1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace_bo.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 167 { 168 struct ttm_place place = { .mem_type = mem_type }; 169 struct xe_mem_region *vram; 170 u64 io_size; 171 172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 173 174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 175 xe_assert(xe, vram && vram->usable_size); 176 io_size = vram->io_size; 177 178 /* 179 * For eviction / restore on suspend / resume objects 180 * pinned in VRAM must be contiguous 181 */ 182 if (bo_flags & (XE_BO_FLAG_PINNED | 183 XE_BO_FLAG_GGTT)) 184 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 185 186 if (io_size < vram->usable_size) { 187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 188 place.fpfn = 0; 189 place.lpfn = io_size >> PAGE_SHIFT; 190 } else { 191 place.flags |= TTM_PL_FLAG_TOPDOWN; 192 } 193 } 194 places[*c] = place; 195 *c += 1; 196 } 197 198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 199 u32 bo_flags, u32 *c) 200 { 201 if (bo_flags & XE_BO_FLAG_VRAM0) 202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 203 if (bo_flags & XE_BO_FLAG_VRAM1) 204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 205 } 206 207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 208 u32 bo_flags, u32 *c) 209 { 210 if (bo_flags & XE_BO_FLAG_STOLEN) { 211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 212 213 bo->placements[*c] = (struct ttm_place) { 214 .mem_type = XE_PL_STOLEN, 215 .flags = bo_flags & (XE_BO_FLAG_PINNED | 216 XE_BO_FLAG_GGTT) ? 217 TTM_PL_FLAG_CONTIGUOUS : 0, 218 }; 219 *c += 1; 220 } 221 } 222 223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 224 u32 bo_flags) 225 { 226 u32 c = 0; 227 228 try_add_vram(xe, bo, bo_flags, &c); 229 try_add_system(xe, bo, bo_flags, &c); 230 try_add_stolen(xe, bo, bo_flags, &c); 231 232 if (!c) 233 return -EINVAL; 234 235 bo->placement = (struct ttm_placement) { 236 .num_placement = c, 237 .placement = bo->placements, 238 }; 239 240 return 0; 241 } 242 243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 244 u32 bo_flags) 245 { 246 xe_bo_assert_held(bo); 247 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 248 } 249 250 static void xe_evict_flags(struct ttm_buffer_object *tbo, 251 struct ttm_placement *placement) 252 { 253 if (!xe_bo_is_xe_bo(tbo)) { 254 /* Don't handle scatter gather BOs */ 255 if (tbo->type == ttm_bo_type_sg) { 256 placement->num_placement = 0; 257 return; 258 } 259 260 *placement = sys_placement; 261 return; 262 } 263 264 /* 265 * For xe, sg bos that are evicted to system just triggers a 266 * rebind of the sg list upon subsequent validation to XE_PL_TT. 267 */ 268 switch (tbo->resource->mem_type) { 269 case XE_PL_VRAM0: 270 case XE_PL_VRAM1: 271 case XE_PL_STOLEN: 272 *placement = tt_placement; 273 break; 274 case XE_PL_TT: 275 default: 276 *placement = sys_placement; 277 break; 278 } 279 } 280 281 struct xe_ttm_tt { 282 struct ttm_tt ttm; 283 struct device *dev; 284 struct sg_table sgt; 285 struct sg_table *sg; 286 }; 287 288 static int xe_tt_map_sg(struct ttm_tt *tt) 289 { 290 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 291 unsigned long num_pages = tt->num_pages; 292 int ret; 293 294 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 295 296 if (xe_tt->sg) 297 return 0; 298 299 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 300 num_pages, 0, 301 (u64)num_pages << PAGE_SHIFT, 302 xe_sg_segment_size(xe_tt->dev), 303 GFP_KERNEL); 304 if (ret) 305 return ret; 306 307 xe_tt->sg = &xe_tt->sgt; 308 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 309 DMA_ATTR_SKIP_CPU_SYNC); 310 if (ret) { 311 sg_free_table(xe_tt->sg); 312 xe_tt->sg = NULL; 313 return ret; 314 } 315 316 return 0; 317 } 318 319 static void xe_tt_unmap_sg(struct ttm_tt *tt) 320 { 321 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 322 323 if (xe_tt->sg) { 324 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 325 DMA_BIDIRECTIONAL, 0); 326 sg_free_table(xe_tt->sg); 327 xe_tt->sg = NULL; 328 } 329 } 330 331 struct sg_table *xe_bo_sg(struct xe_bo *bo) 332 { 333 struct ttm_tt *tt = bo->ttm.ttm; 334 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 335 336 return xe_tt->sg; 337 } 338 339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 340 u32 page_flags) 341 { 342 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 343 struct xe_device *xe = xe_bo_device(bo); 344 struct xe_ttm_tt *tt; 345 unsigned long extra_pages; 346 enum ttm_caching caching = ttm_cached; 347 int err; 348 349 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 350 if (!tt) 351 return NULL; 352 353 tt->dev = xe->drm.dev; 354 355 extra_pages = 0; 356 if (xe_bo_needs_ccs_pages(bo)) 357 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 358 PAGE_SIZE); 359 360 /* 361 * DGFX system memory is always WB / ttm_cached, since 362 * other caching modes are only supported on x86. DGFX 363 * GPU system memory accesses are always coherent with the 364 * CPU. 365 */ 366 if (!IS_DGFX(xe)) { 367 switch (bo->cpu_caching) { 368 case DRM_XE_GEM_CPU_CACHING_WC: 369 caching = ttm_write_combined; 370 break; 371 default: 372 caching = ttm_cached; 373 break; 374 } 375 376 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 377 378 /* 379 * Display scanout is always non-coherent with the CPU cache. 380 * 381 * For Xe_LPG and beyond, PPGTT PTE lookups are also 382 * non-coherent and require a CPU:WC mapping. 383 */ 384 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 385 (xe->info.graphics_verx100 >= 1270 && 386 bo->flags & XE_BO_FLAG_PAGETABLE)) 387 caching = ttm_write_combined; 388 } 389 390 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 391 /* 392 * Valid only for internally-created buffers only, for 393 * which cpu_caching is never initialized. 394 */ 395 xe_assert(xe, bo->cpu_caching == 0); 396 caching = ttm_uncached; 397 } 398 399 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 400 if (err) { 401 kfree(tt); 402 return NULL; 403 } 404 405 return &tt->ttm; 406 } 407 408 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 409 struct ttm_operation_ctx *ctx) 410 { 411 int err; 412 413 /* 414 * dma-bufs are not populated with pages, and the dma- 415 * addresses are set up when moved to XE_PL_TT. 416 */ 417 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 418 return 0; 419 420 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 421 if (err) 422 return err; 423 424 return err; 425 } 426 427 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 428 { 429 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 430 return; 431 432 xe_tt_unmap_sg(tt); 433 434 return ttm_pool_free(&ttm_dev->pool, tt); 435 } 436 437 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 438 { 439 ttm_tt_fini(tt); 440 kfree(tt); 441 } 442 443 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 444 struct ttm_resource *mem) 445 { 446 struct xe_device *xe = ttm_to_xe_device(bdev); 447 448 switch (mem->mem_type) { 449 case XE_PL_SYSTEM: 450 case XE_PL_TT: 451 return 0; 452 case XE_PL_VRAM0: 453 case XE_PL_VRAM1: { 454 struct xe_ttm_vram_mgr_resource *vres = 455 to_xe_ttm_vram_mgr_resource(mem); 456 struct xe_mem_region *vram = res_to_mem_region(mem); 457 458 if (vres->used_visible_size < mem->size) 459 return -EINVAL; 460 461 mem->bus.offset = mem->start << PAGE_SHIFT; 462 463 if (vram->mapping && 464 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 465 mem->bus.addr = (u8 __force *)vram->mapping + 466 mem->bus.offset; 467 468 mem->bus.offset += vram->io_start; 469 mem->bus.is_iomem = true; 470 471 #if !defined(CONFIG_X86) 472 mem->bus.caching = ttm_write_combined; 473 #endif 474 return 0; 475 } case XE_PL_STOLEN: 476 return xe_ttm_stolen_io_mem_reserve(xe, mem); 477 default: 478 return -EINVAL; 479 } 480 } 481 482 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 483 const struct ttm_operation_ctx *ctx) 484 { 485 struct dma_resv_iter cursor; 486 struct dma_fence *fence; 487 struct drm_gem_object *obj = &bo->ttm.base; 488 struct drm_gpuvm_bo *vm_bo; 489 bool idle = false; 490 int ret = 0; 491 492 dma_resv_assert_held(bo->ttm.base.resv); 493 494 if (!list_empty(&bo->ttm.base.gpuva.list)) { 495 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 496 DMA_RESV_USAGE_BOOKKEEP); 497 dma_resv_for_each_fence_unlocked(&cursor, fence) 498 dma_fence_enable_sw_signaling(fence); 499 dma_resv_iter_end(&cursor); 500 } 501 502 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 503 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 504 struct drm_gpuva *gpuva; 505 506 if (!xe_vm_in_fault_mode(vm)) { 507 drm_gpuvm_bo_evict(vm_bo, true); 508 continue; 509 } 510 511 if (!idle) { 512 long timeout; 513 514 if (ctx->no_wait_gpu && 515 !dma_resv_test_signaled(bo->ttm.base.resv, 516 DMA_RESV_USAGE_BOOKKEEP)) 517 return -EBUSY; 518 519 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 520 DMA_RESV_USAGE_BOOKKEEP, 521 ctx->interruptible, 522 MAX_SCHEDULE_TIMEOUT); 523 if (!timeout) 524 return -ETIME; 525 if (timeout < 0) 526 return timeout; 527 528 idle = true; 529 } 530 531 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 532 struct xe_vma *vma = gpuva_to_vma(gpuva); 533 534 trace_xe_vma_evict(vma); 535 ret = xe_vm_invalidate_vma(vma); 536 if (XE_WARN_ON(ret)) 537 return ret; 538 } 539 } 540 541 return ret; 542 } 543 544 /* 545 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 546 * Note that unmapping the attachment is deferred to the next 547 * map_attachment time, or to bo destroy (after idling) whichever comes first. 548 * This is to avoid syncing before unmap_attachment(), assuming that the 549 * caller relies on idling the reservation object before moving the 550 * backing store out. Should that assumption not hold, then we will be able 551 * to unconditionally call unmap_attachment() when moving out to system. 552 */ 553 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 554 struct ttm_resource *new_res) 555 { 556 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 557 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 558 ttm); 559 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 560 struct sg_table *sg; 561 562 xe_assert(xe, attach); 563 xe_assert(xe, ttm_bo->ttm); 564 565 if (new_res->mem_type == XE_PL_SYSTEM) 566 goto out; 567 568 if (ttm_bo->sg) { 569 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 570 ttm_bo->sg = NULL; 571 } 572 573 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 574 if (IS_ERR(sg)) 575 return PTR_ERR(sg); 576 577 ttm_bo->sg = sg; 578 xe_tt->sg = sg; 579 580 out: 581 ttm_bo_move_null(ttm_bo, new_res); 582 583 return 0; 584 } 585 586 /** 587 * xe_bo_move_notify - Notify subsystems of a pending move 588 * @bo: The buffer object 589 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 590 * 591 * This function notifies subsystems of an upcoming buffer move. 592 * Upon receiving such a notification, subsystems should schedule 593 * halting access to the underlying pages and optionally add a fence 594 * to the buffer object's dma_resv object, that signals when access is 595 * stopped. The caller will wait on all dma_resv fences before 596 * starting the move. 597 * 598 * A subsystem may commence access to the object after obtaining 599 * bindings to the new backing memory under the object lock. 600 * 601 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 602 * negative error code on error. 603 */ 604 static int xe_bo_move_notify(struct xe_bo *bo, 605 const struct ttm_operation_ctx *ctx) 606 { 607 struct ttm_buffer_object *ttm_bo = &bo->ttm; 608 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 609 struct ttm_resource *old_mem = ttm_bo->resource; 610 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 611 int ret; 612 613 /* 614 * If this starts to call into many components, consider 615 * using a notification chain here. 616 */ 617 618 if (xe_bo_is_pinned(bo)) 619 return -EINVAL; 620 621 xe_bo_vunmap(bo); 622 ret = xe_bo_trigger_rebind(xe, bo, ctx); 623 if (ret) 624 return ret; 625 626 /* Don't call move_notify() for imported dma-bufs. */ 627 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 628 dma_buf_move_notify(ttm_bo->base.dma_buf); 629 630 /* 631 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 632 * so if we moved from VRAM make sure to unlink this from the userfault 633 * tracking. 634 */ 635 if (mem_type_is_vram(old_mem_type)) { 636 mutex_lock(&xe->mem_access.vram_userfault.lock); 637 if (!list_empty(&bo->vram_userfault_link)) 638 list_del_init(&bo->vram_userfault_link); 639 mutex_unlock(&xe->mem_access.vram_userfault.lock); 640 } 641 642 return 0; 643 } 644 645 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 646 struct ttm_operation_ctx *ctx, 647 struct ttm_resource *new_mem, 648 struct ttm_place *hop) 649 { 650 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 651 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 652 struct ttm_resource *old_mem = ttm_bo->resource; 653 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 654 struct ttm_tt *ttm = ttm_bo->ttm; 655 struct xe_migrate *migrate = NULL; 656 struct dma_fence *fence; 657 bool move_lacks_source; 658 bool tt_has_data; 659 bool needs_clear; 660 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 661 ttm && ttm_tt_is_populated(ttm)) ? true : false; 662 int ret = 0; 663 664 /* Bo creation path, moving to system or TT. */ 665 if ((!old_mem && ttm) && !handle_system_ccs) { 666 if (new_mem->mem_type == XE_PL_TT) 667 ret = xe_tt_map_sg(ttm); 668 if (!ret) 669 ttm_bo_move_null(ttm_bo, new_mem); 670 goto out; 671 } 672 673 if (ttm_bo->type == ttm_bo_type_sg) { 674 ret = xe_bo_move_notify(bo, ctx); 675 if (!ret) 676 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 677 return ret; 678 } 679 680 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 681 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 682 683 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 684 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 685 686 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 687 (!ttm && ttm_bo->type == ttm_bo_type_device); 688 689 if (new_mem->mem_type == XE_PL_TT) { 690 ret = xe_tt_map_sg(ttm); 691 if (ret) 692 goto out; 693 } 694 695 if ((move_lacks_source && !needs_clear)) { 696 ttm_bo_move_null(ttm_bo, new_mem); 697 goto out; 698 } 699 700 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 701 ttm_bo_move_null(ttm_bo, new_mem); 702 goto out; 703 } 704 705 /* 706 * Failed multi-hop where the old_mem is still marked as 707 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 708 */ 709 if (old_mem_type == XE_PL_TT && 710 new_mem->mem_type == XE_PL_TT) { 711 ttm_bo_move_null(ttm_bo, new_mem); 712 goto out; 713 } 714 715 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 716 ret = xe_bo_move_notify(bo, ctx); 717 if (ret) 718 goto out; 719 } 720 721 if (old_mem_type == XE_PL_TT && 722 new_mem->mem_type == XE_PL_SYSTEM) { 723 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 724 DMA_RESV_USAGE_BOOKKEEP, 725 true, 726 MAX_SCHEDULE_TIMEOUT); 727 if (timeout < 0) { 728 ret = timeout; 729 goto out; 730 } 731 732 if (!handle_system_ccs) { 733 ttm_bo_move_null(ttm_bo, new_mem); 734 goto out; 735 } 736 } 737 738 if (!move_lacks_source && 739 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 740 (mem_type_is_vram(old_mem_type) && 741 new_mem->mem_type == XE_PL_SYSTEM))) { 742 hop->fpfn = 0; 743 hop->lpfn = 0; 744 hop->mem_type = XE_PL_TT; 745 hop->flags = TTM_PL_FLAG_TEMPORARY; 746 ret = -EMULTIHOP; 747 goto out; 748 } 749 750 if (bo->tile) 751 migrate = bo->tile->migrate; 752 else if (resource_is_vram(new_mem)) 753 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 754 else if (mem_type_is_vram(old_mem_type)) 755 migrate = mem_type_to_migrate(xe, old_mem_type); 756 else 757 migrate = xe->tiles[0].migrate; 758 759 xe_assert(xe, migrate); 760 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 761 xe_pm_runtime_get_noresume(xe); 762 763 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 764 /* 765 * Kernel memory that is pinned should only be moved on suspend 766 * / resume, some of the pinned memory is required for the 767 * device to resume / use the GPU to move other evicted memory 768 * (user memory) around. This likely could be optimized a bit 769 * futher where we find the minimum set of pinned memory 770 * required for resume but for simplity doing a memcpy for all 771 * pinned memory. 772 */ 773 ret = xe_bo_vmap(bo); 774 if (!ret) { 775 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 776 777 /* Create a new VMAP once kernel BO back in VRAM */ 778 if (!ret && resource_is_vram(new_mem)) { 779 struct xe_mem_region *vram = res_to_mem_region(new_mem); 780 void __iomem *new_addr = vram->mapping + 781 (new_mem->start << PAGE_SHIFT); 782 783 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 784 ret = -EINVAL; 785 xe_pm_runtime_put(xe); 786 goto out; 787 } 788 789 xe_assert(xe, new_mem->start == 790 bo->placements->fpfn); 791 792 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 793 } 794 } 795 } else { 796 if (move_lacks_source) { 797 u32 flags = 0; 798 799 if (mem_type_is_vram(new_mem->mem_type)) 800 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 801 else if (handle_system_ccs) 802 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 803 804 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 805 } 806 else 807 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 808 new_mem, handle_system_ccs); 809 if (IS_ERR(fence)) { 810 ret = PTR_ERR(fence); 811 xe_pm_runtime_put(xe); 812 goto out; 813 } 814 if (!move_lacks_source) { 815 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 816 true, new_mem); 817 if (ret) { 818 dma_fence_wait(fence, false); 819 ttm_bo_move_null(ttm_bo, new_mem); 820 ret = 0; 821 } 822 } else { 823 /* 824 * ttm_bo_move_accel_cleanup() may blow up if 825 * bo->resource == NULL, so just attach the 826 * fence and set the new resource. 827 */ 828 dma_resv_add_fence(ttm_bo->base.resv, fence, 829 DMA_RESV_USAGE_KERNEL); 830 ttm_bo_move_null(ttm_bo, new_mem); 831 } 832 833 dma_fence_put(fence); 834 } 835 836 xe_pm_runtime_put(xe); 837 838 out: 839 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 840 ttm_bo->ttm) 841 xe_tt_unmap_sg(ttm_bo->ttm); 842 843 return ret; 844 } 845 846 /** 847 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 848 * @bo: The buffer object to move. 849 * 850 * On successful completion, the object memory will be moved to sytem memory. 851 * 852 * This is needed to for special handling of pinned VRAM object during 853 * suspend-resume. 854 * 855 * Return: 0 on success. Negative error code on failure. 856 */ 857 int xe_bo_evict_pinned(struct xe_bo *bo) 858 { 859 struct ttm_place place = { 860 .mem_type = XE_PL_TT, 861 }; 862 struct ttm_placement placement = { 863 .placement = &place, 864 .num_placement = 1, 865 }; 866 struct ttm_operation_ctx ctx = { 867 .interruptible = false, 868 }; 869 struct ttm_resource *new_mem; 870 int ret; 871 872 xe_bo_assert_held(bo); 873 874 if (WARN_ON(!bo->ttm.resource)) 875 return -EINVAL; 876 877 if (WARN_ON(!xe_bo_is_pinned(bo))) 878 return -EINVAL; 879 880 if (WARN_ON(!xe_bo_is_vram(bo))) 881 return -EINVAL; 882 883 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 884 if (ret) 885 return ret; 886 887 if (!bo->ttm.ttm) { 888 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 889 if (!bo->ttm.ttm) { 890 ret = -ENOMEM; 891 goto err_res_free; 892 } 893 } 894 895 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 896 if (ret) 897 goto err_res_free; 898 899 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 900 if (ret) 901 goto err_res_free; 902 903 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 904 if (ret) 905 goto err_res_free; 906 907 return 0; 908 909 err_res_free: 910 ttm_resource_free(&bo->ttm, &new_mem); 911 return ret; 912 } 913 914 /** 915 * xe_bo_restore_pinned() - Restore a pinned VRAM object 916 * @bo: The buffer object to move. 917 * 918 * On successful completion, the object memory will be moved back to VRAM. 919 * 920 * This is needed to for special handling of pinned VRAM object during 921 * suspend-resume. 922 * 923 * Return: 0 on success. Negative error code on failure. 924 */ 925 int xe_bo_restore_pinned(struct xe_bo *bo) 926 { 927 struct ttm_operation_ctx ctx = { 928 .interruptible = false, 929 }; 930 struct ttm_resource *new_mem; 931 int ret; 932 933 xe_bo_assert_held(bo); 934 935 if (WARN_ON(!bo->ttm.resource)) 936 return -EINVAL; 937 938 if (WARN_ON(!xe_bo_is_pinned(bo))) 939 return -EINVAL; 940 941 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 942 return -EINVAL; 943 944 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 945 if (ret) 946 return ret; 947 948 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 949 if (ret) 950 goto err_res_free; 951 952 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 953 if (ret) 954 goto err_res_free; 955 956 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 957 if (ret) 958 goto err_res_free; 959 960 return 0; 961 962 err_res_free: 963 ttm_resource_free(&bo->ttm, &new_mem); 964 return ret; 965 } 966 967 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 968 unsigned long page_offset) 969 { 970 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 971 struct xe_res_cursor cursor; 972 struct xe_mem_region *vram; 973 974 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 975 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 976 977 vram = res_to_mem_region(ttm_bo->resource); 978 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 979 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 980 } 981 982 static void __xe_bo_vunmap(struct xe_bo *bo); 983 984 /* 985 * TODO: Move this function to TTM so we don't rely on how TTM does its 986 * locking, thereby abusing TTM internals. 987 */ 988 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 989 { 990 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 991 bool locked; 992 993 xe_assert(xe, !kref_read(&ttm_bo->kref)); 994 995 /* 996 * We can typically only race with TTM trylocking under the 997 * lru_lock, which will immediately be unlocked again since 998 * the ttm_bo refcount is zero at this point. So trylocking *should* 999 * always succeed here, as long as we hold the lru lock. 1000 */ 1001 spin_lock(&ttm_bo->bdev->lru_lock); 1002 locked = dma_resv_trylock(ttm_bo->base.resv); 1003 spin_unlock(&ttm_bo->bdev->lru_lock); 1004 xe_assert(xe, locked); 1005 1006 return locked; 1007 } 1008 1009 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1010 { 1011 struct dma_resv_iter cursor; 1012 struct dma_fence *fence; 1013 struct dma_fence *replacement = NULL; 1014 struct xe_bo *bo; 1015 1016 if (!xe_bo_is_xe_bo(ttm_bo)) 1017 return; 1018 1019 bo = ttm_to_xe_bo(ttm_bo); 1020 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1021 1022 /* 1023 * Corner case where TTM fails to allocate memory and this BOs resv 1024 * still points the VMs resv 1025 */ 1026 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1027 return; 1028 1029 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1030 return; 1031 1032 /* 1033 * Scrub the preempt fences if any. The unbind fence is already 1034 * attached to the resv. 1035 * TODO: Don't do this for external bos once we scrub them after 1036 * unbind. 1037 */ 1038 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1039 DMA_RESV_USAGE_BOOKKEEP, fence) { 1040 if (xe_fence_is_xe_preempt(fence) && 1041 !dma_fence_is_signaled(fence)) { 1042 if (!replacement) 1043 replacement = dma_fence_get_stub(); 1044 1045 dma_resv_replace_fences(ttm_bo->base.resv, 1046 fence->context, 1047 replacement, 1048 DMA_RESV_USAGE_BOOKKEEP); 1049 } 1050 } 1051 dma_fence_put(replacement); 1052 1053 dma_resv_unlock(ttm_bo->base.resv); 1054 } 1055 1056 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1057 { 1058 if (!xe_bo_is_xe_bo(ttm_bo)) 1059 return; 1060 1061 /* 1062 * Object is idle and about to be destroyed. Release the 1063 * dma-buf attachment. 1064 */ 1065 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1066 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1067 struct xe_ttm_tt, ttm); 1068 1069 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1070 DMA_BIDIRECTIONAL); 1071 ttm_bo->sg = NULL; 1072 xe_tt->sg = NULL; 1073 } 1074 } 1075 1076 const struct ttm_device_funcs xe_ttm_funcs = { 1077 .ttm_tt_create = xe_ttm_tt_create, 1078 .ttm_tt_populate = xe_ttm_tt_populate, 1079 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1080 .ttm_tt_destroy = xe_ttm_tt_destroy, 1081 .evict_flags = xe_evict_flags, 1082 .move = xe_bo_move, 1083 .io_mem_reserve = xe_ttm_io_mem_reserve, 1084 .io_mem_pfn = xe_ttm_io_mem_pfn, 1085 .release_notify = xe_ttm_bo_release_notify, 1086 .eviction_valuable = ttm_bo_eviction_valuable, 1087 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1088 }; 1089 1090 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1091 { 1092 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1093 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1094 1095 if (bo->ttm.base.import_attach) 1096 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1097 drm_gem_object_release(&bo->ttm.base); 1098 1099 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1100 1101 if (bo->ggtt_node && bo->ggtt_node->base.size) 1102 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1103 1104 #ifdef CONFIG_PROC_FS 1105 if (bo->client) 1106 xe_drm_client_remove_bo(bo); 1107 #endif 1108 1109 if (bo->vm && xe_bo_is_user(bo)) 1110 xe_vm_put(bo->vm); 1111 1112 mutex_lock(&xe->mem_access.vram_userfault.lock); 1113 if (!list_empty(&bo->vram_userfault_link)) 1114 list_del(&bo->vram_userfault_link); 1115 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1116 1117 kfree(bo); 1118 } 1119 1120 static void xe_gem_object_free(struct drm_gem_object *obj) 1121 { 1122 /* Our BO reference counting scheme works as follows: 1123 * 1124 * The gem object kref is typically used throughout the driver, 1125 * and the gem object holds a ttm_buffer_object refcount, so 1126 * that when the last gem object reference is put, which is when 1127 * we end up in this function, we put also that ttm_buffer_object 1128 * refcount. Anything using gem interfaces is then no longer 1129 * allowed to access the object in a way that requires a gem 1130 * refcount, including locking the object. 1131 * 1132 * driver ttm callbacks is allowed to use the ttm_buffer_object 1133 * refcount directly if needed. 1134 */ 1135 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1136 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1137 } 1138 1139 static void xe_gem_object_close(struct drm_gem_object *obj, 1140 struct drm_file *file_priv) 1141 { 1142 struct xe_bo *bo = gem_to_xe_bo(obj); 1143 1144 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1145 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1146 1147 xe_bo_lock(bo, false); 1148 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1149 xe_bo_unlock(bo); 1150 } 1151 } 1152 1153 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1154 { 1155 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1156 struct drm_device *ddev = tbo->base.dev; 1157 struct xe_device *xe = to_xe_device(ddev); 1158 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1159 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1160 vm_fault_t ret; 1161 int idx; 1162 1163 if (needs_rpm) 1164 xe_pm_runtime_get(xe); 1165 1166 ret = ttm_bo_vm_reserve(tbo, vmf); 1167 if (ret) 1168 goto out; 1169 1170 if (drm_dev_enter(ddev, &idx)) { 1171 trace_xe_bo_cpu_fault(bo); 1172 1173 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1174 TTM_BO_VM_NUM_PREFAULT); 1175 drm_dev_exit(idx); 1176 } else { 1177 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1178 } 1179 1180 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1181 goto out; 1182 /* 1183 * ttm_bo_vm_reserve() already has dma_resv_lock. 1184 */ 1185 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1186 mutex_lock(&xe->mem_access.vram_userfault.lock); 1187 if (list_empty(&bo->vram_userfault_link)) 1188 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1189 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1190 } 1191 1192 dma_resv_unlock(tbo->base.resv); 1193 out: 1194 if (needs_rpm) 1195 xe_pm_runtime_put(xe); 1196 1197 return ret; 1198 } 1199 1200 static const struct vm_operations_struct xe_gem_vm_ops = { 1201 .fault = xe_gem_fault, 1202 .open = ttm_bo_vm_open, 1203 .close = ttm_bo_vm_close, 1204 .access = ttm_bo_vm_access 1205 }; 1206 1207 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1208 .free = xe_gem_object_free, 1209 .close = xe_gem_object_close, 1210 .mmap = drm_gem_ttm_mmap, 1211 .export = xe_gem_prime_export, 1212 .vm_ops = &xe_gem_vm_ops, 1213 }; 1214 1215 /** 1216 * xe_bo_alloc - Allocate storage for a struct xe_bo 1217 * 1218 * This funcition is intended to allocate storage to be used for input 1219 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1220 * created is needed before the call to __xe_bo_create_locked(). 1221 * If __xe_bo_create_locked ends up never to be called, then the 1222 * storage allocated with this function needs to be freed using 1223 * xe_bo_free(). 1224 * 1225 * Return: A pointer to an uninitialized struct xe_bo on success, 1226 * ERR_PTR(-ENOMEM) on error. 1227 */ 1228 struct xe_bo *xe_bo_alloc(void) 1229 { 1230 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1231 1232 if (!bo) 1233 return ERR_PTR(-ENOMEM); 1234 1235 return bo; 1236 } 1237 1238 /** 1239 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1240 * @bo: The buffer object storage. 1241 * 1242 * Refer to xe_bo_alloc() documentation for valid use-cases. 1243 */ 1244 void xe_bo_free(struct xe_bo *bo) 1245 { 1246 kfree(bo); 1247 } 1248 1249 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1250 struct xe_tile *tile, struct dma_resv *resv, 1251 struct ttm_lru_bulk_move *bulk, size_t size, 1252 u16 cpu_caching, enum ttm_bo_type type, 1253 u32 flags) 1254 { 1255 struct ttm_operation_ctx ctx = { 1256 .interruptible = true, 1257 .no_wait_gpu = false, 1258 }; 1259 struct ttm_placement *placement; 1260 uint32_t alignment; 1261 size_t aligned_size; 1262 int err; 1263 1264 /* Only kernel objects should set GT */ 1265 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1266 1267 if (XE_WARN_ON(!size)) { 1268 xe_bo_free(bo); 1269 return ERR_PTR(-EINVAL); 1270 } 1271 1272 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1273 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1274 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1275 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1276 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1277 1278 aligned_size = ALIGN(size, align); 1279 if (type != ttm_bo_type_device) 1280 size = ALIGN(size, align); 1281 flags |= XE_BO_FLAG_INTERNAL_64K; 1282 alignment = align >> PAGE_SHIFT; 1283 } else { 1284 aligned_size = ALIGN(size, SZ_4K); 1285 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1286 alignment = SZ_4K >> PAGE_SHIFT; 1287 } 1288 1289 if (type == ttm_bo_type_device && aligned_size != size) 1290 return ERR_PTR(-EINVAL); 1291 1292 if (!bo) { 1293 bo = xe_bo_alloc(); 1294 if (IS_ERR(bo)) 1295 return bo; 1296 } 1297 1298 bo->ccs_cleared = false; 1299 bo->tile = tile; 1300 bo->size = size; 1301 bo->flags = flags; 1302 bo->cpu_caching = cpu_caching; 1303 bo->ttm.base.funcs = &xe_gem_object_funcs; 1304 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1305 INIT_LIST_HEAD(&bo->pinned_link); 1306 #ifdef CONFIG_PROC_FS 1307 INIT_LIST_HEAD(&bo->client_link); 1308 #endif 1309 INIT_LIST_HEAD(&bo->vram_userfault_link); 1310 1311 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1312 1313 if (resv) { 1314 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1315 ctx.resv = resv; 1316 } 1317 1318 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1319 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1320 if (WARN_ON(err)) { 1321 xe_ttm_bo_destroy(&bo->ttm); 1322 return ERR_PTR(err); 1323 } 1324 } 1325 1326 /* Defer populating type_sg bos */ 1327 placement = (type == ttm_bo_type_sg || 1328 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1329 &bo->placement; 1330 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1331 placement, alignment, 1332 &ctx, NULL, resv, xe_ttm_bo_destroy); 1333 if (err) 1334 return ERR_PTR(err); 1335 1336 /* 1337 * The VRAM pages underneath are potentially still being accessed by the 1338 * GPU, as per async GPU clearing and async evictions. However TTM makes 1339 * sure to add any corresponding move/clear fences into the objects 1340 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1341 * 1342 * For KMD internal buffers we don't care about GPU clearing, however we 1343 * still need to handle async evictions, where the VRAM is still being 1344 * accessed by the GPU. Most internal callers are not expecting this, 1345 * since they are missing the required synchronisation before accessing 1346 * the memory. To keep things simple just sync wait any kernel fences 1347 * here, if the buffer is designated KMD internal. 1348 * 1349 * For normal userspace objects we should already have the required 1350 * pipelining or sync waiting elsewhere, since we already have to deal 1351 * with things like async GPU clearing. 1352 */ 1353 if (type == ttm_bo_type_kernel) { 1354 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1355 DMA_RESV_USAGE_KERNEL, 1356 ctx.interruptible, 1357 MAX_SCHEDULE_TIMEOUT); 1358 1359 if (timeout < 0) { 1360 if (!resv) 1361 dma_resv_unlock(bo->ttm.base.resv); 1362 xe_bo_put(bo); 1363 return ERR_PTR(timeout); 1364 } 1365 } 1366 1367 bo->created = true; 1368 if (bulk) 1369 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1370 else 1371 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1372 1373 return bo; 1374 } 1375 1376 static int __xe_bo_fixed_placement(struct xe_device *xe, 1377 struct xe_bo *bo, 1378 u32 flags, 1379 u64 start, u64 end, u64 size) 1380 { 1381 struct ttm_place *place = bo->placements; 1382 1383 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1384 return -EINVAL; 1385 1386 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1387 place->fpfn = start >> PAGE_SHIFT; 1388 place->lpfn = end >> PAGE_SHIFT; 1389 1390 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1391 case XE_BO_FLAG_VRAM0: 1392 place->mem_type = XE_PL_VRAM0; 1393 break; 1394 case XE_BO_FLAG_VRAM1: 1395 place->mem_type = XE_PL_VRAM1; 1396 break; 1397 case XE_BO_FLAG_STOLEN: 1398 place->mem_type = XE_PL_STOLEN; 1399 break; 1400 1401 default: 1402 /* 0 or multiple of the above set */ 1403 return -EINVAL; 1404 } 1405 1406 bo->placement = (struct ttm_placement) { 1407 .num_placement = 1, 1408 .placement = place, 1409 }; 1410 1411 return 0; 1412 } 1413 1414 static struct xe_bo * 1415 __xe_bo_create_locked(struct xe_device *xe, 1416 struct xe_tile *tile, struct xe_vm *vm, 1417 size_t size, u64 start, u64 end, 1418 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1419 { 1420 struct xe_bo *bo = NULL; 1421 int err; 1422 1423 if (vm) 1424 xe_vm_assert_held(vm); 1425 1426 if (start || end != ~0ULL) { 1427 bo = xe_bo_alloc(); 1428 if (IS_ERR(bo)) 1429 return bo; 1430 1431 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1432 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1433 if (err) { 1434 xe_bo_free(bo); 1435 return ERR_PTR(err); 1436 } 1437 } 1438 1439 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1440 vm && !xe_vm_in_fault_mode(vm) && 1441 flags & XE_BO_FLAG_USER ? 1442 &vm->lru_bulk_move : NULL, size, 1443 cpu_caching, type, flags); 1444 if (IS_ERR(bo)) 1445 return bo; 1446 1447 /* 1448 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1449 * to ensure the shared resv doesn't disappear under the bo, the bo 1450 * will keep a reference to the vm, and avoid circular references 1451 * by having all the vm's bo refereferences released at vm close 1452 * time. 1453 */ 1454 if (vm && xe_bo_is_user(bo)) 1455 xe_vm_get(vm); 1456 bo->vm = vm; 1457 1458 if (bo->flags & XE_BO_FLAG_GGTT) { 1459 if (!tile && flags & XE_BO_FLAG_STOLEN) 1460 tile = xe_device_get_root_tile(xe); 1461 1462 xe_assert(xe, tile); 1463 1464 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1465 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1466 start + bo->size, U64_MAX); 1467 } else { 1468 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1469 } 1470 if (err) 1471 goto err_unlock_put_bo; 1472 } 1473 1474 return bo; 1475 1476 err_unlock_put_bo: 1477 __xe_bo_unset_bulk_move(bo); 1478 xe_bo_unlock_vm_held(bo); 1479 xe_bo_put(bo); 1480 return ERR_PTR(err); 1481 } 1482 1483 struct xe_bo * 1484 xe_bo_create_locked_range(struct xe_device *xe, 1485 struct xe_tile *tile, struct xe_vm *vm, 1486 size_t size, u64 start, u64 end, 1487 enum ttm_bo_type type, u32 flags) 1488 { 1489 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1490 } 1491 1492 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1493 struct xe_vm *vm, size_t size, 1494 enum ttm_bo_type type, u32 flags) 1495 { 1496 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1497 } 1498 1499 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1500 struct xe_vm *vm, size_t size, 1501 u16 cpu_caching, 1502 u32 flags) 1503 { 1504 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1505 cpu_caching, ttm_bo_type_device, 1506 flags | XE_BO_FLAG_USER); 1507 if (!IS_ERR(bo)) 1508 xe_bo_unlock_vm_held(bo); 1509 1510 return bo; 1511 } 1512 1513 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1514 struct xe_vm *vm, size_t size, 1515 enum ttm_bo_type type, u32 flags) 1516 { 1517 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1518 1519 if (!IS_ERR(bo)) 1520 xe_bo_unlock_vm_held(bo); 1521 1522 return bo; 1523 } 1524 1525 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1526 struct xe_vm *vm, 1527 size_t size, u64 offset, 1528 enum ttm_bo_type type, u32 flags) 1529 { 1530 struct xe_bo *bo; 1531 int err; 1532 u64 start = offset == ~0ull ? 0 : offset; 1533 u64 end = offset == ~0ull ? offset : start + size; 1534 1535 if (flags & XE_BO_FLAG_STOLEN && 1536 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1537 flags |= XE_BO_FLAG_GGTT; 1538 1539 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1540 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); 1541 if (IS_ERR(bo)) 1542 return bo; 1543 1544 err = xe_bo_pin(bo); 1545 if (err) 1546 goto err_put; 1547 1548 err = xe_bo_vmap(bo); 1549 if (err) 1550 goto err_unpin; 1551 1552 xe_bo_unlock_vm_held(bo); 1553 1554 return bo; 1555 1556 err_unpin: 1557 xe_bo_unpin(bo); 1558 err_put: 1559 xe_bo_unlock_vm_held(bo); 1560 xe_bo_put(bo); 1561 return ERR_PTR(err); 1562 } 1563 1564 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1565 struct xe_vm *vm, size_t size, 1566 enum ttm_bo_type type, u32 flags) 1567 { 1568 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1569 } 1570 1571 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1572 const void *data, size_t size, 1573 enum ttm_bo_type type, u32 flags) 1574 { 1575 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1576 ALIGN(size, PAGE_SIZE), 1577 type, flags); 1578 if (IS_ERR(bo)) 1579 return bo; 1580 1581 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1582 1583 return bo; 1584 } 1585 1586 static void __xe_bo_unpin_map_no_vm(void *arg) 1587 { 1588 xe_bo_unpin_map_no_vm(arg); 1589 } 1590 1591 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1592 size_t size, u32 flags) 1593 { 1594 struct xe_bo *bo; 1595 int ret; 1596 1597 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1598 if (IS_ERR(bo)) 1599 return bo; 1600 1601 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 1602 if (ret) 1603 return ERR_PTR(ret); 1604 1605 return bo; 1606 } 1607 1608 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1609 const void *data, size_t size, u32 flags) 1610 { 1611 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1612 1613 if (IS_ERR(bo)) 1614 return bo; 1615 1616 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1617 1618 return bo; 1619 } 1620 1621 /** 1622 * xe_managed_bo_reinit_in_vram 1623 * @xe: xe device 1624 * @tile: Tile where the new buffer will be created 1625 * @src: Managed buffer object allocated in system memory 1626 * 1627 * Replace a managed src buffer object allocated in system memory with a new 1628 * one allocated in vram, copying the data between them. 1629 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1630 * is responsible for making sure that any old references to it are updated. 1631 * 1632 * Returns 0 for success, negative error code otherwise. 1633 */ 1634 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1635 { 1636 struct xe_bo *bo; 1637 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1638 1639 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1640 1641 xe_assert(xe, IS_DGFX(xe)); 1642 xe_assert(xe, !(*src)->vmap.is_iomem); 1643 1644 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1645 (*src)->size, dst_flags); 1646 if (IS_ERR(bo)) 1647 return PTR_ERR(bo); 1648 1649 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 1650 *src = bo; 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * XXX: This is in the VM bind data path, likely should calculate this once and 1657 * store, with a recalculation if the BO is moved. 1658 */ 1659 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1660 { 1661 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1662 1663 if (res->mem_type == XE_PL_STOLEN) 1664 return xe_ttm_stolen_gpu_offset(xe); 1665 1666 return res_to_mem_region(res)->dpa_base; 1667 } 1668 1669 /** 1670 * xe_bo_pin_external - pin an external BO 1671 * @bo: buffer object to be pinned 1672 * 1673 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1674 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1675 * asserts and code to ensure evict / restore on suspend / resume. 1676 * 1677 * Returns 0 for success, negative error code otherwise. 1678 */ 1679 int xe_bo_pin_external(struct xe_bo *bo) 1680 { 1681 struct xe_device *xe = xe_bo_device(bo); 1682 int err; 1683 1684 xe_assert(xe, !bo->vm); 1685 xe_assert(xe, xe_bo_is_user(bo)); 1686 1687 if (!xe_bo_is_pinned(bo)) { 1688 err = xe_bo_validate(bo, NULL, false); 1689 if (err) 1690 return err; 1691 1692 if (xe_bo_is_vram(bo)) { 1693 spin_lock(&xe->pinned.lock); 1694 list_add_tail(&bo->pinned_link, 1695 &xe->pinned.external_vram); 1696 spin_unlock(&xe->pinned.lock); 1697 } 1698 } 1699 1700 ttm_bo_pin(&bo->ttm); 1701 1702 /* 1703 * FIXME: If we always use the reserve / unreserve functions for locking 1704 * we do not need this. 1705 */ 1706 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1707 1708 return 0; 1709 } 1710 1711 int xe_bo_pin(struct xe_bo *bo) 1712 { 1713 struct xe_device *xe = xe_bo_device(bo); 1714 int err; 1715 1716 /* We currently don't expect user BO to be pinned */ 1717 xe_assert(xe, !xe_bo_is_user(bo)); 1718 1719 /* Pinned object must be in GGTT or have pinned flag */ 1720 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1721 XE_BO_FLAG_GGTT)); 1722 1723 /* 1724 * No reason we can't support pinning imported dma-bufs we just don't 1725 * expect to pin an imported dma-buf. 1726 */ 1727 xe_assert(xe, !bo->ttm.base.import_attach); 1728 1729 /* We only expect at most 1 pin */ 1730 xe_assert(xe, !xe_bo_is_pinned(bo)); 1731 1732 err = xe_bo_validate(bo, NULL, false); 1733 if (err) 1734 return err; 1735 1736 /* 1737 * For pinned objects in on DGFX, which are also in vram, we expect 1738 * these to be in contiguous VRAM memory. Required eviction / restore 1739 * during suspend / resume (force restore to same physical address). 1740 */ 1741 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1742 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1743 struct ttm_place *place = &(bo->placements[0]); 1744 1745 if (mem_type_is_vram(place->mem_type)) { 1746 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1747 1748 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1749 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1750 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1751 1752 spin_lock(&xe->pinned.lock); 1753 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1754 spin_unlock(&xe->pinned.lock); 1755 } 1756 } 1757 1758 ttm_bo_pin(&bo->ttm); 1759 1760 /* 1761 * FIXME: If we always use the reserve / unreserve functions for locking 1762 * we do not need this. 1763 */ 1764 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * xe_bo_unpin_external - unpin an external BO 1771 * @bo: buffer object to be unpinned 1772 * 1773 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1774 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1775 * asserts and code to ensure evict / restore on suspend / resume. 1776 * 1777 * Returns 0 for success, negative error code otherwise. 1778 */ 1779 void xe_bo_unpin_external(struct xe_bo *bo) 1780 { 1781 struct xe_device *xe = xe_bo_device(bo); 1782 1783 xe_assert(xe, !bo->vm); 1784 xe_assert(xe, xe_bo_is_pinned(bo)); 1785 xe_assert(xe, xe_bo_is_user(bo)); 1786 1787 spin_lock(&xe->pinned.lock); 1788 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1789 list_del_init(&bo->pinned_link); 1790 spin_unlock(&xe->pinned.lock); 1791 1792 ttm_bo_unpin(&bo->ttm); 1793 1794 /* 1795 * FIXME: If we always use the reserve / unreserve functions for locking 1796 * we do not need this. 1797 */ 1798 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1799 } 1800 1801 void xe_bo_unpin(struct xe_bo *bo) 1802 { 1803 struct xe_device *xe = xe_bo_device(bo); 1804 1805 xe_assert(xe, !bo->ttm.base.import_attach); 1806 xe_assert(xe, xe_bo_is_pinned(bo)); 1807 1808 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1809 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1810 struct ttm_place *place = &(bo->placements[0]); 1811 1812 if (mem_type_is_vram(place->mem_type)) { 1813 spin_lock(&xe->pinned.lock); 1814 xe_assert(xe, !list_empty(&bo->pinned_link)); 1815 list_del_init(&bo->pinned_link); 1816 spin_unlock(&xe->pinned.lock); 1817 } 1818 } 1819 1820 ttm_bo_unpin(&bo->ttm); 1821 } 1822 1823 /** 1824 * xe_bo_validate() - Make sure the bo is in an allowed placement 1825 * @bo: The bo, 1826 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1827 * NULL. Used together with @allow_res_evict. 1828 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1829 * reservation object. 1830 * 1831 * Make sure the bo is in allowed placement, migrating it if necessary. If 1832 * needed, other bos will be evicted. If bos selected for eviction shares 1833 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1834 * set to true, otherwise they will be bypassed. 1835 * 1836 * Return: 0 on success, negative error code on failure. May return 1837 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1838 */ 1839 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1840 { 1841 struct ttm_operation_ctx ctx = { 1842 .interruptible = true, 1843 .no_wait_gpu = false, 1844 }; 1845 1846 if (vm) { 1847 lockdep_assert_held(&vm->lock); 1848 xe_vm_assert_held(vm); 1849 1850 ctx.allow_res_evict = allow_res_evict; 1851 ctx.resv = xe_vm_resv(vm); 1852 } 1853 1854 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1855 } 1856 1857 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1858 { 1859 if (bo->destroy == &xe_ttm_bo_destroy) 1860 return true; 1861 1862 return false; 1863 } 1864 1865 /* 1866 * Resolve a BO address. There is no assert to check if the proper lock is held 1867 * so it should only be used in cases where it is not fatal to get the wrong 1868 * address, such as printing debug information, but not in cases where memory is 1869 * written based on this result. 1870 */ 1871 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1872 { 1873 struct xe_device *xe = xe_bo_device(bo); 1874 struct xe_res_cursor cur; 1875 u64 page; 1876 1877 xe_assert(xe, page_size <= PAGE_SIZE); 1878 page = offset >> PAGE_SHIFT; 1879 offset &= (PAGE_SIZE - 1); 1880 1881 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1882 xe_assert(xe, bo->ttm.ttm); 1883 1884 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1885 page_size, &cur); 1886 return xe_res_dma(&cur) + offset; 1887 } else { 1888 struct xe_res_cursor cur; 1889 1890 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1891 page_size, &cur); 1892 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1893 } 1894 } 1895 1896 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1897 { 1898 if (!READ_ONCE(bo->ttm.pin_count)) 1899 xe_bo_assert_held(bo); 1900 return __xe_bo_addr(bo, offset, page_size); 1901 } 1902 1903 int xe_bo_vmap(struct xe_bo *bo) 1904 { 1905 void *virtual; 1906 bool is_iomem; 1907 int ret; 1908 1909 xe_bo_assert_held(bo); 1910 1911 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1912 return -EINVAL; 1913 1914 if (!iosys_map_is_null(&bo->vmap)) 1915 return 0; 1916 1917 /* 1918 * We use this more or less deprecated interface for now since 1919 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1920 * single page bos, which is done here. 1921 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1922 * to use struct iosys_map. 1923 */ 1924 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1925 if (ret) 1926 return ret; 1927 1928 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1929 if (is_iomem) 1930 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1931 else 1932 iosys_map_set_vaddr(&bo->vmap, virtual); 1933 1934 return 0; 1935 } 1936 1937 static void __xe_bo_vunmap(struct xe_bo *bo) 1938 { 1939 if (!iosys_map_is_null(&bo->vmap)) { 1940 iosys_map_clear(&bo->vmap); 1941 ttm_bo_kunmap(&bo->kmap); 1942 } 1943 } 1944 1945 void xe_bo_vunmap(struct xe_bo *bo) 1946 { 1947 xe_bo_assert_held(bo); 1948 __xe_bo_vunmap(bo); 1949 } 1950 1951 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1952 struct drm_file *file) 1953 { 1954 struct xe_device *xe = to_xe_device(dev); 1955 struct xe_file *xef = to_xe_file(file); 1956 struct drm_xe_gem_create *args = data; 1957 struct xe_vm *vm = NULL; 1958 struct xe_bo *bo; 1959 unsigned int bo_flags; 1960 u32 handle; 1961 int err; 1962 1963 if (XE_IOCTL_DBG(xe, args->extensions) || 1964 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1965 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1966 return -EINVAL; 1967 1968 /* at least one valid memory placement must be specified */ 1969 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1970 !args->placement)) 1971 return -EINVAL; 1972 1973 if (XE_IOCTL_DBG(xe, args->flags & 1974 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1975 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1976 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1977 return -EINVAL; 1978 1979 if (XE_IOCTL_DBG(xe, args->handle)) 1980 return -EINVAL; 1981 1982 if (XE_IOCTL_DBG(xe, !args->size)) 1983 return -EINVAL; 1984 1985 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1986 return -EINVAL; 1987 1988 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1989 return -EINVAL; 1990 1991 bo_flags = 0; 1992 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1993 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 1994 1995 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1996 bo_flags |= XE_BO_FLAG_SCANOUT; 1997 1998 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 1999 2000 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2001 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2002 (bo_flags & XE_BO_FLAG_SCANOUT) && 2003 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2004 IS_ALIGNED(args->size, SZ_64K)) 2005 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2006 2007 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2008 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2009 return -EINVAL; 2010 2011 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2012 } 2013 2014 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2015 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2016 return -EINVAL; 2017 2018 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2019 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2020 return -EINVAL; 2021 2022 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2023 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2024 return -EINVAL; 2025 2026 if (args->vm_id) { 2027 vm = xe_vm_lookup(xef, args->vm_id); 2028 if (XE_IOCTL_DBG(xe, !vm)) 2029 return -ENOENT; 2030 err = xe_vm_lock(vm, true); 2031 if (err) 2032 goto out_vm; 2033 } 2034 2035 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2036 bo_flags); 2037 2038 if (vm) 2039 xe_vm_unlock(vm); 2040 2041 if (IS_ERR(bo)) { 2042 err = PTR_ERR(bo); 2043 goto out_vm; 2044 } 2045 2046 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2047 if (err) 2048 goto out_bulk; 2049 2050 args->handle = handle; 2051 goto out_put; 2052 2053 out_bulk: 2054 if (vm && !xe_vm_in_fault_mode(vm)) { 2055 xe_vm_lock(vm, false); 2056 __xe_bo_unset_bulk_move(bo); 2057 xe_vm_unlock(vm); 2058 } 2059 out_put: 2060 xe_bo_put(bo); 2061 out_vm: 2062 if (vm) 2063 xe_vm_put(vm); 2064 2065 return err; 2066 } 2067 2068 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2069 struct drm_file *file) 2070 { 2071 struct xe_device *xe = to_xe_device(dev); 2072 struct drm_xe_gem_mmap_offset *args = data; 2073 struct drm_gem_object *gem_obj; 2074 2075 if (XE_IOCTL_DBG(xe, args->extensions) || 2076 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2077 return -EINVAL; 2078 2079 if (XE_IOCTL_DBG(xe, args->flags)) 2080 return -EINVAL; 2081 2082 gem_obj = drm_gem_object_lookup(file, args->handle); 2083 if (XE_IOCTL_DBG(xe, !gem_obj)) 2084 return -ENOENT; 2085 2086 /* The mmap offset was set up at BO allocation time. */ 2087 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2088 2089 xe_bo_put(gem_to_xe_bo(gem_obj)); 2090 return 0; 2091 } 2092 2093 /** 2094 * xe_bo_lock() - Lock the buffer object's dma_resv object 2095 * @bo: The struct xe_bo whose lock is to be taken 2096 * @intr: Whether to perform any wait interruptible 2097 * 2098 * Locks the buffer object's dma_resv object. If the buffer object is 2099 * pointing to a shared dma_resv object, that shared lock is locked. 2100 * 2101 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2102 * contended lock was interrupted. If @intr is set to false, the 2103 * function always returns 0. 2104 */ 2105 int xe_bo_lock(struct xe_bo *bo, bool intr) 2106 { 2107 if (intr) 2108 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2109 2110 dma_resv_lock(bo->ttm.base.resv, NULL); 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2117 * @bo: The struct xe_bo whose lock is to be released. 2118 * 2119 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2120 */ 2121 void xe_bo_unlock(struct xe_bo *bo) 2122 { 2123 dma_resv_unlock(bo->ttm.base.resv); 2124 } 2125 2126 /** 2127 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2128 * @bo: The buffer object to migrate 2129 * @mem_type: The TTM memory type intended to migrate to 2130 * 2131 * Check whether the buffer object supports migration to the 2132 * given memory type. Note that pinning may affect the ability to migrate as 2133 * returned by this function. 2134 * 2135 * This function is primarily intended as a helper for checking the 2136 * possibility to migrate buffer objects and can be called without 2137 * the object lock held. 2138 * 2139 * Return: true if migration is possible, false otherwise. 2140 */ 2141 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2142 { 2143 unsigned int cur_place; 2144 2145 if (bo->ttm.type == ttm_bo_type_kernel) 2146 return true; 2147 2148 if (bo->ttm.type == ttm_bo_type_sg) 2149 return false; 2150 2151 for (cur_place = 0; cur_place < bo->placement.num_placement; 2152 cur_place++) { 2153 if (bo->placements[cur_place].mem_type == mem_type) 2154 return true; 2155 } 2156 2157 return false; 2158 } 2159 2160 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2161 { 2162 memset(place, 0, sizeof(*place)); 2163 place->mem_type = mem_type; 2164 } 2165 2166 /** 2167 * xe_bo_migrate - Migrate an object to the desired region id 2168 * @bo: The buffer object to migrate. 2169 * @mem_type: The TTM region type to migrate to. 2170 * 2171 * Attempt to migrate the buffer object to the desired memory region. The 2172 * buffer object may not be pinned, and must be locked. 2173 * On successful completion, the object memory type will be updated, 2174 * but an async migration task may not have completed yet, and to 2175 * accomplish that, the object's kernel fences must be signaled with 2176 * the object lock held. 2177 * 2178 * Return: 0 on success. Negative error code on failure. In particular may 2179 * return -EINTR or -ERESTARTSYS if signal pending. 2180 */ 2181 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2182 { 2183 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2184 struct ttm_operation_ctx ctx = { 2185 .interruptible = true, 2186 .no_wait_gpu = false, 2187 }; 2188 struct ttm_placement placement; 2189 struct ttm_place requested; 2190 2191 xe_bo_assert_held(bo); 2192 2193 if (bo->ttm.resource->mem_type == mem_type) 2194 return 0; 2195 2196 if (xe_bo_is_pinned(bo)) 2197 return -EBUSY; 2198 2199 if (!xe_bo_can_migrate(bo, mem_type)) 2200 return -EINVAL; 2201 2202 xe_place_from_ttm_type(mem_type, &requested); 2203 placement.num_placement = 1; 2204 placement.placement = &requested; 2205 2206 /* 2207 * Stolen needs to be handled like below VRAM handling if we ever need 2208 * to support it. 2209 */ 2210 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2211 2212 if (mem_type_is_vram(mem_type)) { 2213 u32 c = 0; 2214 2215 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2216 } 2217 2218 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2219 } 2220 2221 /** 2222 * xe_bo_evict - Evict an object to evict placement 2223 * @bo: The buffer object to migrate. 2224 * @force_alloc: Set force_alloc in ttm_operation_ctx 2225 * 2226 * On successful completion, the object memory will be moved to evict 2227 * placement. Ths function blocks until the object has been fully moved. 2228 * 2229 * Return: 0 on success. Negative error code on failure. 2230 */ 2231 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2232 { 2233 struct ttm_operation_ctx ctx = { 2234 .interruptible = false, 2235 .no_wait_gpu = false, 2236 .force_alloc = force_alloc, 2237 }; 2238 struct ttm_placement placement; 2239 int ret; 2240 2241 xe_evict_flags(&bo->ttm, &placement); 2242 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2243 if (ret) 2244 return ret; 2245 2246 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2247 false, MAX_SCHEDULE_TIMEOUT); 2248 2249 return 0; 2250 } 2251 2252 /** 2253 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2254 * placed in system memory. 2255 * @bo: The xe_bo 2256 * 2257 * Return: true if extra pages need to be allocated, false otherwise. 2258 */ 2259 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2260 { 2261 struct xe_device *xe = xe_bo_device(bo); 2262 2263 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2264 return false; 2265 2266 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2267 return false; 2268 2269 /* On discrete GPUs, if the GPU can access this buffer from 2270 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2271 * can't be used since there's no CCS storage associated with 2272 * non-VRAM addresses. 2273 */ 2274 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2275 return false; 2276 2277 return true; 2278 } 2279 2280 /** 2281 * __xe_bo_release_dummy() - Dummy kref release function 2282 * @kref: The embedded struct kref. 2283 * 2284 * Dummy release function for xe_bo_put_deferred(). Keep off. 2285 */ 2286 void __xe_bo_release_dummy(struct kref *kref) 2287 { 2288 } 2289 2290 /** 2291 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2292 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2293 * 2294 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2295 * The @deferred list can be either an onstack local list or a global 2296 * shared list used by a workqueue. 2297 */ 2298 void xe_bo_put_commit(struct llist_head *deferred) 2299 { 2300 struct llist_node *freed; 2301 struct xe_bo *bo, *next; 2302 2303 if (!deferred) 2304 return; 2305 2306 freed = llist_del_all(deferred); 2307 if (!freed) 2308 return; 2309 2310 llist_for_each_entry_safe(bo, next, freed, freed) 2311 drm_gem_object_free(&bo->ttm.base.refcount); 2312 } 2313 2314 /** 2315 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2316 * @file_priv: ... 2317 * @dev: ... 2318 * @args: ... 2319 * 2320 * See dumb_create() hook in include/drm/drm_drv.h 2321 * 2322 * Return: ... 2323 */ 2324 int xe_bo_dumb_create(struct drm_file *file_priv, 2325 struct drm_device *dev, 2326 struct drm_mode_create_dumb *args) 2327 { 2328 struct xe_device *xe = to_xe_device(dev); 2329 struct xe_bo *bo; 2330 uint32_t handle; 2331 int cpp = DIV_ROUND_UP(args->bpp, 8); 2332 int err; 2333 u32 page_size = max_t(u32, PAGE_SIZE, 2334 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2335 2336 args->pitch = ALIGN(args->width * cpp, 64); 2337 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2338 page_size); 2339 2340 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2341 DRM_XE_GEM_CPU_CACHING_WC, 2342 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2343 XE_BO_FLAG_SCANOUT | 2344 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2345 if (IS_ERR(bo)) 2346 return PTR_ERR(bo); 2347 2348 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2349 /* drop reference from allocate - handle holds it now */ 2350 drm_gem_object_put(&bo->ttm.base); 2351 if (!err) 2352 args->handle = handle; 2353 return err; 2354 } 2355 2356 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2357 { 2358 struct ttm_buffer_object *tbo = &bo->ttm; 2359 struct ttm_device *bdev = tbo->bdev; 2360 2361 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2362 2363 list_del_init(&bo->vram_userfault_link); 2364 } 2365 2366 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2367 #include "tests/xe_bo.c" 2368 #endif 2369