1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_preempt_fence.h" 26 #include "xe_res_cursor.h" 27 #include "xe_trace.h" 28 #include "xe_ttm_stolen_mgr.h" 29 #include "xe_vm.h" 30 31 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 32 [XE_PL_SYSTEM] = "system", 33 [XE_PL_TT] = "gtt", 34 [XE_PL_VRAM0] = "vram0", 35 [XE_PL_VRAM1] = "vram1", 36 [XE_PL_STOLEN] = "stolen" 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = XE_PL_SYSTEM, 43 .flags = 0, 44 }; 45 46 static struct ttm_placement sys_placement = { 47 .num_placement = 1, 48 .placement = &sys_placement_flags, 49 .num_busy_placement = 1, 50 .busy_placement = &sys_placement_flags, 51 }; 52 53 static const struct ttm_place tt_placement_flags = { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = 0, 58 }; 59 60 static struct ttm_placement tt_placement = { 61 .num_placement = 1, 62 .placement = &tt_placement_flags, 63 .num_busy_placement = 1, 64 .busy_placement = &sys_placement_flags, 65 }; 66 67 bool mem_type_is_vram(u32 mem_type) 68 { 69 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 70 } 71 72 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 73 { 74 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 75 } 76 77 static bool resource_is_vram(struct ttm_resource *res) 78 { 79 return mem_type_is_vram(res->mem_type); 80 } 81 82 bool xe_bo_is_vram(struct xe_bo *bo) 83 { 84 return resource_is_vram(bo->ttm.resource) || 85 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 86 } 87 88 bool xe_bo_is_stolen(struct xe_bo *bo) 89 { 90 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 91 } 92 93 /** 94 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 95 * @bo: The BO 96 * 97 * The stolen memory is accessed through the PCI BAR for both DGFX and some 98 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 99 * 100 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 101 */ 102 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 103 { 104 return xe_bo_is_stolen(bo) && 105 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 106 } 107 108 static bool xe_bo_is_user(struct xe_bo *bo) 109 { 110 return bo->flags & XE_BO_CREATE_USER_BIT; 111 } 112 113 static struct xe_migrate * 114 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 115 { 116 struct xe_tile *tile; 117 118 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 119 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 120 return tile->migrate; 121 } 122 123 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 124 { 125 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 126 struct ttm_resource_manager *mgr; 127 128 xe_assert(xe, resource_is_vram(res)); 129 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 130 return to_xe_ttm_vram_mgr(mgr)->vram; 131 } 132 133 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 134 u32 bo_flags, u32 *c) 135 { 136 if (bo_flags & XE_BO_CREATE_SYSTEM_BIT) { 137 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 138 139 bo->placements[*c] = (struct ttm_place) { 140 .mem_type = XE_PL_TT, 141 }; 142 *c += 1; 143 144 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 145 bo->props.preferred_mem_type = XE_PL_TT; 146 } 147 } 148 149 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 150 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 151 { 152 struct ttm_place place = { .mem_type = mem_type }; 153 struct xe_mem_region *vram; 154 u64 io_size; 155 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 159 xe_assert(xe, vram && vram->usable_size); 160 io_size = vram->io_size; 161 162 /* 163 * For eviction / restore on suspend / resume objects 164 * pinned in VRAM must be contiguous 165 */ 166 if (bo_flags & (XE_BO_CREATE_PINNED_BIT | 167 XE_BO_CREATE_GGTT_BIT)) 168 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 169 170 if (io_size < vram->usable_size) { 171 if (bo_flags & XE_BO_NEEDS_CPU_ACCESS) { 172 place.fpfn = 0; 173 place.lpfn = io_size >> PAGE_SHIFT; 174 } else { 175 place.flags |= TTM_PL_FLAG_TOPDOWN; 176 } 177 } 178 places[*c] = place; 179 *c += 1; 180 181 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 182 bo->props.preferred_mem_type = mem_type; 183 } 184 185 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 186 u32 bo_flags, u32 *c) 187 { 188 if (bo->props.preferred_gt == XE_GT1) { 189 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 190 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 191 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 192 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 193 } else { 194 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 195 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 196 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 197 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 198 } 199 } 200 201 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 202 u32 bo_flags, u32 *c) 203 { 204 if (bo_flags & XE_BO_CREATE_STOLEN_BIT) { 205 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 206 207 bo->placements[*c] = (struct ttm_place) { 208 .mem_type = XE_PL_STOLEN, 209 .flags = bo_flags & (XE_BO_CREATE_PINNED_BIT | 210 XE_BO_CREATE_GGTT_BIT) ? 211 TTM_PL_FLAG_CONTIGUOUS : 0, 212 }; 213 *c += 1; 214 } 215 } 216 217 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 218 u32 bo_flags) 219 { 220 u32 c = 0; 221 222 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 223 224 /* The order of placements should indicate preferred location */ 225 226 if (bo->props.preferred_mem_class == DRM_XE_MEM_REGION_CLASS_SYSMEM) { 227 try_add_system(xe, bo, bo_flags, &c); 228 try_add_vram(xe, bo, bo_flags, &c); 229 } else { 230 try_add_vram(xe, bo, bo_flags, &c); 231 try_add_system(xe, bo, bo_flags, &c); 232 } 233 try_add_stolen(xe, bo, bo_flags, &c); 234 235 if (!c) 236 return -EINVAL; 237 238 bo->placement = (struct ttm_placement) { 239 .num_placement = c, 240 .placement = bo->placements, 241 .num_busy_placement = c, 242 .busy_placement = bo->placements, 243 }; 244 245 return 0; 246 } 247 248 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 249 u32 bo_flags) 250 { 251 xe_bo_assert_held(bo); 252 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 253 } 254 255 static void xe_evict_flags(struct ttm_buffer_object *tbo, 256 struct ttm_placement *placement) 257 { 258 if (!xe_bo_is_xe_bo(tbo)) { 259 /* Don't handle scatter gather BOs */ 260 if (tbo->type == ttm_bo_type_sg) { 261 placement->num_placement = 0; 262 placement->num_busy_placement = 0; 263 return; 264 } 265 266 *placement = sys_placement; 267 return; 268 } 269 270 /* 271 * For xe, sg bos that are evicted to system just triggers a 272 * rebind of the sg list upon subsequent validation to XE_PL_TT. 273 */ 274 switch (tbo->resource->mem_type) { 275 case XE_PL_VRAM0: 276 case XE_PL_VRAM1: 277 case XE_PL_STOLEN: 278 *placement = tt_placement; 279 break; 280 case XE_PL_TT: 281 default: 282 *placement = sys_placement; 283 break; 284 } 285 } 286 287 struct xe_ttm_tt { 288 struct ttm_tt ttm; 289 struct device *dev; 290 struct sg_table sgt; 291 struct sg_table *sg; 292 }; 293 294 static int xe_tt_map_sg(struct ttm_tt *tt) 295 { 296 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 297 unsigned long num_pages = tt->num_pages; 298 int ret; 299 300 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 301 302 if (xe_tt->sg) 303 return 0; 304 305 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 306 num_pages, 0, 307 (u64)num_pages << PAGE_SHIFT, 308 xe_sg_segment_size(xe_tt->dev), 309 GFP_KERNEL); 310 if (ret) 311 return ret; 312 313 xe_tt->sg = &xe_tt->sgt; 314 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 315 DMA_ATTR_SKIP_CPU_SYNC); 316 if (ret) { 317 sg_free_table(xe_tt->sg); 318 xe_tt->sg = NULL; 319 return ret; 320 } 321 322 return 0; 323 } 324 325 struct sg_table *xe_bo_sg(struct xe_bo *bo) 326 { 327 struct ttm_tt *tt = bo->ttm.ttm; 328 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 329 330 return xe_tt->sg; 331 } 332 333 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 334 u32 page_flags) 335 { 336 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 337 struct xe_device *xe = xe_bo_device(bo); 338 struct xe_ttm_tt *tt; 339 unsigned long extra_pages; 340 enum ttm_caching caching; 341 int err; 342 343 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 344 if (!tt) 345 return NULL; 346 347 tt->dev = xe->drm.dev; 348 349 extra_pages = 0; 350 if (xe_bo_needs_ccs_pages(bo)) 351 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 352 PAGE_SIZE); 353 354 switch (bo->cpu_caching) { 355 case DRM_XE_GEM_CPU_CACHING_WC: 356 caching = ttm_write_combined; 357 break; 358 default: 359 caching = ttm_cached; 360 break; 361 } 362 363 WARN_ON((bo->flags & XE_BO_CREATE_USER_BIT) && !bo->cpu_caching); 364 365 /* 366 * Display scanout is always non-coherent with the CPU cache. 367 * 368 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 369 * require a CPU:WC mapping. 370 */ 371 if ((!bo->cpu_caching && bo->flags & XE_BO_SCANOUT_BIT) || 372 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_PAGETABLE)) 373 caching = ttm_write_combined; 374 375 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 376 if (err) { 377 kfree(tt); 378 return NULL; 379 } 380 381 return &tt->ttm; 382 } 383 384 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 385 struct ttm_operation_ctx *ctx) 386 { 387 int err; 388 389 /* 390 * dma-bufs are not populated with pages, and the dma- 391 * addresses are set up when moved to XE_PL_TT. 392 */ 393 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 394 return 0; 395 396 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 397 if (err) 398 return err; 399 400 /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ 401 err = xe_tt_map_sg(tt); 402 if (err) 403 ttm_pool_free(&ttm_dev->pool, tt); 404 405 return err; 406 } 407 408 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 409 { 410 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 411 412 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 413 return; 414 415 if (xe_tt->sg) { 416 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 417 DMA_BIDIRECTIONAL, 0); 418 sg_free_table(xe_tt->sg); 419 xe_tt->sg = NULL; 420 } 421 422 return ttm_pool_free(&ttm_dev->pool, tt); 423 } 424 425 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 426 { 427 ttm_tt_fini(tt); 428 kfree(tt); 429 } 430 431 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 432 struct ttm_resource *mem) 433 { 434 struct xe_device *xe = ttm_to_xe_device(bdev); 435 436 switch (mem->mem_type) { 437 case XE_PL_SYSTEM: 438 case XE_PL_TT: 439 return 0; 440 case XE_PL_VRAM0: 441 case XE_PL_VRAM1: { 442 struct xe_ttm_vram_mgr_resource *vres = 443 to_xe_ttm_vram_mgr_resource(mem); 444 struct xe_mem_region *vram = res_to_mem_region(mem); 445 446 if (vres->used_visible_size < mem->size) 447 return -EINVAL; 448 449 mem->bus.offset = mem->start << PAGE_SHIFT; 450 451 if (vram->mapping && 452 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 453 mem->bus.addr = (u8 __force *)vram->mapping + 454 mem->bus.offset; 455 456 mem->bus.offset += vram->io_start; 457 mem->bus.is_iomem = true; 458 459 #if !defined(CONFIG_X86) 460 mem->bus.caching = ttm_write_combined; 461 #endif 462 return 0; 463 } case XE_PL_STOLEN: 464 return xe_ttm_stolen_io_mem_reserve(xe, mem); 465 default: 466 return -EINVAL; 467 } 468 } 469 470 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 471 const struct ttm_operation_ctx *ctx) 472 { 473 struct dma_resv_iter cursor; 474 struct dma_fence *fence; 475 struct drm_gem_object *obj = &bo->ttm.base; 476 struct drm_gpuvm_bo *vm_bo; 477 bool idle = false; 478 int ret = 0; 479 480 dma_resv_assert_held(bo->ttm.base.resv); 481 482 if (!list_empty(&bo->ttm.base.gpuva.list)) { 483 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 484 DMA_RESV_USAGE_BOOKKEEP); 485 dma_resv_for_each_fence_unlocked(&cursor, fence) 486 dma_fence_enable_sw_signaling(fence); 487 dma_resv_iter_end(&cursor); 488 } 489 490 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 491 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 492 struct drm_gpuva *gpuva; 493 494 if (!xe_vm_in_fault_mode(vm)) { 495 drm_gpuvm_bo_evict(vm_bo, true); 496 continue; 497 } 498 499 if (!idle) { 500 long timeout; 501 502 if (ctx->no_wait_gpu && 503 !dma_resv_test_signaled(bo->ttm.base.resv, 504 DMA_RESV_USAGE_BOOKKEEP)) 505 return -EBUSY; 506 507 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 508 DMA_RESV_USAGE_BOOKKEEP, 509 ctx->interruptible, 510 MAX_SCHEDULE_TIMEOUT); 511 if (!timeout) 512 return -ETIME; 513 if (timeout < 0) 514 return timeout; 515 516 idle = true; 517 } 518 519 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 520 struct xe_vma *vma = gpuva_to_vma(gpuva); 521 522 trace_xe_vma_evict(vma); 523 ret = xe_vm_invalidate_vma(vma); 524 if (XE_WARN_ON(ret)) 525 return ret; 526 } 527 } 528 529 return ret; 530 } 531 532 /* 533 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 534 * Note that unmapping the attachment is deferred to the next 535 * map_attachment time, or to bo destroy (after idling) whichever comes first. 536 * This is to avoid syncing before unmap_attachment(), assuming that the 537 * caller relies on idling the reservation object before moving the 538 * backing store out. Should that assumption not hold, then we will be able 539 * to unconditionally call unmap_attachment() when moving out to system. 540 */ 541 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 542 struct ttm_resource *new_res) 543 { 544 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 545 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 546 ttm); 547 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 548 struct sg_table *sg; 549 550 xe_assert(xe, attach); 551 xe_assert(xe, ttm_bo->ttm); 552 553 if (new_res->mem_type == XE_PL_SYSTEM) 554 goto out; 555 556 if (ttm_bo->sg) { 557 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 558 ttm_bo->sg = NULL; 559 } 560 561 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 562 if (IS_ERR(sg)) 563 return PTR_ERR(sg); 564 565 ttm_bo->sg = sg; 566 xe_tt->sg = sg; 567 568 out: 569 ttm_bo_move_null(ttm_bo, new_res); 570 571 return 0; 572 } 573 574 /** 575 * xe_bo_move_notify - Notify subsystems of a pending move 576 * @bo: The buffer object 577 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 578 * 579 * This function notifies subsystems of an upcoming buffer move. 580 * Upon receiving such a notification, subsystems should schedule 581 * halting access to the underlying pages and optionally add a fence 582 * to the buffer object's dma_resv object, that signals when access is 583 * stopped. The caller will wait on all dma_resv fences before 584 * starting the move. 585 * 586 * A subsystem may commence access to the object after obtaining 587 * bindings to the new backing memory under the object lock. 588 * 589 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 590 * negative error code on error. 591 */ 592 static int xe_bo_move_notify(struct xe_bo *bo, 593 const struct ttm_operation_ctx *ctx) 594 { 595 struct ttm_buffer_object *ttm_bo = &bo->ttm; 596 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 597 int ret; 598 599 /* 600 * If this starts to call into many components, consider 601 * using a notification chain here. 602 */ 603 604 if (xe_bo_is_pinned(bo)) 605 return -EINVAL; 606 607 xe_bo_vunmap(bo); 608 ret = xe_bo_trigger_rebind(xe, bo, ctx); 609 if (ret) 610 return ret; 611 612 /* Don't call move_notify() for imported dma-bufs. */ 613 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 614 dma_buf_move_notify(ttm_bo->base.dma_buf); 615 616 return 0; 617 } 618 619 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 620 struct ttm_operation_ctx *ctx, 621 struct ttm_resource *new_mem, 622 struct ttm_place *hop) 623 { 624 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 625 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 626 struct ttm_resource *old_mem = ttm_bo->resource; 627 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 628 struct ttm_tt *ttm = ttm_bo->ttm; 629 struct xe_migrate *migrate = NULL; 630 struct dma_fence *fence; 631 bool move_lacks_source; 632 bool tt_has_data; 633 bool needs_clear; 634 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 635 ttm && ttm_tt_is_populated(ttm)) ? true : false; 636 int ret = 0; 637 /* Bo creation path, moving to system or TT. */ 638 if ((!old_mem && ttm) && !handle_system_ccs) { 639 ttm_bo_move_null(ttm_bo, new_mem); 640 return 0; 641 } 642 643 if (ttm_bo->type == ttm_bo_type_sg) { 644 ret = xe_bo_move_notify(bo, ctx); 645 if (!ret) 646 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 647 goto out; 648 } 649 650 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 651 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 652 653 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 654 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 655 656 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 657 (!ttm && ttm_bo->type == ttm_bo_type_device); 658 659 if ((move_lacks_source && !needs_clear)) { 660 ttm_bo_move_null(ttm_bo, new_mem); 661 goto out; 662 } 663 664 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 665 ttm_bo_move_null(ttm_bo, new_mem); 666 goto out; 667 } 668 669 /* 670 * Failed multi-hop where the old_mem is still marked as 671 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 672 */ 673 if (old_mem_type == XE_PL_TT && 674 new_mem->mem_type == XE_PL_TT) { 675 ttm_bo_move_null(ttm_bo, new_mem); 676 goto out; 677 } 678 679 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 680 ret = xe_bo_move_notify(bo, ctx); 681 if (ret) 682 goto out; 683 } 684 685 if (old_mem_type == XE_PL_TT && 686 new_mem->mem_type == XE_PL_SYSTEM) { 687 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 688 DMA_RESV_USAGE_BOOKKEEP, 689 true, 690 MAX_SCHEDULE_TIMEOUT); 691 if (timeout < 0) { 692 ret = timeout; 693 goto out; 694 } 695 696 if (!handle_system_ccs) { 697 ttm_bo_move_null(ttm_bo, new_mem); 698 goto out; 699 } 700 } 701 702 if (!move_lacks_source && 703 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 704 (mem_type_is_vram(old_mem_type) && 705 new_mem->mem_type == XE_PL_SYSTEM))) { 706 hop->fpfn = 0; 707 hop->lpfn = 0; 708 hop->mem_type = XE_PL_TT; 709 hop->flags = TTM_PL_FLAG_TEMPORARY; 710 ret = -EMULTIHOP; 711 goto out; 712 } 713 714 if (bo->tile) 715 migrate = bo->tile->migrate; 716 else if (resource_is_vram(new_mem)) 717 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 718 else if (mem_type_is_vram(old_mem_type)) 719 migrate = mem_type_to_migrate(xe, old_mem_type); 720 else 721 migrate = xe->tiles[0].migrate; 722 723 xe_assert(xe, migrate); 724 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 725 xe_device_mem_access_get(xe); 726 727 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 728 /* 729 * Kernel memory that is pinned should only be moved on suspend 730 * / resume, some of the pinned memory is required for the 731 * device to resume / use the GPU to move other evicted memory 732 * (user memory) around. This likely could be optimized a bit 733 * futher where we find the minimum set of pinned memory 734 * required for resume but for simplity doing a memcpy for all 735 * pinned memory. 736 */ 737 ret = xe_bo_vmap(bo); 738 if (!ret) { 739 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 740 741 /* Create a new VMAP once kernel BO back in VRAM */ 742 if (!ret && resource_is_vram(new_mem)) { 743 struct xe_mem_region *vram = res_to_mem_region(new_mem); 744 void __iomem *new_addr = vram->mapping + 745 (new_mem->start << PAGE_SHIFT); 746 747 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 748 ret = -EINVAL; 749 xe_device_mem_access_put(xe); 750 goto out; 751 } 752 753 xe_assert(xe, new_mem->start == 754 bo->placements->fpfn); 755 756 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 757 } 758 } 759 } else { 760 if (move_lacks_source) 761 fence = xe_migrate_clear(migrate, bo, new_mem); 762 else 763 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 764 new_mem, handle_system_ccs); 765 if (IS_ERR(fence)) { 766 ret = PTR_ERR(fence); 767 xe_device_mem_access_put(xe); 768 goto out; 769 } 770 if (!move_lacks_source) { 771 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 772 true, new_mem); 773 if (ret) { 774 dma_fence_wait(fence, false); 775 ttm_bo_move_null(ttm_bo, new_mem); 776 ret = 0; 777 } 778 } else { 779 /* 780 * ttm_bo_move_accel_cleanup() may blow up if 781 * bo->resource == NULL, so just attach the 782 * fence and set the new resource. 783 */ 784 dma_resv_add_fence(ttm_bo->base.resv, fence, 785 DMA_RESV_USAGE_KERNEL); 786 ttm_bo_move_null(ttm_bo, new_mem); 787 } 788 789 dma_fence_put(fence); 790 } 791 792 xe_device_mem_access_put(xe); 793 794 out: 795 return ret; 796 797 } 798 799 /** 800 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 801 * @bo: The buffer object to move. 802 * 803 * On successful completion, the object memory will be moved to sytem memory. 804 * This function blocks until the object has been fully moved. 805 * 806 * This is needed to for special handling of pinned VRAM object during 807 * suspend-resume. 808 * 809 * Return: 0 on success. Negative error code on failure. 810 */ 811 int xe_bo_evict_pinned(struct xe_bo *bo) 812 { 813 struct ttm_place place = { 814 .mem_type = XE_PL_TT, 815 }; 816 struct ttm_placement placement = { 817 .placement = &place, 818 .num_placement = 1, 819 }; 820 struct ttm_operation_ctx ctx = { 821 .interruptible = false, 822 }; 823 struct ttm_resource *new_mem; 824 int ret; 825 826 xe_bo_assert_held(bo); 827 828 if (WARN_ON(!bo->ttm.resource)) 829 return -EINVAL; 830 831 if (WARN_ON(!xe_bo_is_pinned(bo))) 832 return -EINVAL; 833 834 if (WARN_ON(!xe_bo_is_vram(bo))) 835 return -EINVAL; 836 837 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 838 if (ret) 839 return ret; 840 841 if (!bo->ttm.ttm) { 842 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 843 if (!bo->ttm.ttm) { 844 ret = -ENOMEM; 845 goto err_res_free; 846 } 847 } 848 849 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 850 if (ret) 851 goto err_res_free; 852 853 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 854 if (ret) 855 goto err_res_free; 856 857 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 858 if (ret) 859 goto err_res_free; 860 861 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 862 false, MAX_SCHEDULE_TIMEOUT); 863 864 return 0; 865 866 err_res_free: 867 ttm_resource_free(&bo->ttm, &new_mem); 868 return ret; 869 } 870 871 /** 872 * xe_bo_restore_pinned() - Restore a pinned VRAM object 873 * @bo: The buffer object to move. 874 * 875 * On successful completion, the object memory will be moved back to VRAM. 876 * This function blocks until the object has been fully moved. 877 * 878 * This is needed to for special handling of pinned VRAM object during 879 * suspend-resume. 880 * 881 * Return: 0 on success. Negative error code on failure. 882 */ 883 int xe_bo_restore_pinned(struct xe_bo *bo) 884 { 885 struct ttm_operation_ctx ctx = { 886 .interruptible = false, 887 }; 888 struct ttm_resource *new_mem; 889 int ret; 890 891 xe_bo_assert_held(bo); 892 893 if (WARN_ON(!bo->ttm.resource)) 894 return -EINVAL; 895 896 if (WARN_ON(!xe_bo_is_pinned(bo))) 897 return -EINVAL; 898 899 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 900 return -EINVAL; 901 902 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 903 if (ret) 904 return ret; 905 906 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 907 if (ret) 908 goto err_res_free; 909 910 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 911 if (ret) 912 goto err_res_free; 913 914 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 915 if (ret) 916 goto err_res_free; 917 918 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 919 false, MAX_SCHEDULE_TIMEOUT); 920 921 return 0; 922 923 err_res_free: 924 ttm_resource_free(&bo->ttm, &new_mem); 925 return ret; 926 } 927 928 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 929 unsigned long page_offset) 930 { 931 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 932 struct xe_res_cursor cursor; 933 struct xe_mem_region *vram; 934 935 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 936 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 937 938 vram = res_to_mem_region(ttm_bo->resource); 939 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 940 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 941 } 942 943 static void __xe_bo_vunmap(struct xe_bo *bo); 944 945 /* 946 * TODO: Move this function to TTM so we don't rely on how TTM does its 947 * locking, thereby abusing TTM internals. 948 */ 949 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 950 { 951 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 952 bool locked; 953 954 xe_assert(xe, !kref_read(&ttm_bo->kref)); 955 956 /* 957 * We can typically only race with TTM trylocking under the 958 * lru_lock, which will immediately be unlocked again since 959 * the ttm_bo refcount is zero at this point. So trylocking *should* 960 * always succeed here, as long as we hold the lru lock. 961 */ 962 spin_lock(&ttm_bo->bdev->lru_lock); 963 locked = dma_resv_trylock(ttm_bo->base.resv); 964 spin_unlock(&ttm_bo->bdev->lru_lock); 965 xe_assert(xe, locked); 966 967 return locked; 968 } 969 970 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 971 { 972 struct dma_resv_iter cursor; 973 struct dma_fence *fence; 974 struct dma_fence *replacement = NULL; 975 struct xe_bo *bo; 976 977 if (!xe_bo_is_xe_bo(ttm_bo)) 978 return; 979 980 bo = ttm_to_xe_bo(ttm_bo); 981 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 982 983 /* 984 * Corner case where TTM fails to allocate memory and this BOs resv 985 * still points the VMs resv 986 */ 987 if (ttm_bo->base.resv != &ttm_bo->base._resv) 988 return; 989 990 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 991 return; 992 993 /* 994 * Scrub the preempt fences if any. The unbind fence is already 995 * attached to the resv. 996 * TODO: Don't do this for external bos once we scrub them after 997 * unbind. 998 */ 999 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1000 DMA_RESV_USAGE_BOOKKEEP, fence) { 1001 if (xe_fence_is_xe_preempt(fence) && 1002 !dma_fence_is_signaled(fence)) { 1003 if (!replacement) 1004 replacement = dma_fence_get_stub(); 1005 1006 dma_resv_replace_fences(ttm_bo->base.resv, 1007 fence->context, 1008 replacement, 1009 DMA_RESV_USAGE_BOOKKEEP); 1010 } 1011 } 1012 dma_fence_put(replacement); 1013 1014 dma_resv_unlock(ttm_bo->base.resv); 1015 } 1016 1017 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1018 { 1019 if (!xe_bo_is_xe_bo(ttm_bo)) 1020 return; 1021 1022 /* 1023 * Object is idle and about to be destroyed. Release the 1024 * dma-buf attachment. 1025 */ 1026 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1027 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1028 struct xe_ttm_tt, ttm); 1029 1030 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1031 DMA_BIDIRECTIONAL); 1032 ttm_bo->sg = NULL; 1033 xe_tt->sg = NULL; 1034 } 1035 } 1036 1037 struct ttm_device_funcs xe_ttm_funcs = { 1038 .ttm_tt_create = xe_ttm_tt_create, 1039 .ttm_tt_populate = xe_ttm_tt_populate, 1040 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1041 .ttm_tt_destroy = xe_ttm_tt_destroy, 1042 .evict_flags = xe_evict_flags, 1043 .move = xe_bo_move, 1044 .io_mem_reserve = xe_ttm_io_mem_reserve, 1045 .io_mem_pfn = xe_ttm_io_mem_pfn, 1046 .release_notify = xe_ttm_bo_release_notify, 1047 .eviction_valuable = ttm_bo_eviction_valuable, 1048 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1049 }; 1050 1051 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1052 { 1053 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1054 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1055 1056 if (bo->ttm.base.import_attach) 1057 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1058 drm_gem_object_release(&bo->ttm.base); 1059 1060 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1061 1062 if (bo->ggtt_node.size) 1063 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1064 1065 #ifdef CONFIG_PROC_FS 1066 if (bo->client) 1067 xe_drm_client_remove_bo(bo); 1068 #endif 1069 1070 if (bo->vm && xe_bo_is_user(bo)) 1071 xe_vm_put(bo->vm); 1072 1073 kfree(bo); 1074 } 1075 1076 static void xe_gem_object_free(struct drm_gem_object *obj) 1077 { 1078 /* Our BO reference counting scheme works as follows: 1079 * 1080 * The gem object kref is typically used throughout the driver, 1081 * and the gem object holds a ttm_buffer_object refcount, so 1082 * that when the last gem object reference is put, which is when 1083 * we end up in this function, we put also that ttm_buffer_object 1084 * refcount. Anything using gem interfaces is then no longer 1085 * allowed to access the object in a way that requires a gem 1086 * refcount, including locking the object. 1087 * 1088 * driver ttm callbacks is allowed to use the ttm_buffer_object 1089 * refcount directly if needed. 1090 */ 1091 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1092 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1093 } 1094 1095 static void xe_gem_object_close(struct drm_gem_object *obj, 1096 struct drm_file *file_priv) 1097 { 1098 struct xe_bo *bo = gem_to_xe_bo(obj); 1099 1100 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1101 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1102 1103 xe_bo_lock(bo, false); 1104 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1105 xe_bo_unlock(bo); 1106 } 1107 } 1108 1109 static bool should_migrate_to_system(struct xe_bo *bo) 1110 { 1111 struct xe_device *xe = xe_bo_device(bo); 1112 1113 return xe_device_in_fault_mode(xe) && bo->props.cpu_atomic; 1114 } 1115 1116 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1117 { 1118 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1119 struct drm_device *ddev = tbo->base.dev; 1120 vm_fault_t ret; 1121 int idx, r = 0; 1122 1123 ret = ttm_bo_vm_reserve(tbo, vmf); 1124 if (ret) 1125 return ret; 1126 1127 if (drm_dev_enter(ddev, &idx)) { 1128 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1129 1130 trace_xe_bo_cpu_fault(bo); 1131 1132 if (should_migrate_to_system(bo)) { 1133 r = xe_bo_migrate(bo, XE_PL_TT); 1134 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1135 ret = VM_FAULT_NOPAGE; 1136 else if (r) 1137 ret = VM_FAULT_SIGBUS; 1138 } 1139 if (!ret) 1140 ret = ttm_bo_vm_fault_reserved(vmf, 1141 vmf->vma->vm_page_prot, 1142 TTM_BO_VM_NUM_PREFAULT); 1143 drm_dev_exit(idx); 1144 } else { 1145 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1146 } 1147 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1148 return ret; 1149 1150 dma_resv_unlock(tbo->base.resv); 1151 return ret; 1152 } 1153 1154 static const struct vm_operations_struct xe_gem_vm_ops = { 1155 .fault = xe_gem_fault, 1156 .open = ttm_bo_vm_open, 1157 .close = ttm_bo_vm_close, 1158 .access = ttm_bo_vm_access 1159 }; 1160 1161 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1162 .free = xe_gem_object_free, 1163 .close = xe_gem_object_close, 1164 .mmap = drm_gem_ttm_mmap, 1165 .export = xe_gem_prime_export, 1166 .vm_ops = &xe_gem_vm_ops, 1167 }; 1168 1169 /** 1170 * xe_bo_alloc - Allocate storage for a struct xe_bo 1171 * 1172 * This funcition is intended to allocate storage to be used for input 1173 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1174 * created is needed before the call to __xe_bo_create_locked(). 1175 * If __xe_bo_create_locked ends up never to be called, then the 1176 * storage allocated with this function needs to be freed using 1177 * xe_bo_free(). 1178 * 1179 * Return: A pointer to an uninitialized struct xe_bo on success, 1180 * ERR_PTR(-ENOMEM) on error. 1181 */ 1182 struct xe_bo *xe_bo_alloc(void) 1183 { 1184 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1185 1186 if (!bo) 1187 return ERR_PTR(-ENOMEM); 1188 1189 return bo; 1190 } 1191 1192 /** 1193 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1194 * @bo: The buffer object storage. 1195 * 1196 * Refer to xe_bo_alloc() documentation for valid use-cases. 1197 */ 1198 void xe_bo_free(struct xe_bo *bo) 1199 { 1200 kfree(bo); 1201 } 1202 1203 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1204 struct xe_tile *tile, struct dma_resv *resv, 1205 struct ttm_lru_bulk_move *bulk, size_t size, 1206 u16 cpu_caching, enum ttm_bo_type type, 1207 u32 flags) 1208 { 1209 struct ttm_operation_ctx ctx = { 1210 .interruptible = true, 1211 .no_wait_gpu = false, 1212 }; 1213 struct ttm_placement *placement; 1214 uint32_t alignment; 1215 size_t aligned_size; 1216 int err; 1217 1218 /* Only kernel objects should set GT */ 1219 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1220 1221 if (XE_WARN_ON(!size)) { 1222 xe_bo_free(bo); 1223 return ERR_PTR(-EINVAL); 1224 } 1225 1226 if (flags & (XE_BO_CREATE_VRAM_MASK | XE_BO_CREATE_STOLEN_BIT) && 1227 !(flags & XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT) && 1228 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) { 1229 aligned_size = ALIGN(size, SZ_64K); 1230 if (type != ttm_bo_type_device) 1231 size = ALIGN(size, SZ_64K); 1232 flags |= XE_BO_INTERNAL_64K; 1233 alignment = SZ_64K >> PAGE_SHIFT; 1234 1235 } else { 1236 aligned_size = ALIGN(size, SZ_4K); 1237 flags &= ~XE_BO_INTERNAL_64K; 1238 alignment = SZ_4K >> PAGE_SHIFT; 1239 } 1240 1241 if (type == ttm_bo_type_device && aligned_size != size) 1242 return ERR_PTR(-EINVAL); 1243 1244 if (!bo) { 1245 bo = xe_bo_alloc(); 1246 if (IS_ERR(bo)) 1247 return bo; 1248 } 1249 1250 bo->ccs_cleared = false; 1251 bo->tile = tile; 1252 bo->size = size; 1253 bo->flags = flags; 1254 bo->cpu_caching = cpu_caching; 1255 bo->ttm.base.funcs = &xe_gem_object_funcs; 1256 bo->props.preferred_mem_class = XE_BO_PROPS_INVALID; 1257 bo->props.preferred_gt = XE_BO_PROPS_INVALID; 1258 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 1259 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1260 INIT_LIST_HEAD(&bo->pinned_link); 1261 #ifdef CONFIG_PROC_FS 1262 INIT_LIST_HEAD(&bo->client_link); 1263 #endif 1264 1265 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1266 1267 if (resv) { 1268 ctx.allow_res_evict = !(flags & XE_BO_CREATE_NO_RESV_EVICT); 1269 ctx.resv = resv; 1270 } 1271 1272 if (!(flags & XE_BO_FIXED_PLACEMENT_BIT)) { 1273 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1274 if (WARN_ON(err)) { 1275 xe_ttm_bo_destroy(&bo->ttm); 1276 return ERR_PTR(err); 1277 } 1278 } 1279 1280 /* Defer populating type_sg bos */ 1281 placement = (type == ttm_bo_type_sg || 1282 bo->flags & XE_BO_DEFER_BACKING) ? &sys_placement : 1283 &bo->placement; 1284 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1285 placement, alignment, 1286 &ctx, NULL, resv, xe_ttm_bo_destroy); 1287 if (err) 1288 return ERR_PTR(err); 1289 1290 /* 1291 * The VRAM pages underneath are potentially still being accessed by the 1292 * GPU, as per async GPU clearing and async evictions. However TTM makes 1293 * sure to add any corresponding move/clear fences into the objects 1294 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1295 * 1296 * For KMD internal buffers we don't care about GPU clearing, however we 1297 * still need to handle async evictions, where the VRAM is still being 1298 * accessed by the GPU. Most internal callers are not expecting this, 1299 * since they are missing the required synchronisation before accessing 1300 * the memory. To keep things simple just sync wait any kernel fences 1301 * here, if the buffer is designated KMD internal. 1302 * 1303 * For normal userspace objects we should already have the required 1304 * pipelining or sync waiting elsewhere, since we already have to deal 1305 * with things like async GPU clearing. 1306 */ 1307 if (type == ttm_bo_type_kernel) { 1308 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1309 DMA_RESV_USAGE_KERNEL, 1310 ctx.interruptible, 1311 MAX_SCHEDULE_TIMEOUT); 1312 1313 if (timeout < 0) { 1314 if (!resv) 1315 dma_resv_unlock(bo->ttm.base.resv); 1316 xe_bo_put(bo); 1317 return ERR_PTR(timeout); 1318 } 1319 } 1320 1321 bo->created = true; 1322 if (bulk) 1323 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1324 else 1325 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1326 1327 return bo; 1328 } 1329 1330 static int __xe_bo_fixed_placement(struct xe_device *xe, 1331 struct xe_bo *bo, 1332 u32 flags, 1333 u64 start, u64 end, u64 size) 1334 { 1335 struct ttm_place *place = bo->placements; 1336 1337 if (flags & (XE_BO_CREATE_USER_BIT|XE_BO_CREATE_SYSTEM_BIT)) 1338 return -EINVAL; 1339 1340 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1341 place->fpfn = start >> PAGE_SHIFT; 1342 place->lpfn = end >> PAGE_SHIFT; 1343 1344 switch (flags & (XE_BO_CREATE_STOLEN_BIT | XE_BO_CREATE_VRAM_MASK)) { 1345 case XE_BO_CREATE_VRAM0_BIT: 1346 place->mem_type = XE_PL_VRAM0; 1347 break; 1348 case XE_BO_CREATE_VRAM1_BIT: 1349 place->mem_type = XE_PL_VRAM1; 1350 break; 1351 case XE_BO_CREATE_STOLEN_BIT: 1352 place->mem_type = XE_PL_STOLEN; 1353 break; 1354 1355 default: 1356 /* 0 or multiple of the above set */ 1357 return -EINVAL; 1358 } 1359 1360 bo->placement = (struct ttm_placement) { 1361 .num_placement = 1, 1362 .placement = place, 1363 .num_busy_placement = 1, 1364 .busy_placement = place, 1365 }; 1366 1367 return 0; 1368 } 1369 1370 static struct xe_bo * 1371 __xe_bo_create_locked(struct xe_device *xe, 1372 struct xe_tile *tile, struct xe_vm *vm, 1373 size_t size, u64 start, u64 end, 1374 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1375 { 1376 struct xe_bo *bo = NULL; 1377 int err; 1378 1379 if (vm) 1380 xe_vm_assert_held(vm); 1381 1382 if (start || end != ~0ULL) { 1383 bo = xe_bo_alloc(); 1384 if (IS_ERR(bo)) 1385 return bo; 1386 1387 flags |= XE_BO_FIXED_PLACEMENT_BIT; 1388 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1389 if (err) { 1390 xe_bo_free(bo); 1391 return ERR_PTR(err); 1392 } 1393 } 1394 1395 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1396 vm && !xe_vm_in_fault_mode(vm) && 1397 flags & XE_BO_CREATE_USER_BIT ? 1398 &vm->lru_bulk_move : NULL, size, 1399 cpu_caching, type, flags); 1400 if (IS_ERR(bo)) 1401 return bo; 1402 1403 /* 1404 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1405 * to ensure the shared resv doesn't disappear under the bo, the bo 1406 * will keep a reference to the vm, and avoid circular references 1407 * by having all the vm's bo refereferences released at vm close 1408 * time. 1409 */ 1410 if (vm && xe_bo_is_user(bo)) 1411 xe_vm_get(vm); 1412 bo->vm = vm; 1413 1414 if (bo->flags & XE_BO_CREATE_GGTT_BIT) { 1415 if (!tile && flags & XE_BO_CREATE_STOLEN_BIT) 1416 tile = xe_device_get_root_tile(xe); 1417 1418 xe_assert(xe, tile); 1419 1420 if (flags & XE_BO_FIXED_PLACEMENT_BIT) { 1421 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1422 start + bo->size, U64_MAX); 1423 } else { 1424 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1425 } 1426 if (err) 1427 goto err_unlock_put_bo; 1428 } 1429 1430 return bo; 1431 1432 err_unlock_put_bo: 1433 __xe_bo_unset_bulk_move(bo); 1434 xe_bo_unlock_vm_held(bo); 1435 xe_bo_put(bo); 1436 return ERR_PTR(err); 1437 } 1438 1439 struct xe_bo * 1440 xe_bo_create_locked_range(struct xe_device *xe, 1441 struct xe_tile *tile, struct xe_vm *vm, 1442 size_t size, u64 start, u64 end, 1443 enum ttm_bo_type type, u32 flags) 1444 { 1445 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1446 } 1447 1448 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1449 struct xe_vm *vm, size_t size, 1450 enum ttm_bo_type type, u32 flags) 1451 { 1452 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1453 } 1454 1455 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1456 struct xe_vm *vm, size_t size, 1457 u16 cpu_caching, 1458 enum ttm_bo_type type, 1459 u32 flags) 1460 { 1461 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1462 cpu_caching, type, 1463 flags | XE_BO_CREATE_USER_BIT); 1464 if (!IS_ERR(bo)) 1465 xe_bo_unlock_vm_held(bo); 1466 1467 return bo; 1468 } 1469 1470 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1471 struct xe_vm *vm, size_t size, 1472 enum ttm_bo_type type, u32 flags) 1473 { 1474 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1475 1476 if (!IS_ERR(bo)) 1477 xe_bo_unlock_vm_held(bo); 1478 1479 return bo; 1480 } 1481 1482 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1483 struct xe_vm *vm, 1484 size_t size, u64 offset, 1485 enum ttm_bo_type type, u32 flags) 1486 { 1487 struct xe_bo *bo; 1488 int err; 1489 u64 start = offset == ~0ull ? 0 : offset; 1490 u64 end = offset == ~0ull ? offset : start + size; 1491 1492 if (flags & XE_BO_CREATE_STOLEN_BIT && 1493 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1494 flags |= XE_BO_CREATE_GGTT_BIT; 1495 1496 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1497 flags | XE_BO_NEEDS_CPU_ACCESS); 1498 if (IS_ERR(bo)) 1499 return bo; 1500 1501 err = xe_bo_pin(bo); 1502 if (err) 1503 goto err_put; 1504 1505 err = xe_bo_vmap(bo); 1506 if (err) 1507 goto err_unpin; 1508 1509 xe_bo_unlock_vm_held(bo); 1510 1511 return bo; 1512 1513 err_unpin: 1514 xe_bo_unpin(bo); 1515 err_put: 1516 xe_bo_unlock_vm_held(bo); 1517 xe_bo_put(bo); 1518 return ERR_PTR(err); 1519 } 1520 1521 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1522 struct xe_vm *vm, size_t size, 1523 enum ttm_bo_type type, u32 flags) 1524 { 1525 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1526 } 1527 1528 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1529 const void *data, size_t size, 1530 enum ttm_bo_type type, u32 flags) 1531 { 1532 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1533 ALIGN(size, PAGE_SIZE), 1534 type, flags); 1535 if (IS_ERR(bo)) 1536 return bo; 1537 1538 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1539 1540 return bo; 1541 } 1542 1543 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1544 { 1545 xe_bo_unpin_map_no_vm(arg); 1546 } 1547 1548 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1549 size_t size, u32 flags) 1550 { 1551 struct xe_bo *bo; 1552 int ret; 1553 1554 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1555 if (IS_ERR(bo)) 1556 return bo; 1557 1558 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1559 if (ret) 1560 return ERR_PTR(ret); 1561 1562 return bo; 1563 } 1564 1565 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1566 const void *data, size_t size, u32 flags) 1567 { 1568 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1569 1570 if (IS_ERR(bo)) 1571 return bo; 1572 1573 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1574 1575 return bo; 1576 } 1577 1578 /* 1579 * XXX: This is in the VM bind data path, likely should calculate this once and 1580 * store, with a recalculation if the BO is moved. 1581 */ 1582 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1583 { 1584 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1585 1586 if (res->mem_type == XE_PL_STOLEN) 1587 return xe_ttm_stolen_gpu_offset(xe); 1588 1589 return res_to_mem_region(res)->dpa_base; 1590 } 1591 1592 /** 1593 * xe_bo_pin_external - pin an external BO 1594 * @bo: buffer object to be pinned 1595 * 1596 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1597 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1598 * asserts and code to ensure evict / restore on suspend / resume. 1599 * 1600 * Returns 0 for success, negative error code otherwise. 1601 */ 1602 int xe_bo_pin_external(struct xe_bo *bo) 1603 { 1604 struct xe_device *xe = xe_bo_device(bo); 1605 int err; 1606 1607 xe_assert(xe, !bo->vm); 1608 xe_assert(xe, xe_bo_is_user(bo)); 1609 1610 if (!xe_bo_is_pinned(bo)) { 1611 err = xe_bo_validate(bo, NULL, false); 1612 if (err) 1613 return err; 1614 1615 if (xe_bo_is_vram(bo)) { 1616 spin_lock(&xe->pinned.lock); 1617 list_add_tail(&bo->pinned_link, 1618 &xe->pinned.external_vram); 1619 spin_unlock(&xe->pinned.lock); 1620 } 1621 } 1622 1623 ttm_bo_pin(&bo->ttm); 1624 1625 /* 1626 * FIXME: If we always use the reserve / unreserve functions for locking 1627 * we do not need this. 1628 */ 1629 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1630 1631 return 0; 1632 } 1633 1634 int xe_bo_pin(struct xe_bo *bo) 1635 { 1636 struct xe_device *xe = xe_bo_device(bo); 1637 int err; 1638 1639 /* We currently don't expect user BO to be pinned */ 1640 xe_assert(xe, !xe_bo_is_user(bo)); 1641 1642 /* Pinned object must be in GGTT or have pinned flag */ 1643 xe_assert(xe, bo->flags & (XE_BO_CREATE_PINNED_BIT | 1644 XE_BO_CREATE_GGTT_BIT)); 1645 1646 /* 1647 * No reason we can't support pinning imported dma-bufs we just don't 1648 * expect to pin an imported dma-buf. 1649 */ 1650 xe_assert(xe, !bo->ttm.base.import_attach); 1651 1652 /* We only expect at most 1 pin */ 1653 xe_assert(xe, !xe_bo_is_pinned(bo)); 1654 1655 err = xe_bo_validate(bo, NULL, false); 1656 if (err) 1657 return err; 1658 1659 /* 1660 * For pinned objects in on DGFX, which are also in vram, we expect 1661 * these to be in contiguous VRAM memory. Required eviction / restore 1662 * during suspend / resume (force restore to same physical address). 1663 */ 1664 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1665 bo->flags & XE_BO_INTERNAL_TEST)) { 1666 struct ttm_place *place = &(bo->placements[0]); 1667 1668 if (mem_type_is_vram(place->mem_type)) { 1669 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1670 1671 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1672 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1673 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1674 1675 spin_lock(&xe->pinned.lock); 1676 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1677 spin_unlock(&xe->pinned.lock); 1678 } 1679 } 1680 1681 ttm_bo_pin(&bo->ttm); 1682 1683 /* 1684 * FIXME: If we always use the reserve / unreserve functions for locking 1685 * we do not need this. 1686 */ 1687 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * xe_bo_unpin_external - unpin an external BO 1694 * @bo: buffer object to be unpinned 1695 * 1696 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1697 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1698 * asserts and code to ensure evict / restore on suspend / resume. 1699 * 1700 * Returns 0 for success, negative error code otherwise. 1701 */ 1702 void xe_bo_unpin_external(struct xe_bo *bo) 1703 { 1704 struct xe_device *xe = xe_bo_device(bo); 1705 1706 xe_assert(xe, !bo->vm); 1707 xe_assert(xe, xe_bo_is_pinned(bo)); 1708 xe_assert(xe, xe_bo_is_user(bo)); 1709 1710 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { 1711 spin_lock(&xe->pinned.lock); 1712 list_del_init(&bo->pinned_link); 1713 spin_unlock(&xe->pinned.lock); 1714 } 1715 1716 ttm_bo_unpin(&bo->ttm); 1717 1718 /* 1719 * FIXME: If we always use the reserve / unreserve functions for locking 1720 * we do not need this. 1721 */ 1722 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1723 } 1724 1725 void xe_bo_unpin(struct xe_bo *bo) 1726 { 1727 struct xe_device *xe = xe_bo_device(bo); 1728 1729 xe_assert(xe, !bo->ttm.base.import_attach); 1730 xe_assert(xe, xe_bo_is_pinned(bo)); 1731 1732 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1733 bo->flags & XE_BO_INTERNAL_TEST)) { 1734 struct ttm_place *place = &(bo->placements[0]); 1735 1736 if (mem_type_is_vram(place->mem_type)) { 1737 xe_assert(xe, !list_empty(&bo->pinned_link)); 1738 1739 spin_lock(&xe->pinned.lock); 1740 list_del_init(&bo->pinned_link); 1741 spin_unlock(&xe->pinned.lock); 1742 } 1743 } 1744 1745 ttm_bo_unpin(&bo->ttm); 1746 } 1747 1748 /** 1749 * xe_bo_validate() - Make sure the bo is in an allowed placement 1750 * @bo: The bo, 1751 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1752 * NULL. Used together with @allow_res_evict. 1753 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1754 * reservation object. 1755 * 1756 * Make sure the bo is in allowed placement, migrating it if necessary. If 1757 * needed, other bos will be evicted. If bos selected for eviction shares 1758 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1759 * set to true, otherwise they will be bypassed. 1760 * 1761 * Return: 0 on success, negative error code on failure. May return 1762 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1763 */ 1764 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1765 { 1766 struct ttm_operation_ctx ctx = { 1767 .interruptible = true, 1768 .no_wait_gpu = false, 1769 }; 1770 1771 if (vm) { 1772 lockdep_assert_held(&vm->lock); 1773 xe_vm_assert_held(vm); 1774 1775 ctx.allow_res_evict = allow_res_evict; 1776 ctx.resv = xe_vm_resv(vm); 1777 } 1778 1779 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1780 } 1781 1782 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1783 { 1784 if (bo->destroy == &xe_ttm_bo_destroy) 1785 return true; 1786 1787 return false; 1788 } 1789 1790 /* 1791 * Resolve a BO address. There is no assert to check if the proper lock is held 1792 * so it should only be used in cases where it is not fatal to get the wrong 1793 * address, such as printing debug information, but not in cases where memory is 1794 * written based on this result. 1795 */ 1796 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1797 { 1798 struct xe_device *xe = xe_bo_device(bo); 1799 struct xe_res_cursor cur; 1800 u64 page; 1801 1802 xe_assert(xe, page_size <= PAGE_SIZE); 1803 page = offset >> PAGE_SHIFT; 1804 offset &= (PAGE_SIZE - 1); 1805 1806 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1807 xe_assert(xe, bo->ttm.ttm); 1808 1809 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1810 page_size, &cur); 1811 return xe_res_dma(&cur) + offset; 1812 } else { 1813 struct xe_res_cursor cur; 1814 1815 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1816 page_size, &cur); 1817 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1818 } 1819 } 1820 1821 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1822 { 1823 if (!READ_ONCE(bo->ttm.pin_count)) 1824 xe_bo_assert_held(bo); 1825 return __xe_bo_addr(bo, offset, page_size); 1826 } 1827 1828 int xe_bo_vmap(struct xe_bo *bo) 1829 { 1830 void *virtual; 1831 bool is_iomem; 1832 int ret; 1833 1834 xe_bo_assert_held(bo); 1835 1836 if (!(bo->flags & XE_BO_NEEDS_CPU_ACCESS)) 1837 return -EINVAL; 1838 1839 if (!iosys_map_is_null(&bo->vmap)) 1840 return 0; 1841 1842 /* 1843 * We use this more or less deprecated interface for now since 1844 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1845 * single page bos, which is done here. 1846 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1847 * to use struct iosys_map. 1848 */ 1849 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1850 if (ret) 1851 return ret; 1852 1853 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1854 if (is_iomem) 1855 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1856 else 1857 iosys_map_set_vaddr(&bo->vmap, virtual); 1858 1859 return 0; 1860 } 1861 1862 static void __xe_bo_vunmap(struct xe_bo *bo) 1863 { 1864 if (!iosys_map_is_null(&bo->vmap)) { 1865 iosys_map_clear(&bo->vmap); 1866 ttm_bo_kunmap(&bo->kmap); 1867 } 1868 } 1869 1870 void xe_bo_vunmap(struct xe_bo *bo) 1871 { 1872 xe_bo_assert_held(bo); 1873 __xe_bo_vunmap(bo); 1874 } 1875 1876 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1877 struct drm_file *file) 1878 { 1879 struct xe_device *xe = to_xe_device(dev); 1880 struct xe_file *xef = to_xe_file(file); 1881 struct drm_xe_gem_create *args = data; 1882 struct xe_vm *vm = NULL; 1883 struct xe_bo *bo; 1884 unsigned int bo_flags; 1885 u32 handle; 1886 int err; 1887 1888 if (XE_IOCTL_DBG(xe, args->extensions) || 1889 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1890 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1891 return -EINVAL; 1892 1893 /* at least one valid memory placement must be specified */ 1894 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1895 !args->placement)) 1896 return -EINVAL; 1897 1898 if (XE_IOCTL_DBG(xe, args->flags & 1899 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1900 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1901 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1902 return -EINVAL; 1903 1904 if (XE_IOCTL_DBG(xe, args->handle)) 1905 return -EINVAL; 1906 1907 if (XE_IOCTL_DBG(xe, !args->size)) 1908 return -EINVAL; 1909 1910 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1911 return -EINVAL; 1912 1913 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1914 return -EINVAL; 1915 1916 bo_flags = 0; 1917 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1918 bo_flags |= XE_BO_DEFER_BACKING; 1919 1920 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1921 bo_flags |= XE_BO_SCANOUT_BIT; 1922 1923 bo_flags |= args->placement << (ffs(XE_BO_CREATE_SYSTEM_BIT) - 1); 1924 1925 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1926 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_CREATE_VRAM_MASK))) 1927 return -EINVAL; 1928 1929 bo_flags |= XE_BO_NEEDS_CPU_ACCESS; 1930 } 1931 1932 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1933 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1934 return -EINVAL; 1935 1936 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_CREATE_VRAM_MASK && 1937 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1938 return -EINVAL; 1939 1940 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_SCANOUT_BIT && 1941 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 1942 return -EINVAL; 1943 1944 if (args->vm_id) { 1945 vm = xe_vm_lookup(xef, args->vm_id); 1946 if (XE_IOCTL_DBG(xe, !vm)) 1947 return -ENOENT; 1948 err = xe_vm_lock(vm, true); 1949 if (err) 1950 goto out_vm; 1951 } 1952 1953 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 1954 ttm_bo_type_device, bo_flags); 1955 1956 if (vm) 1957 xe_vm_unlock(vm); 1958 1959 if (IS_ERR(bo)) { 1960 err = PTR_ERR(bo); 1961 goto out_vm; 1962 } 1963 1964 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 1965 if (err) 1966 goto out_bulk; 1967 1968 args->handle = handle; 1969 goto out_put; 1970 1971 out_bulk: 1972 if (vm && !xe_vm_in_fault_mode(vm)) { 1973 xe_vm_lock(vm, false); 1974 __xe_bo_unset_bulk_move(bo); 1975 xe_vm_unlock(vm); 1976 } 1977 out_put: 1978 xe_bo_put(bo); 1979 out_vm: 1980 if (vm) 1981 xe_vm_put(vm); 1982 1983 return err; 1984 } 1985 1986 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 1987 struct drm_file *file) 1988 { 1989 struct xe_device *xe = to_xe_device(dev); 1990 struct drm_xe_gem_mmap_offset *args = data; 1991 struct drm_gem_object *gem_obj; 1992 1993 if (XE_IOCTL_DBG(xe, args->extensions) || 1994 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1995 return -EINVAL; 1996 1997 if (XE_IOCTL_DBG(xe, args->flags)) 1998 return -EINVAL; 1999 2000 gem_obj = drm_gem_object_lookup(file, args->handle); 2001 if (XE_IOCTL_DBG(xe, !gem_obj)) 2002 return -ENOENT; 2003 2004 /* The mmap offset was set up at BO allocation time. */ 2005 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2006 2007 xe_bo_put(gem_to_xe_bo(gem_obj)); 2008 return 0; 2009 } 2010 2011 /** 2012 * xe_bo_lock() - Lock the buffer object's dma_resv object 2013 * @bo: The struct xe_bo whose lock is to be taken 2014 * @intr: Whether to perform any wait interruptible 2015 * 2016 * Locks the buffer object's dma_resv object. If the buffer object is 2017 * pointing to a shared dma_resv object, that shared lock is locked. 2018 * 2019 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2020 * contended lock was interrupted. If @intr is set to false, the 2021 * function always returns 0. 2022 */ 2023 int xe_bo_lock(struct xe_bo *bo, bool intr) 2024 { 2025 if (intr) 2026 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2027 2028 dma_resv_lock(bo->ttm.base.resv, NULL); 2029 2030 return 0; 2031 } 2032 2033 /** 2034 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2035 * @bo: The struct xe_bo whose lock is to be released. 2036 * 2037 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2038 */ 2039 void xe_bo_unlock(struct xe_bo *bo) 2040 { 2041 dma_resv_unlock(bo->ttm.base.resv); 2042 } 2043 2044 /** 2045 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2046 * @bo: The buffer object to migrate 2047 * @mem_type: The TTM memory type intended to migrate to 2048 * 2049 * Check whether the buffer object supports migration to the 2050 * given memory type. Note that pinning may affect the ability to migrate as 2051 * returned by this function. 2052 * 2053 * This function is primarily intended as a helper for checking the 2054 * possibility to migrate buffer objects and can be called without 2055 * the object lock held. 2056 * 2057 * Return: true if migration is possible, false otherwise. 2058 */ 2059 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2060 { 2061 unsigned int cur_place; 2062 2063 if (bo->ttm.type == ttm_bo_type_kernel) 2064 return true; 2065 2066 if (bo->ttm.type == ttm_bo_type_sg) 2067 return false; 2068 2069 for (cur_place = 0; cur_place < bo->placement.num_placement; 2070 cur_place++) { 2071 if (bo->placements[cur_place].mem_type == mem_type) 2072 return true; 2073 } 2074 2075 return false; 2076 } 2077 2078 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2079 { 2080 memset(place, 0, sizeof(*place)); 2081 place->mem_type = mem_type; 2082 } 2083 2084 /** 2085 * xe_bo_migrate - Migrate an object to the desired region id 2086 * @bo: The buffer object to migrate. 2087 * @mem_type: The TTM region type to migrate to. 2088 * 2089 * Attempt to migrate the buffer object to the desired memory region. The 2090 * buffer object may not be pinned, and must be locked. 2091 * On successful completion, the object memory type will be updated, 2092 * but an async migration task may not have completed yet, and to 2093 * accomplish that, the object's kernel fences must be signaled with 2094 * the object lock held. 2095 * 2096 * Return: 0 on success. Negative error code on failure. In particular may 2097 * return -EINTR or -ERESTARTSYS if signal pending. 2098 */ 2099 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2100 { 2101 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2102 struct ttm_operation_ctx ctx = { 2103 .interruptible = true, 2104 .no_wait_gpu = false, 2105 }; 2106 struct ttm_placement placement; 2107 struct ttm_place requested; 2108 2109 xe_bo_assert_held(bo); 2110 2111 if (bo->ttm.resource->mem_type == mem_type) 2112 return 0; 2113 2114 if (xe_bo_is_pinned(bo)) 2115 return -EBUSY; 2116 2117 if (!xe_bo_can_migrate(bo, mem_type)) 2118 return -EINVAL; 2119 2120 xe_place_from_ttm_type(mem_type, &requested); 2121 placement.num_placement = 1; 2122 placement.num_busy_placement = 1; 2123 placement.placement = &requested; 2124 placement.busy_placement = &requested; 2125 2126 /* 2127 * Stolen needs to be handled like below VRAM handling if we ever need 2128 * to support it. 2129 */ 2130 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2131 2132 if (mem_type_is_vram(mem_type)) { 2133 u32 c = 0; 2134 2135 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2136 } 2137 2138 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2139 } 2140 2141 /** 2142 * xe_bo_evict - Evict an object to evict placement 2143 * @bo: The buffer object to migrate. 2144 * @force_alloc: Set force_alloc in ttm_operation_ctx 2145 * 2146 * On successful completion, the object memory will be moved to evict 2147 * placement. Ths function blocks until the object has been fully moved. 2148 * 2149 * Return: 0 on success. Negative error code on failure. 2150 */ 2151 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2152 { 2153 struct ttm_operation_ctx ctx = { 2154 .interruptible = false, 2155 .no_wait_gpu = false, 2156 .force_alloc = force_alloc, 2157 }; 2158 struct ttm_placement placement; 2159 int ret; 2160 2161 xe_evict_flags(&bo->ttm, &placement); 2162 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2163 if (ret) 2164 return ret; 2165 2166 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2167 false, MAX_SCHEDULE_TIMEOUT); 2168 2169 return 0; 2170 } 2171 2172 /** 2173 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2174 * placed in system memory. 2175 * @bo: The xe_bo 2176 * 2177 * Return: true if extra pages need to be allocated, false otherwise. 2178 */ 2179 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2180 { 2181 struct xe_device *xe = xe_bo_device(bo); 2182 2183 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2184 return false; 2185 2186 /* On discrete GPUs, if the GPU can access this buffer from 2187 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2188 * can't be used since there's no CCS storage associated with 2189 * non-VRAM addresses. 2190 */ 2191 if (IS_DGFX(xe) && (bo->flags & XE_BO_CREATE_SYSTEM_BIT)) 2192 return false; 2193 2194 return true; 2195 } 2196 2197 /** 2198 * __xe_bo_release_dummy() - Dummy kref release function 2199 * @kref: The embedded struct kref. 2200 * 2201 * Dummy release function for xe_bo_put_deferred(). Keep off. 2202 */ 2203 void __xe_bo_release_dummy(struct kref *kref) 2204 { 2205 } 2206 2207 /** 2208 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2209 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2210 * 2211 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2212 * The @deferred list can be either an onstack local list or a global 2213 * shared list used by a workqueue. 2214 */ 2215 void xe_bo_put_commit(struct llist_head *deferred) 2216 { 2217 struct llist_node *freed; 2218 struct xe_bo *bo, *next; 2219 2220 if (!deferred) 2221 return; 2222 2223 freed = llist_del_all(deferred); 2224 if (!freed) 2225 return; 2226 2227 llist_for_each_entry_safe(bo, next, freed, freed) 2228 drm_gem_object_free(&bo->ttm.base.refcount); 2229 } 2230 2231 /** 2232 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2233 * @file_priv: ... 2234 * @dev: ... 2235 * @args: ... 2236 * 2237 * See dumb_create() hook in include/drm/drm_drv.h 2238 * 2239 * Return: ... 2240 */ 2241 int xe_bo_dumb_create(struct drm_file *file_priv, 2242 struct drm_device *dev, 2243 struct drm_mode_create_dumb *args) 2244 { 2245 struct xe_device *xe = to_xe_device(dev); 2246 struct xe_bo *bo; 2247 uint32_t handle; 2248 int cpp = DIV_ROUND_UP(args->bpp, 8); 2249 int err; 2250 u32 page_size = max_t(u32, PAGE_SIZE, 2251 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2252 2253 args->pitch = ALIGN(args->width * cpp, 64); 2254 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2255 page_size); 2256 2257 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2258 DRM_XE_GEM_CPU_CACHING_WC, 2259 ttm_bo_type_device, 2260 XE_BO_CREATE_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2261 XE_BO_CREATE_USER_BIT | XE_BO_SCANOUT_BIT | 2262 XE_BO_NEEDS_CPU_ACCESS); 2263 if (IS_ERR(bo)) 2264 return PTR_ERR(bo); 2265 2266 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2267 /* drop reference from allocate - handle holds it now */ 2268 drm_gem_object_put(&bo->ttm.base); 2269 if (!err) 2270 args->handle = handle; 2271 return err; 2272 } 2273 2274 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2275 #include "tests/xe_bo.c" 2276 #endif 2277