vram_mgr_resource *vres = 437 to_xe_ttm_vram_mgr_resource(mem); 438 struct xe_mem_region *vram = res_to_mem_region(mem); 439 440 if (vres->used_visible_size < mem->size) 441 return -EINVAL; 442 443 mem->bus.offset = mem->start << PAGE_SHIFT; 444 445 if (vram->mapping && 446 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 447 mem->bus.addr = (u8 __force *)vram->mapping + 448 mem->bus.offset; 449 450 mem->bus.offset += vram->io_start; 451 mem->bus.is_iomem = true; 452 453 #if !defined(CONFIG_X86) 454 mem->bus.caching = ttm_write_combined; 455 #endif 456 return 0; 457 } case XE_PL_STOLEN: 458 return xe_ttm_stolen_io_mem_reserve(xe, mem); 459 default: 460 return -EINVAL; 461 } 462 } 463 464 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 465 const struct ttm_operation_ctx *ctx) 466 { 467 struct dma_resv_iter cursor; 468 struct dma_fence *fence; 469 struct drm_gem_object *obj = &bo->ttm.base; 470 struct drm_gpuvm_bo *vm_bo; 471 bool idle = false; 472 int ret = 0; 473 474 dma_resv_assert_held(bo->ttm.base.resv); 475 476 if (!list_empty(&bo->ttm.base.gpuva.list)) { 477 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 478 DMA_RESV_USAGE_BOOKKEEP); 479 dma_resv_for_each_fence_unlocked(&cursor, fence) 480 dma_fence_enable_sw_signaling(fence); 481 dma_resv_iter_end(&cursor); 482 } 483 484 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 485 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 486 struct drm_gpuva *gpuva; 487 488 if (!xe_vm_in_fault_mode(vm)) { 489 drm_gpuvm_bo_evict(vm_bo, true); 490 continue; 491 } 492 493 if (!idle) { 494 long timeout; 495 496 if (ctx->no_wait_gpu && 497 !dma_resv_test_signaled(bo->ttm.base.resv, 498 DMA_RESV_USAGE_BOOKKEEP)) 499 return -EBUSY; 500 501 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 502 DMA_RESV_USAGE_BOOKKEEP, 503 ctx->interruptible, 504 MAX_SCHEDULE_TIMEOUT); 505 if (!timeout) 506 return -ETIME; 507 if (timeout < 0) 508 return timeout; 509 510 idle = true; 511 } 512 513 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 514 struct xe_vma *vma = gpuva_to_vma(gpuva); 515 516 trace_xe_vma_evict(vma); 517 ret = xe_vm_invalidate_vma(vma); 518 if (XE_WARN_ON(ret)) 519 return ret; 520 } 521 } 522 523 return ret; 524 } 525 526 /* 527 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 528 * Note that unmapping the attachment is deferred to the next 529 * map_attachment time, or to bo destroy (after idling) whichever comes first. 530 * This is to avoid syncing before unmap_attachment(), assuming that the 531 * caller relies on idling the reservation object before moving the 532 * backing store out. Should that assumption not hold, then we will be able 533 * to unconditionally call unmap_attachment() when moving out to system. 534 */ 535 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 536 struct ttm_resource *new_res) 537 { 538 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 539 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 540 ttm); 541 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 542 struct sg_table *sg; 543 544 xe_assert(xe, attach); 545 xe_assert(xe, ttm_bo->ttm); 546 547 if (new_res->mem_type == XE_PL_SYSTEM) 548 goto out; 549 550 if (ttm_bo->sg) { 551 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 552 ttm_bo->sg = NULL; 553 } 554 555 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 556 if (IS_ERR(sg)) 557 return PTR_ERR(sg); 558 559 ttm_bo->sg = sg; 560 xe_tt->sg = sg; 561 562 out: 563 ttm_bo_move_null(ttm_bo, new_res); 564 565 return 0; 566 } 567 568 /** 569 * xe_bo_move_notify - Notify subsystems of a pending move 570 * @bo: The buffer object 571 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 572 * 573 * This function notifies subsystems of an upcoming buffer move. 574 * Upon receiving such a notification, subsystems should schedule 575 * halting access to the underlying pages and optionally add a fence 576 * to the buffer object's dma_resv object, that signals when access is 577 * stopped. The caller will wait on all dma_resv fences before 578 * starting the move. 579 * 580 * A subsystem may commence access to the object after obtaining 581 * bindings to the new backing memory under the object lock. 582 * 583 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 584 * negative error code on error. 585 */ 586 static int xe_bo_move_notify(struct xe_bo *bo, 587 const struct ttm_operation_ctx *ctx) 588 { 589 struct ttm_buffer_object *ttm_bo = &bo->ttm; 590 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 591 struct ttm_resource *old_mem = ttm_bo->resource; 592 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 593 int ret; 594 595 /* 596 * If this starts to call into many components, consider 597 * using a notification chain here. 598 */ 599 600 if (xe_bo_is_pinned(bo)) 601 return -EINVAL; 602 603 xe_bo_vunmap(bo); 604 ret = xe_bo_trigger_rebind(xe, bo, ctx); 605 if (ret) 606 return ret; 607 608 /* Don't call move_notify() for imported dma-bufs. */ 609 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 610 dma_buf_move_notify(ttm_bo->base.dma_buf); 611 612 /* 613 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 614 * so if we moved from VRAM make sure to unlink this from the userfault 615 * tracking. 616 */ 617 if (mem_type_is_vram(old_mem_type)) { 618 mutex_lock(&xe->mem_access.vram_userfault.lock); 619 if (!list_empty(&bo->vram_userfault_link)) 620 list_del_init(&bo->vram_userfault_link); 621 mutex_unlock(&xe->mem_access.vram_userfault.lock); 622 } 623 624 return 0; 625 } 626 627 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 628 struct ttm_operation_ctx *ctx, 629 struct ttm_resource *new_mem, 630 struct ttm_place *hop) 631 { 632 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 633 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 634 struct ttm_resource *old_mem = ttm_bo->resource; 635 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 636 struct ttm_tt *ttm = ttm_bo->ttm; 637 struct xe_migrate *migrate = NULL; 638 struct dma_fence *fence; 639 bool move_lacks_source; 640 bool tt_has_data; 641 bool needs_clear; 642 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 643 ttm && ttm_tt_is_populated(ttm)) ? true : false; 644 int ret = 0; 645 646 /* Bo creation path, moving to system or TT. */ 647 if ((!old_mem && ttm) && !handle_system_ccs) { 648 if (new_mem->mem_type == XE_PL_TT) 649 ret = xe_tt_map_sg(ttm); 650 if (!ret) 651 ttm_bo_move_null(ttm_bo, new_mem); 652 goto out; 653 } 654 655 if (ttm_bo->type == ttm_bo_type_sg) { 656 ret = xe_bo_move_notify(bo, ctx); 657 if (!ret) 658 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 659 return ret; 660 } 661 662 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 663 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 664 665 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 666 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 667 668 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 669 (!ttm && ttm_bo->type == ttm_bo_type_device); 670 671 if (new_mem->mem_type == XE_PL_TT) { 672 ret = xe_tt_map_sg(ttm); 673 if (ret) 674 goto out; 675 } 676 677 if ((move_lacks_source && !needs_clear)) { 678 ttm_bo_move_null(ttm_bo, new_mem); 679 goto out; 680 } 681 682 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 683 ttm_bo_move_null(ttm_bo, new_mem); 684 goto out; 685 } 686 687 /* 688 * Failed multi-hop where the old_mem is still marked as 689 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 690 */ 691 if (old_mem_type == XE_PL_TT && 692 new_mem->mem_type == XE_PL_TT) { 693 ttm_bo_move_null(ttm_bo, new_mem); 694 goto out; 695 } 696 697 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 698 ret = xe_bo_move_notify(bo, ctx); 699 if (ret) 700 goto out; 701 } 702 703 if (old_mem_type == XE_PL_TT && 704 new_mem->mem_type == XE_PL_SYSTEM) { 705 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 706 DMA_RESV_USAGE_BOOKKEEP, 707 true, 708 MAX_SCHEDULE_TIMEOUT); 709 if (timeout < 0) { 710 ret = timeout; 711 goto out; 712 } 713 714 if (!handle_system_ccs) { 715 ttm_bo_move_null(ttm_bo, new_mem); 716 goto out; 717 } 718 } 719 720 if (!move_lacks_source && 721 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 722 (mem_type_is_vram(old_mem_type) && 723 new_mem->mem_type == XE_PL_SYSTEM))) { 724 hop->fpfn = 0; 725 hop->lpfn = 0; 726 hop->mem_type = XE_PL_TT; 727 hop->flags = TTM_PL_FLAG_TEMPORARY; 728 ret = -EMULTIHOP; 729 goto out; 730 } 731 732 if (bo->tile) 733 migrate = bo->tile->migrate; 734 else if (resource_is_vram(new_mem)) 735 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 736 else if (mem_type_is_vram(old_mem_type)) 737 migrate = mem_type_to_migrate(xe, old_mem_type); 738 else 739 migrate = xe->tiles[0].migrate; 740 741 xe_assert(xe, migrate); 742 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 743 xe_pm_runtime_get_noresume(xe); 744 745 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 746 /* 747 * Kernel memory that is pinned should only be moved on suspend 748 * / resume, some of the pinned memory is required for the 749 * device to resume / use the GPU to move other evicted memory 750 * (user memory) around. This likely could be optimized a bit 751 * futher where we find the minimum set of pinned memory 752 * required for resume but for simplity doing a memcpy for all 753 * pinned memory. 754 */ 755 ret = xe_bo_vmap(bo); 756 if (!ret) { 757 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 758 759 /* Create a new VMAP once kernel BO back in VRAM */ 760 if (!ret && resource_is_vram(new_mem)) { 761 struct xe_mem_region *vram = res_to_mem_region(new_mem); 762 void __iomem *new_addr = vram->mapping + 763 (new_mem->start << PAGE_SHIFT); 764 765 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 766 ret = -EINVAL; 767 xe_pm_runtime_put(xe); 768 goto out; 769 } 770 771 xe_assert(xe, new_mem->start == 772 bo->placements->fpfn); 773 774 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 775 } 776 } 777 } else { 778 if (move_lacks_source) 779 fence = xe_migrate_clear(migrate, bo, new_mem); 780 else 781 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 782 new_mem, handle_system_ccs); 783 if (IS_ERR(fence)) { 784 ret = PTR_ERR(fence); 785 xe_pm_runtime_put(xe); 786 goto out; 787 } 788 if (!move_lacks_source) { 789 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 790 true, new_mem); 791 if (ret) { 792 dma_fence_wait(fence, false); 793 ttm_bo_move_null(ttm_bo, new_mem); 794 ret = 0; 795 } 796 } else { 797 /* 798 * ttm_bo_move_accel_cleanup() may blow up if 799 * bo->resource == NULL, so just attach the 800 * fence and set the new resource. 801 */ 802 dma_resv_add_fence(ttm_bo->base.resv, fence, 803 DMA_RESV_USAGE_KERNEL); 804 ttm_bo_move_null(ttm_bo, new_mem); 805 } 806 807 dma_fence_put(fence); 808 } 809 810 xe_pm_runtime_put(xe); 811 812 out: 813 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 814 ttm_bo->ttm) 815 xe_tt_unmap_sg(ttm_bo->ttm); 816 817 return ret; 818 } 819 820 /** 821 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 822 * @bo: The buffer object to move. 823 * 824 * On successful completion, the object memory will be moved to sytem memory. 825 * 826 * This is needed to for special handling of pinned VRAM object during 827 * suspend-resume. 828 * 829 * Return: 0 on success. Negative error code on failure. 830 */ 831 int xe_bo_evict_pinned(struct xe_bo *bo) 832 { 833 struct ttm_place place = { 834 .mem_type = XE_PL_TT, 835 }; 836 struct ttm_placement placement = { 837 .placement = &place, 838 .num_placement = 1, 839 }; 840 struct ttm_operation_ctx ctx = { 841 .interruptible = false, 842 }; 843 struct ttm_resource *new_mem; 844 int ret; 845 846 xe_bo_assert_held(bo); 847 848 if (WARN_ON(!bo->ttm.resource)) 849 return -EINVAL; 850 851 if (WARN_ON(!xe_bo_is_pinned(bo))) 852 return -EINVAL; 853 854 if (WARN_ON(!xe_bo_is_vram(bo))) 855 return -EINVAL; 856 857 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 858 if (ret) 859 return ret; 860 861 if (!bo->ttm.ttm) { 862 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 863 if (!bo->ttm.ttm) { 864 ret = -ENOMEM; 865 goto err_res_free; 866 } 867 } 868 869 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 870 if (ret) 871 goto err_res_free; 872 873 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 874 if (ret) 875 goto err_res_free; 876 877 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 878 if (ret) 879 goto err_res_free; 880 881 return 0; 882 883 err_res_free: 884 ttm_resource_free(&bo->ttm, &new_mem); 885 return ret; 886 } 887 888 /** 889 * xe_bo_restore_pinned() - Restore a pinned VRAM object 890 * @bo: The buffer object to move. 891 * 892 * On successful completion, the object memory will be moved back to VRAM. 893 * 894 * This is needed to for special handling of pinned VRAM object during 895 * suspend-resume. 896 * 897 * Return: 0 on success. Negative error code on failure. 898 */ 899 int xe_bo_restore_pinned(struct xe_bo *bo) 900 { 901 struct ttm_operation_ctx ctx = { 902 .interruptible = false, 903 }; 904 struct ttm_resource *new_mem; 905 int ret; 906 907 xe_bo_assert_held(bo); 908 909 if (WARN_ON(!bo->ttm.resource)) 910 return -EINVAL; 911 912 if (WARN_ON(!xe_bo_is_pinned(bo))) 913 return -EINVAL; 914 915 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 916 return -EINVAL; 917 918 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 919 if (ret) 920 return ret; 921 922 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 923 if (ret) 924 goto err_res_free; 925 926 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 927 if (ret) 928 goto err_res_free; 929 930 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 931 if (ret) 932 goto err_res_free; 933 934 return 0; 935 936 err_res_free: 937 ttm_resource_free(&bo->ttm, &new_mem); 938 return ret; 939 } 940 941 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 942 unsigned long page_offset) 943 { 944 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 945 struct xe_res_cursor cursor; 946 struct xe_mem_region *vram; 947 948 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 949 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 950 951 vram = res_to_mem_region(ttm_bo->resource); 952 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 953 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 954 } 955 956 static void __xe_bo_vunmap(struct xe_bo *bo); 957 958 /* 959 * TODO: Move this function to TTM so we don't rely on how TTM does its 960 * locking, thereby abusing TTM internals. 961 */ 962 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 963 { 964 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 965 bool locked; 966 967 xe_assert(xe, !kref_read(&ttm_bo->kref)); 968 969 /* 970 * We can typically only race with TTM trylocking under the 971 * lru_lock, which will immediately be unlocked again since 972 * the ttm_bo refcount is zero at this point. So trylocking *should* 973 * always succeed here, as long as we hold the lru lock. 974 */ 975 spin_lock(&ttm_bo->bdev->lru_lock); 976 locked = dma_resv_trylock(ttm_bo->base.resv); 977 spin_unlock(&ttm_bo->bdev->lru_lock); 978 xe_assert(xe, locked); 979 980 return locked; 981 } 982 983 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 984 { 985 struct dma_resv_iter cursor; 986 struct dma_fence *fence; 987 struct dma_fence *replacement = NULL; 988 struct xe_bo *bo; 989 990 if (!xe_bo_is_xe_bo(ttm_bo)) 991 return; 992 993 bo = ttm_to_xe_bo(ttm_bo); 994 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 995 996 /* 997 * Corner case where TTM fails to allocate memory and this BOs resv 998 * still points the VMs resv 999 */ 1000 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1001 return; 1002 1003 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1004 return; 1005 1006 /* 1007 * Scrub the preempt fences if any. The unbind fence is already 1008 * attached to the resv. 1009 * TODO: Don't do this for external bos once we scrub them after 1010 * unbind. 1011 */ 1012 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1013 DMA_RESV_USAGE_BOOKKEEP, fence) { 1014 if (xe_fence_is_xe_preempt(fence) && 1015 !dma_fence_is_signaled(fence)) { 1016 if (!replacement) 1017 replacement = dma_fence_get_stub(); 1018 1019 dma_resv_replace_fences(ttm_bo->base.resv, 1020 fence->context, 1021 replacement, 1022 DMA_RESV_USAGE_BOOKKEEP); 1023 } 1024 } 1025 dma_fence_put(replacement); 1026 1027 dma_resv_unlock(ttm_bo->base.resv); 1028 } 1029 1030 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1031 { 1032 if (!xe_bo_is_xe_bo(ttm_bo)) 1033 return; 1034 1035 /* 1036 * Object is idle and about to be destroyed. Release the 1037 * dma-buf attachment. 1038 */ 1039 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1040 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1041 struct xe_ttm_tt, ttm); 1042 1043 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1044 DMA_BIDIRECTIONAL); 1045 ttm_bo->sg = NULL; 1046 xe_tt->sg = NULL; 1047 } 1048 } 1049 1050 const struct ttm_device_funcs xe_ttm_funcs = { 1051 .ttm_tt_create = xe_ttm_tt_create, 1052 .ttm_tt_populate = xe_ttm_tt_populate, 1053 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1054 .ttm_tt_destroy = xe_ttm_tt_destroy, 1055 .evict_flags = xe_evict_flags, 1056 .move = xe_bo_move, 1057 .io_mem_reserve = xe_ttm_io_mem_reserve, 1058 .io_mem_pfn = xe_ttm_io_mem_pfn, 1059 .release_notify = xe_ttm_bo_release_notify, 1060 .eviction_valuable = ttm_bo_eviction_valuable, 1061 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1062 }; 1063 1064 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1065 { 1066 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1067 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1068 1069 if (bo->ttm.base.import_attach) 1070 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1071 drm_gem_object_release(&bo->ttm.base); 1072 1073 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1074 1075 if (bo->ggtt_node.size) 1076 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1077 1078 #ifdef CONFIG_PROC_FS 1079 if (bo->client) 1080 xe_drm_client_remove_bo(bo); 1081 #endif 1082 1083 if (bo->vm && xe_bo_is_user(bo)) 1084 xe_vm_put(bo->vm); 1085 1086 mutex_lock(&xe->mem_access.vram_userfault.lock); 1087 if (!list_empty(&bo->vram_userfault_link)) 1088 list_del(&bo->vram_userfault_link); 1089 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1090 1091 kfree(bo); 1092 } 1093 1094 static void xe_gem_object_free(struct drm_gem_object *obj) 1095 { 1096 /* Our BO reference counting scheme works as follows: 1097 * 1098 * The gem object kref is typically used throughout the driver, 1099 * and the gem object holds a ttm_buffer_object refcount, so 1100 * that when the last gem object reference is put, which is when 1101 * we end up in this function, we put also that ttm_buffer_object 1102 * refcount. Anything using gem interfaces is then no longer 1103 * allowed to access the object in a way that requires a gem 1104 * refcount, including locking the object. 1105 * 1106 * driver ttm callbacks is allowed to use the ttm_buffer_object 1107 * refcount directly if needed. 1108 */ 1109 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1110 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1111 } 1112 1113 static void xe_gem_object_close(struct drm_gem_object *obj, 1114 struct drm_file *file_priv) 1115 { 1116 struct xe_bo *bo = gem_to_xe_bo(obj); 1117 1118 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1119 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1120 1121 xe_bo_lock(bo, false); 1122 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1123 xe_bo_unlock(bo); 1124 } 1125 } 1126 1127 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1128 { 1129 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1130 struct drm_device *ddev = tbo->base.dev; 1131 struct xe_device *xe = to_xe_device(ddev); 1132 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1133 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1134 vm_fault_t ret; 1135 int idx; 1136 1137 if (needs_rpm) 1138 xe_pm_runtime_get(xe); 1139 1140 ret = ttm_bo_vm_reserve(tbo, vmf); 1141 if (ret) 1142 goto out; 1143 1144 if (drm_dev_enter(ddev, &idx)) { 1145 trace_xe_bo_cpu_fault(bo); 1146 1147 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1148 TTM_BO_VM_NUM_PREFAULT); 1149 drm_dev_exit(idx); 1150 } else { 1151 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1152 } 1153 1154 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1155 goto out; 1156 /* 1157 * ttm_bo_vm_reserve() already has dma_resv_lock. 1158 */ 1159 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1160 mutex_lock(&xe->mem_access.vram_userfault.lock); 1161 if (list_empty(&bo->vram_userfault_link)) 1162 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1163 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1164 } 1165 1166 dma_resv_unlock(tbo->base.resv); 1167 out: 1168 if (needs_rpm) 1169 xe_pm_runtime_put(xe); 1170 1171 return ret; 1172 } 1173 1174 static const struct vm_operations_struct xe_gem_vm_ops = { 1175 .fault = xe_gem_fault, 1176 .open = ttm_bo_vm_open, 1177 .close = ttm_bo_vm_close, 1178 .access = ttm_bo_vm_access 1179 }; 1180 1181 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1182 .free = xe_gem_object_free, 1183 .close = xe_gem_object_close, 1184 .mmap = drm_gem_ttm_mmap, 1185 .export = xe_gem_prime_export, 1186 .vm_ops = &xe_gem_vm_ops, 1187 }; 1188 1189 /** 1190 * xe_bo_alloc - Allocate storage for a struct xe_bo 1191 * 1192 * This funcition is intended to allocate storage to be used for input 1193 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1194 * created is needed before the call to __xe_bo_create_locked(). 1195 * If __xe_bo_create_locked ends up never to be called, then the 1196 * storage allocated with this function needs to be freed using 1197 * xe_bo_free(). 1198 * 1199 * Return: A pointer to an uninitialized struct xe_bo on success, 1200 * ERR_PTR(-ENOMEM) on error. 1201 */ 1202 struct xe_bo *xe_bo_alloc(void) 1203 { 1204 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1205 1206 if (!bo) 1207 return ERR_PTR(-ENOMEM); 1208 1209 return bo; 1210 } 1211 1212 /** 1213 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1214 * @bo: The buffer object storage. 1215 * 1216 * Refer to xe_bo_alloc() documentation for valid use-cases. 1217 */ 1218 void xe_bo_free(struct xe_bo *bo) 1219 { 1220 kfree(bo); 1221 } 1222 1223 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1224 struct xe_tile *tile, struct dma_resv *resv, 1225 struct ttm_lru_bulk_move *bulk, size_t size, 1226 u16 cpu_caching, enum ttm_bo_type type, 1227 u32 flags) 1228 { 1229 struct ttm_operation_ctx ctx = { 1230 .interruptible = true, 1231 .no_wait_gpu = false, 1232 }; 1233 struct ttm_placement *placement; 1234 uint32_t alignment; 1235 size_t aligned_size; 1236 int err; 1237 1238 /* Only kernel objects should set GT */ 1239 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1240 1241 if (XE_WARN_ON(!size)) { 1242 xe_bo_free(bo); 1243 return ERR_PTR(-EINVAL); 1244 } 1245 1246 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1247 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1248 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1249 (flags & XE_BO_NEEDS_64K))) { 1250 aligned_size = ALIGN(size, SZ_64K); 1251 if (type != ttm_bo_type_device) 1252 size = ALIGN(size, SZ_64K); 1253 flags |= XE_BO_FLAG_INTERNAL_64K; 1254 alignment = SZ_64K >> PAGE_SHIFT; 1255 1256 } else { 1257 aligned_size = ALIGN(size, SZ_4K); 1258 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1259 alignment = SZ_4K >> PAGE_SHIFT; 1260 } 1261 1262 if (type == ttm_bo_type_device && aligned_size != size) 1263 return ERR_PTR(-EINVAL); 1264 1265 if (!bo) { 1266 bo = xe_bo_alloc(); 1267 if (IS_ERR(bo)) 1268 return bo; 1269 } 1270 1271 bo->ccs_cleared = false; 1272 bo->tile = tile; 1273 bo->size = size; 1274 bo->flags = flags; 1275 bo->cpu_caching = cpu_caching; 1276 bo->ttm.base.funcs = &xe_gem_object_funcs; 1277 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1278 INIT_LIST_HEAD(&bo->pinned_link); 1279 #ifdef CONFIG_PROC_FS 1280 INIT_LIST_HEAD(&bo->client_link); 1281 #endif 1282 INIT_LIST_HEAD(&bo->vram_userfault_link); 1283 1284 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1285 1286 if (resv) { 1287 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1288 ctx.resv = resv; 1289 } 1290 1291 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1292 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1293 if (WARN_ON(err)) { 1294 xe_ttm_bo_destroy(&bo->ttm); 1295 return ERR_PTR(err); 1296 } 1297 } 1298 1299 /* Defer populating type_sg bos */ 1300 placement = (type == ttm_bo_type_sg || 1301 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1302 &bo->placement; 1303 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1304 placement, alignment, 1305 &ctx, NULL, resv, xe_ttm_bo_destroy); 1306 if (err) 1307 return ERR_PTR(err); 1308 1309 /* 1310 * The VRAM pages underneath are potentially still being accessed by the 1311 * GPU, as per async GPU clearing and async evictions. However TTM makes 1312 * sure to add any corresponding move/clear fences into the objects 1313 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1314 * 1315 * For KMD internal buffers we don't care about GPU clearing, however we 1316 * still need to handle async evictions, where the VRAM is still being 1317 * accessed by the GPU. Most internal callers are not expecting this, 1318 * since they are missing the required synchronisation before accessing 1319 * the memory. To keep things simple just sync wait any kernel fences 1320 * here, if the buffer is designated KMD internal. 1321 * 1322 * For normal userspace objects we should already have the required 1323 * pipelining or sync waiting elsewhere, since we already have to deal 1324 * with things like async GPU clearing. 1325 */ 1326 if (type == ttm_bo_type_kernel) { 1327 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1328 DMA_RESV_USAGE_KERNEL, 1329 ctx.interruptible, 1330 MAX_SCHEDULE_TIMEOUT); 1331 1332 if (timeout < 0) { 1333 if (!resv) 1334 dma_resv_unlock(bo->ttm.base.resv); 1335 xe_bo_put(bo); 1336 return ERR_PTR(timeout); 1337 } 1338 } 1339 1340 bo->created = true; 1341 if (bulk) 1342 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1343 else 1344 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1345 1346 return bo; 1347 } 1348 1349 static int __xe_bo_fixed_placement(struct xe_device *xe, 1350 struct xe_bo *bo, 1351 u32 flags, 1352 u64 start, u64 end, u64 size) 1353 { 1354 struct ttm_place *place = bo->placements; 1355 1356 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1357 return -EINVAL; 1358 1359 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1360 place->fpfn = start >> PAGE_SHIFT; 1361 place->lpfn = end >> PAGE_SHIFT; 1362 1363 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1364 case XE_BO_FLAG_VRAM0: 1365 place->mem_type = XE_PL_VRAM0; 1366 break; 1367 case XE_BO_FLAG_VRAM1: 1368 place->mem_type = XE_PL_VRAM1; 1369 break; 1370 case XE_BO_FLAG_STOLEN: 1371 place->mem_type = XE_PL_STOLEN; 1372 break; 1373 1374 default: 1375 /* 0 or multiple of the above set */ 1376 return -EINVAL; 1377 } 1378 1379 bo->placement = (struct ttm_placement) { 1380 .num_placement = 1, 1381 .placement = place, 1382 }; 1383 1384 return 0; 1385 } 1386 1387 static struct xe_bo * 1388 __xe_bo_create_locked(struct xe_device *xe, 1389 struct xe_tile *tile, struct xe_vm *vm, 1390 size_t size, u64 start, u64 end, 1391 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1392 { 1393 struct xe_bo *bo = NULL; 1394 int err; 1395 1396 if (vm) 1397 xe_vm_assert_held(vm); 1398 1399 if (start || end != ~0ULL) { 1400 bo = xe_bo_alloc(); 1401 if (IS_ERR(bo)) 1402 return bo; 1403 1404 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1405 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1406 if (err) { 1407 xe_bo_free(bo); 1408 return ERR_PTR(err); 1409 } 1410 } 1411 1412 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1413 vm && !xe_vm_in_fault_mode(vm) && 1414 flags & XE_BO_FLAG_USER ? 1415 &vm->lru_bulk_move : NULL, size, 1416 cpu_caching, type, flags); 1417 if (IS_ERR(bo)) 1418 return bo; 1419 1420 /* 1421 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1422 * to ensure the shared resv doesn't disappear under the bo, the bo 1423 * will keep a reference to the vm, and avoid circular references 1424 * by having all the vm's bo refereferences released at vm close 1425 * time. 1426 */ 1427 if (vm && xe_bo_is_user(bo)) 1428 xe_vm_get(vm); 1429 bo->vm = vm; 1430 1431 if (bo->flags & XE_BO_FLAG_GGTT) { 1432 if (!tile && flags & XE_BO_FLAG_STOLEN) 1433 tile = xe_device_get_root_tile(xe); 1434 1435 xe_assert(xe, tile); 1436 1437 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1438 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1439 start + bo->size, U64_MAX); 1440 } else { 1441 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1442 } 1443 if (err) 1444 goto err_unlock_put_bo; 1445 } 1446 1447 return bo; 1448 1449 err_unlock_put_bo: 1450 __xe_bo_unset_bulk_move(bo); 1451 xe_bo_unlock_vm_held(bo); 1452 xe_bo_put(bo); 1453 return ERR_PTR(err); 1454 } 1455 1456 struct xe_bo * 1457 xe_bo_create_locked_range(struct xe_device *xe, 1458 struct xe_tile *tile, struct xe_vm *vm, 1459 size_t size, u64 start, u64 end, 1460 enum ttm_bo_type type, u32 flags) 1461 { 1462 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1463 } 1464 1465 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1466 struct xe_vm *vm, size_t size, 1467 enum ttm_bo_type type, u32 flags) 1468 { 1469 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1470 } 1471 1472 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1473 struct xe_vm *vm, size_t size, 1474 u16 cpu_caching, 1475 enum ttm_bo_type type, 1476 u32 flags) 1477 { 1478 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1479 cpu_caching, type, 1480 flags | XE_BO_FLAG_USER); 1481 if (!IS_ERR(bo)) 1482 xe_bo_unlock_vm_held(bo); 1483 1484 return bo; 1485 } 1486 1487 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1488 struct xe_vm *vm, size_t size, 1489 enum ttm_bo_type type, u32 flags) 1490 { 1491 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1492 1493 if (!IS_ERR(bo)) 1494 xe_bo_unlock_vm_held(bo); 1495 1496 return bo; 1497 } 1498 1499 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1500 struct xe_vm *vm, 1501 size_t size, u64 offset, 1502 enum ttm_bo_type type, u32 flags) 1503 { 1504 struct xe_bo *bo; 1505 int err; 1506 u64 start = offset == ~0ull ? 0 : offset; 1507 u64 end = offset == ~0ull ? offset : start + size; 1508 1509 if (flags & XE_BO_FLAG_STOLEN && 1510 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1511 flags |= XE_BO_FLAG_GGTT; 1512 1513 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1514 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); 1515 if (IS_ERR(bo)) 1516 return bo; 1517 1518 err = xe_bo_pin(bo); 1519 if (err) 1520 goto err_put; 1521 1522 err = xe_bo_vmap(bo); 1523 if (err) 1524 goto err_unpin; 1525 1526 xe_bo_unlock_vm_held(bo); 1527 1528 return bo; 1529 1530 err_unpin: 1531 xe_bo_unpin(bo); 1532 err_put: 1533 xe_bo_unlock_vm_held(bo); 1534 xe_bo_put(bo); 1535 return ERR_PTR(err); 1536 } 1537 1538 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1539 struct xe_vm *vm, size_t size, 1540 enum ttm_bo_type type, u32 flags) 1541 { 1542 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1543 } 1544 1545 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1546 const void *data, size_t size, 1547 enum ttm_bo_type type, u32 flags) 1548 { 1549 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1550 ALIGN(size, PAGE_SIZE), 1551 type, flags); 1552 if (IS_ERR(bo)) 1553 return bo; 1554 1555 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1556 1557 return bo; 1558 } 1559 1560 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1561 { 1562 xe_bo_unpin_map_no_vm(arg); 1563 } 1564 1565 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1566 size_t size, u32 flags) 1567 { 1568 struct xe_bo *bo; 1569 int ret; 1570 1571 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1572 if (IS_ERR(bo)) 1573 return bo; 1574 1575 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1576 if (ret) 1577 return ERR_PTR(ret); 1578 1579 return bo; 1580 } 1581 1582 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1583 const void *data, size_t size, u32 flags) 1584 { 1585 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1586 1587 if (IS_ERR(bo)) 1588 return bo; 1589 1590 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1591 1592 return bo; 1593 } 1594 1595 /** 1596 * xe_managed_bo_reinit_in_vram 1597 * @xe: xe device 1598 * @tile: Tile where the new buffer will be created 1599 * @src: Managed buffer object allocated in system memory 1600 * 1601 * Replace a managed src buffer object allocated in system memory with a new 1602 * one allocated in vram, copying the data between them. 1603 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1604 * is responsible for making sure that any old references to it are updated. 1605 * 1606 * Returns 0 for success, negative error code otherwise. 1607 */ 1608 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1609 { 1610 struct xe_bo *bo; 1611 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1612 1613 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1614 1615 xe_assert(xe, IS_DGFX(xe)); 1616 xe_assert(xe, !(*src)->vmap.is_iomem); 1617 1618 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1619 (*src)->size, dst_flags); 1620 if (IS_ERR(bo)) 1621 return PTR_ERR(bo); 1622 1623 drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); 1624 *src = bo; 1625 1626 return 0; 1627 } 1628 1629 /* 1630 * XXX: This is in the VM bind data path, likely should calculate this once and 1631 * store, with a recalculation if the BO is moved. 1632 */ 1633 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1634 { 1635 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1636 1637 if (res->mem_type == XE_PL_STOLEN) 1638 return xe_ttm_stolen_gpu_offset(xe); 1639 1640 return res_to_mem_region(res)->dpa_base; 1641 } 1642 1643 /** 1644 * xe_bo_pin_external - pin an external BO 1645 * @bo: buffer object to be pinned 1646 * 1647 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1648 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1649 * asserts and code to ensure evict / restore on suspend / resume. 1650 * 1651 * Returns 0 for success, negative error code otherwise. 1652 */ 1653 int xe_bo_pin_external(struct xe_bo *bo) 1654 { 1655 struct xe_device *xe = xe_bo_device(bo); 1656 int err; 1657 1658 xe_assert(xe, !bo->vm); 1659 xe_assert(xe, xe_bo_is_user(bo)); 1660 1661 if (!xe_bo_is_pinned(bo)) { 1662 err = xe_bo_validate(bo, NULL, false); 1663 if (err) 1664 return err; 1665 1666 if (xe_bo_is_vram(bo)) { 1667 spin_lock(&xe->pinned.lock); 1668 list_add_tail(&bo->pinned_link, 1669 &xe->pinned.external_vram); 1670 spin_unlock(&xe->pinned.lock); 1671 } 1672 } 1673 1674 ttm_bo_pin(&bo->ttm); 1675 1676 /* 1677 * FIXME: If we always use the reserve / unreserve functions for locking 1678 * we do not need this. 1679 */ 1680 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1681 1682 return 0; 1683 } 1684 1685 int xe_bo_pin(struct xe_bo *bo) 1686 { 1687 struct xe_device *xe = xe_bo_device(bo); 1688 int err; 1689 1690 /* We currently don't expect user BO to be pinned */ 1691 xe_assert(xe, !xe_bo_is_user(bo)); 1692 1693 /* Pinned object must be in GGTT or have pinned flag */ 1694 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1695 XE_BO_FLAG_GGTT)); 1696 1697 /* 1698 * No reason we can't support pinning imported dma-bufs we just don't 1699 * expect to pin an imported dma-buf. 1700 */ 1701 xe_assert(xe, !bo->ttm.base.import_attach); 1702 1703 /* We only expect at most 1 pin */ 1704 xe_assert(xe, !xe_bo_is_pinned(bo)); 1705 1706 err = xe_bo_validate(bo, NULL, false); 1707 if (err) 1708 return err; 1709 1710 /* 1711 * For pinned objects in on DGFX, which are also in vram, we expect 1712 * these to be in contiguous VRAM memory. Required eviction / restore 1713 * during suspend / resume (force restore to same physical address). 1714 */ 1715 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1716 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1717 struct ttm_place *place = &(bo->placements[0]); 1718 1719 if (mem_type_is_vram(place->mem_type)) { 1720 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1721 1722 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1723 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1724 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1725 1726 spin_lock(&xe->pinned.lock); 1727 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1728 spin_unlock(&xe->pinned.lock); 1729 } 1730 } 1731 1732 ttm_bo_pin(&bo->ttm); 1733 1734 /* 1735 * FIXME: If we always use the reserve / unreserve functions for locking 1736 * we do not need this. 1737 */ 1738 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * xe_bo_unpin_external - unpin an external BO 1745 * @bo: buffer object to be unpinned 1746 * 1747 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1748 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1749 * asserts and code to ensure evict / restore on suspend / resume. 1750 * 1751 * Returns 0 for success, negative error code otherwise. 1752 */ 1753 void xe_bo_unpin_external(struct xe_bo *bo) 1754 { 1755 struct xe_device *xe = xe_bo_device(bo); 1756 1757 xe_assert(xe, !bo->vm); 1758 xe_assert(xe, xe_bo_is_pinned(bo)); 1759 xe_assert(xe, xe_bo_is_user(bo)); 1760 1761 spin_lock(&xe->pinned.lock); 1762 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1763 list_del_init(&bo->pinned_link); 1764 spin_unlock(&xe->pinned.lock); 1765 1766 ttm_bo_unpin(&bo->ttm); 1767 1768 /* 1769 * FIXME: If we always use the reserve / unreserve functions for locking 1770 * we do not need this. 1771 */ 1772 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1773 } 1774 1775 void xe_bo_unpin(struct xe_bo *bo) 1776 { 1777 struct xe_device *xe = xe_bo_device(bo); 1778 1779 xe_assert(xe, !bo->ttm.base.import_attach); 1780 xe_assert(xe, xe_bo_is_pinned(bo)); 1781 1782 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1783 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1784 struct ttm_place *place = &(bo->placements[0]); 1785 1786 if (mem_type_is_vram(place->mem_type)) { 1787 spin_lock(&xe->pinned.lock); 1788 xe_assert(xe, !list_empty(&bo->pinned_link)); 1789 list_del_init(&bo->pinned_link); 1790 spin_unlock(&xe->pinned.lock); 1791 } 1792 } 1793 1794 ttm_bo_unpin(&bo->ttm); 1795 } 1796 1797 /** 1798 * xe_bo_validate() - Make sure the bo is in an allowed placement 1799 * @bo: The bo, 1800 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1801 * NULL. Used together with @allow_res_evict. 1802 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1803 * reservation object. 1804 * 1805 * Make sure the bo is in allowed placement, migrating it if necessary. If 1806 * needed, other bos will be evicted. If bos selected for eviction shares 1807 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1808 * set to true, otherwise they will be bypassed. 1809 * 1810 * Return: 0 on success, negative error code on failure. May return 1811 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1812 */ 1813 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1814 { 1815 struct ttm_operation_ctx ctx = { 1816 .interruptible = true, 1817 .no_wait_gpu = false, 1818 }; 1819 1820 if (vm) { 1821 lockdep_assert_held(&vm->lock); 1822 xe_vm_assert_held(vm); 1823 1824 ctx.allow_res_evict = allow_res_evict; 1825 ctx.resv = xe_vm_resv(vm); 1826 } 1827 1828 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1829 } 1830 1831 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1832 { 1833 if (bo->destroy == &xe_ttm_bo_destroy) 1834 return true; 1835 1836 return false; 1837 } 1838 1839 /* 1840 * Resolve a BO address. There is no assert to check if the proper lock is held 1841 * so it should only be used in cases where it is not fatal to get the wrong 1842 * address, such as printing debug information, but not in cases where memory is 1843 * written based on this result. 1844 */ 1845 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1846 { 1847 struct xe_device *xe = xe_bo_device(bo); 1848 struct xe_res_cursor cur; 1849 u64 page; 1850 1851 xe_assert(xe, page_size <= PAGE_SIZE); 1852 page = offset >> PAGE_SHIFT; 1853 offset &= (PAGE_SIZE - 1); 1854 1855 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1856 xe_assert(xe, bo->ttm.ttm); 1857 1858 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1859 page_size, &cur); 1860 return xe_res_dma(&cur) + offset; 1861 } else { 1862 struct xe_res_cursor cur; 1863 1864 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1865 page_size, &cur); 1866 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1867 } 1868 } 1869 1870 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1871 { 1872 if (!READ_ONCE(bo->ttm.pin_count)) 1873 xe_bo_assert_held(bo); 1874 return __xe_bo_addr(bo, offset, page_size); 1875 } 1876 1877 int xe_bo_vmap(struct xe_bo *bo) 1878 { 1879 void *virtual; 1880 bool is_iomem; 1881 int ret; 1882 1883 xe_bo_assert_held(bo); 1884 1885 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1886 return -EINVAL; 1887 1888 if (!iosys_map_is_null(&bo->vmap)) 1889 return 0; 1890 1891 /* 1892 * We use this more or less deprecated interface for now since 1893 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1894 * single page bos, which is done here. 1895 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1896 * to use struct iosys_map. 1897 */ 1898 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1899 if (ret) 1900 return ret; 1901 1902 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1903 if (is_iomem) 1904 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1905 else 1906 iosys_map_set_vaddr(&bo->vmap, virtual); 1907 1908 return 0; 1909 } 1910 1911 static void __xe_bo_vunmap(struct xe_bo *bo) 1912 { 1913 if (!iosys_map_is_null(&bo->vmap)) { 1914 iosys_map_clear(&bo->vmap); 1915 ttm_bo_kunmap(&bo->kmap); 1916 } 1917 } 1918 1919 void xe_bo_vunmap(struct xe_bo *bo) 1920 { 1921 xe_bo_assert_held(bo); 1922 __xe_bo_vunmap(bo); 1923 } 1924 1925 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1926 struct drm_file *file) 1927 { 1928 struct xe_device *xe = to_xe_device(dev); 1929 struct xe_file *xef = to_xe_file(file); 1930 struct drm_xe_gem_create *args = data; 1931 struct xe_vm *vm = NULL; 1932 struct xe_bo *bo; 1933 unsigned int bo_flags; 1934 u32 handle; 1935 int err; 1936 1937 if (XE_IOCTL_DBG(xe, args->extensions) || 1938 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1939 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1940 return -EINVAL; 1941 1942 /* at least one valid memory placement must be specified */ 1943 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1944 !args->placement)) 1945 return -EINVAL; 1946 1947 if (XE_IOCTL_DBG(xe, args->flags & 1948 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1949 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1950 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1951 return -EINVAL; 1952 1953 if (XE_IOCTL_DBG(xe, args->handle)) 1954 return -EINVAL; 1955 1956 if (XE_IOCTL_DBG(xe, !args->size)) 1957 return -EINVAL; 1958 1959 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1960 return -EINVAL; 1961 1962 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1963 return -EINVAL; 1964 1965 bo_flags = 0; 1966 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1967 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 1968 1969 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1970 bo_flags |= XE_BO_FLAG_SCANOUT; 1971 1972 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 1973 1974 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1975 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 1976 return -EINVAL; 1977 1978 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 1979 } 1980 1981 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1982 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1983 return -EINVAL; 1984 1985 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 1986 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1987 return -EINVAL; 1988 1989 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 1990 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 1991 return -EINVAL; 1992 1993 if (args->vm_id) { 1994 vm = xe_vm_lookup(xef, args->vm_id); 1995 if (XE_IOCTL_DBG(xe, !vm)) 1996 return -ENOENT; 1997 err = xe_vm_lock(vm, true); 1998 if (err) 1999 goto out_vm; 2000 } 2001 2002 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2003 ttm_bo_type_device, bo_flags); 2004 2005 if (vm) 2006 xe_vm_unlock(vm); 2007 2008 if (IS_ERR(bo)) { 2009 err = PTR_ERR(bo); 2010 goto out_vm; 2011 } 2012 2013 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2014 if (err) 2015 goto out_bulk; 2016 2017 args->handle = handle; 2018 goto out_put; 2019 2020 out_bulk: 2021 if (vm && !xe_vm_in_fault_mode(vm)) { 2022 xe_vm_lock(vm, false); 2023 __xe_bo_unset_bulk_move(bo); 2024 xe_vm_unlock(vm); 2025 } 2026 out_put: 2027 xe_bo_put(bo); 2028 out_vm: 2029 if (vm) 2030 xe_vm_put(vm); 2031 2032 return err; 2033 } 2034 2035 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2036 struct drm_file *file) 2037 { 2038 struct xe_device *xe = to_xe_device(dev); 2039 struct drm_xe_gem_mmap_offset *args = data; 2040 struct drm_gem_object *gem_obj; 2041 2042 if (XE_IOCTL_DBG(xe, args->extensions) || 2043 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2044 return -EINVAL; 2045 2046 if (XE_IOCTL_DBG(xe, args->flags)) 2047 return -EINVAL; 2048 2049 gem_obj = drm_gem_object_lookup(file, args->handle); 2050 if (XE_IOCTL_DBG(xe, !gem_obj)) 2051 return -ENOENT; 2052 2053 /* The mmap offset was set up at BO allocation time. */ 2054 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2055 2056 xe_bo_put(gem_to_xe_bo(gem_obj)); 2057 return 0; 2058 } 2059 2060 /** 2061 * xe_bo_lock() - Lock the buffer object's dma_resv object 2062 * @bo: The struct xe_bo whose lock is to be taken 2063 * @intr: Whether to perform any wait interruptible 2064 * 2065 * Locks the buffer object's dma_resv object. If the buffer object is 2066 * pointing to a shared dma_resv object, that shared lock is locked. 2067 * 2068 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2069 * contended lock was interrupted. If @intr is set to false, the 2070 * function always returns 0. 2071 */ 2072 int xe_bo_lock(struct xe_bo *bo, bool intr) 2073 { 2074 if (intr) 2075 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2076 2077 dma_resv_lock(bo->ttm.base.resv, NULL); 2078 2079 return 0; 2080 } 2081 2082 /** 2083 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2084 * @bo: The struct xe_bo whose lock is to be released. 2085 * 2086 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2087 */ 2088 void xe_bo_unlock(struct xe_bo *bo) 2089 { 2090 dma_resv_unlock(bo->ttm.base.resv); 2091 } 2092 2093 /** 2094 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2095 * @bo: The buffer object to migrate 2096 * @mem_type: The TTM memory type intended to migrate to 2097 * 2098 * Check whether the buffer object supports migration to the 2099 * given memory type. Note that pinning may affect the ability to migrate as 2100 * returned by this function. 2101 * 2102 * This function is primarily intended as a helper for checking the 2103 * possibility to migrate buffer objects and can be called without 2104 * the object lock held. 2105 * 2106 * Return: true if migration is possible, false otherwise. 2107 */ 2108 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2109 { 2110 unsigned int cur_place; 2111 2112 if (bo->ttm.type == ttm_bo_type_kernel) 2113 return true; 2114 2115 if (bo->ttm.type == ttm_bo_type_sg) 2116 return false; 2117 2118 for (cur_place = 0; cur_place < bo->placement.num_placement; 2119 cur_place++) { 2120 if (bo->placements[cur_place].mem_type == mem_type) 2121 return true; 2122 } 2123 2124 return false; 2125 } 2126 2127 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2128 { 2129 memset(place, 0, sizeof(*place)); 2130 place->mem_type = mem_type; 2131 } 2132 2133 /** 2134 * xe_bo_migrate - Migrate an object to the desired region id 2135 * @bo: The buffer object to migrate. 2136 * @mem_type: The TTM region type to migrate to. 2137 * 2138 * Attempt to migrate the buffer object to the desired memory region. The 2139 * buffer object may not be pinned, and must be locked. 2140 * On successful completion, the object memory type will be updated, 2141 * but an async migration task may not have completed yet, and to 2142 * accomplish that, the object's kernel fences must be signaled with 2143 * the object lock held. 2144 * 2145 * Return: 0 on success. Negative error code on failure. In particular may 2146 * return -EINTR or -ERESTARTSYS if signal pending. 2147 */ 2148 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2149 { 2150 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2151 struct ttm_operation_ctx ctx = { 2152 .interruptible = true, 2153 .no_wait_gpu = false, 2154 }; 2155 struct ttm_placement placement; 2156 struct ttm_place requested; 2157 2158 xe_bo_assert_held(bo); 2159 2160 if (bo->ttm.resource->mem_type == mem_type) 2161 return 0; 2162 2163 if (xe_bo_is_pinned(bo)) 2164 return -EBUSY; 2165 2166 if (!xe_bo_can_migrate(bo, mem_type)) 2167 return -EINVAL; 2168 2169 xe_place_from_ttm_type(mem_type, &requested); 2170 placement.num_placement = 1; 2171 placement.placement = &requested; 2172 2173 /* 2174 * Stolen needs to be handled like below VRAM handling if we ever need 2175 * to support it. 2176 */ 2177 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2178 2179 if (mem_type_is_vram(mem_type)) { 2180 u32 c = 0; 2181 2182 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2183 } 2184 2185 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2186 } 2187 2188 /** 2189 * xe_bo_evict - Evict an object to evict placement 2190 * @bo: The buffer object to migrate. 2191 * @force_alloc: Set force_alloc in ttm_operation_ctx 2192 * 2193 * On successful completion, the object memory will be moved to evict 2194 * placement. Ths function blocks until the object has been fully moved. 2195 * 2196 * Return: 0 on success. Negative error code on failure. 2197 */ 2198 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2199 { 2200 struct ttm_operation_ctx ctx = { 2201 .interruptible = false, 2202 .no_wait_gpu = false, 2203 .force_alloc = force_alloc, 2204 }; 2205 struct ttm_placement placement; 2206 int ret; 2207 2208 xe_evict_flags(&bo->ttm, &placement); 2209 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2210 if (ret) 2211 return ret; 2212 2213 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2214 false, MAX_SCHEDULE_TIMEOUT); 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2221 * placed in system memory. 2222 * @bo: The xe_bo 2223 * 2224 * Return: true if extra pages need to be allocated, false otherwise. 2225 */ 2226 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2227 { 2228 struct xe_device *xe = xe_bo_device(bo); 2229 2230 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2231 return false; 2232 2233 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2234 return false; 2235 2236 /* On discrete GPUs, if the GPU can access this buffer from 2237 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2238 * can't be used since there's no CCS storage associated with 2239 * non-VRAM addresses. 2240 */ 2241 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2242 return false; 2243 2244 return true; 2245 } 2246 2247 /** 2248 * __xe_bo_release_dummy() - Dummy kref release function 2249 * @kref: The embedded struct kref. 2250 * 2251 * Dummy release function for xe_bo_put_deferred(). Keep off. 2252 */ 2253 void __xe_bo_release_dummy(struct kref *kref) 2254 { 2255 } 2256 2257 /** 2258 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2259 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2260 * 2261 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2262 * The @deferred list can be either an onstack local list or a global 2263 * shared list used by a workqueue. 2264 */ 2265 void xe_bo_put_commit(struct llist_head *deferred) 2266 { 2267 struct llist_node *freed; 2268 struct xe_bo *bo, *next; 2269 2270 if (!deferred) 2271 return; 2272 2273 freed = llist_del_all(deferred); 2274 if (!freed) 2275 return; 2276 2277 llist_for_each_entry_safe(bo, next, freed, freed) 2278 drm_gem_object_free(&bo->ttm.base.refcount); 2279 } 2280 2281 /** 2282 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2283 * @file_priv: ... 2284 * @dev: ... 2285 * @args: ... 2286 * 2287 * See dumb_create() hook in include/drm/drm_drv.h 2288 * 2289 * Return: ... 2290 */ 2291 int xe_bo_dumb_create(struct drm_file *file_priv, 2292 struct drm_device *dev, 2293 struct drm_mode_create_dumb *args) 2294 { 2295 struct xe_device *xe = to_xe_device(dev); 2296 struct xe_bo *bo; 2297 uint32_t handle; 2298 int cpp = DIV_ROUND_UP(args->bpp, 8); 2299 int err; 2300 u32 page_size = max_t(u32, PAGE_SIZE, 2301 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2302 2303 args->pitch = ALIGN(args->width * cpp, 64); 2304 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2305 page_size); 2306 2307 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2308 DRM_XE_GEM_CPU_CACHING_WC, 2309 ttm_bo_type_device, 2310 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2311 XE_BO_FLAG_SCANOUT | 2312 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2313 if (IS_ERR(bo)) 2314 return PTR_ERR(bo); 2315 2316 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2317 /* drop reference from allocate - handle holds it now */ 2318 drm_gem_object_put(&bo->ttm.base); 2319 if (!err) 2320 args->handle = handle; 2321 return err; 2322 } 2323 2324 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2325 { 2326 struct ttm_buffer_object *tbo = &bo->ttm; 2327 struct ttm_device *bdev = tbo->bdev; 2328 2329 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2330 2331 list_del_init(&bo->vram_userfault_link); 2332 } 2333 2334 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2335 #include "tests/xe_bo.c" 2336 #endif 2337