1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_preempt_fence.h" 26 #include "xe_res_cursor.h" 27 #include "xe_trace.h" 28 #include "xe_ttm_stolen_mgr.h" 29 #include "xe_vm.h" 30 31 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 32 [XE_PL_SYSTEM] = "system", 33 [XE_PL_TT] = "gtt", 34 [XE_PL_VRAM0] = "vram0", 35 [XE_PL_VRAM1] = "vram1", 36 [XE_PL_STOLEN] = "stolen" 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = XE_PL_SYSTEM, 43 .flags = 0, 44 }; 45 46 static struct ttm_placement sys_placement = { 47 .num_placement = 1, 48 .placement = &sys_placement_flags, 49 }; 50 51 static const struct ttm_place tt_placement_flags[] = { 52 { 53 .fpfn = 0, 54 .lpfn = 0, 55 .mem_type = XE_PL_TT, 56 .flags = TTM_PL_FLAG_DESIRED, 57 }, 58 { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = XE_PL_SYSTEM, 62 .flags = TTM_PL_FLAG_FALLBACK, 63 } 64 }; 65 66 static struct ttm_placement tt_placement = { 67 .num_placement = 2, 68 .placement = tt_placement_flags, 69 }; 70 71 bool mem_type_is_vram(u32 mem_type) 72 { 73 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 74 } 75 76 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 77 { 78 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 79 } 80 81 static bool resource_is_vram(struct ttm_resource *res) 82 { 83 return mem_type_is_vram(res->mem_type); 84 } 85 86 bool xe_bo_is_vram(struct xe_bo *bo) 87 { 88 return resource_is_vram(bo->ttm.resource) || 89 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 90 } 91 92 bool xe_bo_is_stolen(struct xe_bo *bo) 93 { 94 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 95 } 96 97 /** 98 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 99 * @bo: The BO 100 * 101 * The stolen memory is accessed through the PCI BAR for both DGFX and some 102 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 103 * 104 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 105 */ 106 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 107 { 108 return xe_bo_is_stolen(bo) && 109 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 110 } 111 112 static bool xe_bo_is_user(struct xe_bo *bo) 113 { 114 return bo->flags & XE_BO_CREATE_USER_BIT; 115 } 116 117 static struct xe_migrate * 118 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 119 { 120 struct xe_tile *tile; 121 122 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 123 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 124 return tile->migrate; 125 } 126 127 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 128 { 129 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 130 struct ttm_resource_manager *mgr; 131 132 xe_assert(xe, resource_is_vram(res)); 133 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 134 return to_xe_ttm_vram_mgr(mgr)->vram; 135 } 136 137 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 138 u32 bo_flags, u32 *c) 139 { 140 if (bo_flags & XE_BO_CREATE_SYSTEM_BIT) { 141 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 142 143 bo->placements[*c] = (struct ttm_place) { 144 .mem_type = XE_PL_TT, 145 }; 146 *c += 1; 147 } 148 } 149 150 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 151 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 152 { 153 struct ttm_place place = { .mem_type = mem_type }; 154 struct xe_mem_region *vram; 155 u64 io_size; 156 157 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 158 159 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 160 xe_assert(xe, vram && vram->usable_size); 161 io_size = vram->io_size; 162 163 /* 164 * For eviction / restore on suspend / resume objects 165 * pinned in VRAM must be contiguous 166 */ 167 if (bo_flags & (XE_BO_CREATE_PINNED_BIT | 168 XE_BO_CREATE_GGTT_BIT)) 169 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 170 171 if (io_size < vram->usable_size) { 172 if (bo_flags & XE_BO_NEEDS_CPU_ACCESS) { 173 place.fpfn = 0; 174 place.lpfn = io_size >> PAGE_SHIFT; 175 } else { 176 place.flags |= TTM_PL_FLAG_TOPDOWN; 177 } 178 } 179 places[*c] = place; 180 *c += 1; 181 } 182 183 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 184 u32 bo_flags, u32 *c) 185 { 186 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 187 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 188 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 189 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 190 } 191 192 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 193 u32 bo_flags, u32 *c) 194 { 195 if (bo_flags & XE_BO_CREATE_STOLEN_BIT) { 196 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 197 198 bo->placements[*c] = (struct ttm_place) { 199 .mem_type = XE_PL_STOLEN, 200 .flags = bo_flags & (XE_BO_CREATE_PINNED_BIT | 201 XE_BO_CREATE_GGTT_BIT) ? 202 TTM_PL_FLAG_CONTIGUOUS : 0, 203 }; 204 *c += 1; 205 } 206 } 207 208 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 209 u32 bo_flags) 210 { 211 u32 c = 0; 212 213 try_add_vram(xe, bo, bo_flags, &c); 214 try_add_system(xe, bo, bo_flags, &c); 215 try_add_stolen(xe, bo, bo_flags, &c); 216 217 if (!c) 218 return -EINVAL; 219 220 bo->placement = (struct ttm_placement) { 221 .num_placement = c, 222 .placement = bo->placements, 223 }; 224 225 return 0; 226 } 227 228 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 229 u32 bo_flags) 230 { 231 xe_bo_assert_held(bo); 232 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 233 } 234 235 static void xe_evict_flags(struct ttm_buffer_object *tbo, 236 struct ttm_placement *placement) 237 { 238 if (!xe_bo_is_xe_bo(tbo)) { 239 /* Don't handle scatter gather BOs */ 240 if (tbo->type == ttm_bo_type_sg) { 241 placement->num_placement = 0; 242 return; 243 } 244 245 *placement = sys_placement; 246 return; 247 } 248 249 /* 250 * For xe, sg bos that are evicted to system just triggers a 251 * rebind of the sg list upon subsequent validation to XE_PL_TT. 252 */ 253 switch (tbo->resource->mem_type) { 254 case XE_PL_VRAM0: 255 case XE_PL_VRAM1: 256 case XE_PL_STOLEN: 257 *placement = tt_placement; 258 break; 259 case XE_PL_TT: 260 default: 261 *placement = sys_placement; 262 break; 263 } 264 } 265 266 struct xe_ttm_tt { 267 struct ttm_tt ttm; 268 struct device *dev; 269 struct sg_table sgt; 270 struct sg_table *sg; 271 }; 272 273 static int xe_tt_map_sg(struct ttm_tt *tt) 274 { 275 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 276 unsigned long num_pages = tt->num_pages; 277 int ret; 278 279 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 280 281 if (xe_tt->sg) 282 return 0; 283 284 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 285 num_pages, 0, 286 (u64)num_pages << PAGE_SHIFT, 287 xe_sg_segment_size(xe_tt->dev), 288 GFP_KERNEL); 289 if (ret) 290 return ret; 291 292 xe_tt->sg = &xe_tt->sgt; 293 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 294 DMA_ATTR_SKIP_CPU_SYNC); 295 if (ret) { 296 sg_free_table(xe_tt->sg); 297 xe_tt->sg = NULL; 298 return ret; 299 } 300 301 return 0; 302 } 303 304 struct sg_table *xe_bo_sg(struct xe_bo *bo) 305 { 306 struct ttm_tt *tt = bo->ttm.ttm; 307 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 308 309 return xe_tt->sg; 310 } 311 312 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 313 u32 page_flags) 314 { 315 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 316 struct xe_device *xe = xe_bo_device(bo); 317 struct xe_ttm_tt *tt; 318 unsigned long extra_pages; 319 enum ttm_caching caching; 320 int err; 321 322 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 323 if (!tt) 324 return NULL; 325 326 tt->dev = xe->drm.dev; 327 328 extra_pages = 0; 329 if (xe_bo_needs_ccs_pages(bo)) 330 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 331 PAGE_SIZE); 332 333 switch (bo->cpu_caching) { 334 case DRM_XE_GEM_CPU_CACHING_WC: 335 caching = ttm_write_combined; 336 break; 337 default: 338 caching = ttm_cached; 339 break; 340 } 341 342 WARN_ON((bo->flags & XE_BO_CREATE_USER_BIT) && !bo->cpu_caching); 343 344 /* 345 * Display scanout is always non-coherent with the CPU cache. 346 * 347 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 348 * require a CPU:WC mapping. 349 */ 350 if ((!bo->cpu_caching && bo->flags & XE_BO_SCANOUT_BIT) || 351 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_PAGETABLE)) 352 caching = ttm_write_combined; 353 354 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 355 if (err) { 356 kfree(tt); 357 return NULL; 358 } 359 360 return &tt->ttm; 361 } 362 363 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 364 struct ttm_operation_ctx *ctx) 365 { 366 int err; 367 368 /* 369 * dma-bufs are not populated with pages, and the dma- 370 * addresses are set up when moved to XE_PL_TT. 371 */ 372 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 373 return 0; 374 375 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 376 if (err) 377 return err; 378 379 /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ 380 err = xe_tt_map_sg(tt); 381 if (err) 382 ttm_pool_free(&ttm_dev->pool, tt); 383 384 return err; 385 } 386 387 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 388 { 389 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 390 391 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 392 return; 393 394 if (xe_tt->sg) { 395 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 396 DMA_BIDIRECTIONAL, 0); 397 sg_free_table(xe_tt->sg); 398 xe_tt->sg = NULL; 399 } 400 401 return ttm_pool_free(&ttm_dev->pool, tt); 402 } 403 404 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 405 { 406 ttm_tt_fini(tt); 407 kfree(tt); 408 } 409 410 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 411 struct ttm_resource *mem) 412 { 413 struct xe_device *xe = ttm_to_xe_device(bdev); 414 415 switch (mem->mem_type) { 416 case XE_PL_SYSTEM: 417 case XE_PL_TT: 418 return 0; 419 case XE_PL_VRAM0: 420 case XE_PL_VRAM1: { 421 struct xe_ttm_vram_mgr_resource *vres = 422 to_xe_ttm_vram_mgr_resource(mem); 423 struct xe_mem_region *vram = res_to_mem_region(mem); 424 425 if (vres->used_visible_size < mem->size) 426 return -EINVAL; 427 428 mem->bus.offset = mem->start << PAGE_SHIFT; 429 430 if (vram->mapping && 431 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 432 mem->bus.addr = (u8 __force *)vram->mapping + 433 mem->bus.offset; 434 435 mem->bus.offset += vram->io_start; 436 mem->bus.is_iomem = true; 437 438 #if !defined(CONFIG_X86) 439 mem->bus.caching = ttm_write_combined; 440 #endif 441 return 0; 442 } case XE_PL_STOLEN: 443 return xe_ttm_stolen_io_mem_reserve(xe, mem); 444 default: 445 return -EINVAL; 446 } 447 } 448 449 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 450 const struct ttm_operation_ctx *ctx) 451 { 452 struct dma_resv_iter cursor; 453 struct dma_fence *fence; 454 struct drm_gem_object *obj = &bo->ttm.base; 455 struct drm_gpuvm_bo *vm_bo; 456 bool idle = false; 457 int ret = 0; 458 459 dma_resv_assert_held(bo->ttm.base.resv); 460 461 if (!list_empty(&bo->ttm.base.gpuva.list)) { 462 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 463 DMA_RESV_USAGE_BOOKKEEP); 464 dma_resv_for_each_fence_unlocked(&cursor, fence) 465 dma_fence_enable_sw_signaling(fence); 466 dma_resv_iter_end(&cursor); 467 } 468 469 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 470 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 471 struct drm_gpuva *gpuva; 472 473 if (!xe_vm_in_fault_mode(vm)) { 474 drm_gpuvm_bo_evict(vm_bo, true); 475 continue; 476 } 477 478 if (!idle) { 479 long timeout; 480 481 if (ctx->no_wait_gpu && 482 !dma_resv_test_signaled(bo->ttm.base.resv, 483 DMA_RESV_USAGE_BOOKKEEP)) 484 return -EBUSY; 485 486 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 487 DMA_RESV_USAGE_BOOKKEEP, 488 ctx->interruptible, 489 MAX_SCHEDULE_TIMEOUT); 490 if (!timeout) 491 return -ETIME; 492 if (timeout < 0) 493 return timeout; 494 495 idle = true; 496 } 497 498 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 499 struct xe_vma *vma = gpuva_to_vma(gpuva); 500 501 trace_xe_vma_evict(vma); 502 ret = xe_vm_invalidate_vma(vma); 503 if (XE_WARN_ON(ret)) 504 return ret; 505 } 506 } 507 508 return ret; 509 } 510 511 /* 512 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 513 * Note that unmapping the attachment is deferred to the next 514 * map_attachment time, or to bo destroy (after idling) whichever comes first. 515 * This is to avoid syncing before unmap_attachment(), assuming that the 516 * caller relies on idling the reservation object before moving the 517 * backing store out. Should that assumption not hold, then we will be able 518 * to unconditionally call unmap_attachment() when moving out to system. 519 */ 520 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 521 struct ttm_resource *new_res) 522 { 523 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 524 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 525 ttm); 526 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 527 struct sg_table *sg; 528 529 xe_assert(xe, attach); 530 xe_assert(xe, ttm_bo->ttm); 531 532 if (new_res->mem_type == XE_PL_SYSTEM) 533 goto out; 534 535 if (ttm_bo->sg) { 536 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 537 ttm_bo->sg = NULL; 538 } 539 540 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 541 if (IS_ERR(sg)) 542 return PTR_ERR(sg); 543 544 ttm_bo->sg = sg; 545 xe_tt->sg = sg; 546 547 out: 548 ttm_bo_move_null(ttm_bo, new_res); 549 550 return 0; 551 } 552 553 /** 554 * xe_bo_move_notify - Notify subsystems of a pending move 555 * @bo: The buffer object 556 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 557 * 558 * This function notifies subsystems of an upcoming buffer move. 559 * Upon receiving such a notification, subsystems should schedule 560 * halting access to the underlying pages and optionally add a fence 561 * to the buffer object's dma_resv object, that signals when access is 562 * stopped. The caller will wait on all dma_resv fences before 563 * starting the move. 564 * 565 * A subsystem may commence access to the object after obtaining 566 * bindings to the new backing memory under the object lock. 567 * 568 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 569 * negative error code on error. 570 */ 571 static int xe_bo_move_notify(struct xe_bo *bo, 572 const struct ttm_operation_ctx *ctx) 573 { 574 struct ttm_buffer_object *ttm_bo = &bo->ttm; 575 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 576 struct ttm_resource *old_mem = ttm_bo->resource; 577 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 578 int ret; 579 580 /* 581 * If this starts to call into many components, consider 582 * using a notification chain here. 583 */ 584 585 if (xe_bo_is_pinned(bo)) 586 return -EINVAL; 587 588 xe_bo_vunmap(bo); 589 ret = xe_bo_trigger_rebind(xe, bo, ctx); 590 if (ret) 591 return ret; 592 593 /* Don't call move_notify() for imported dma-bufs. */ 594 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 595 dma_buf_move_notify(ttm_bo->base.dma_buf); 596 597 /* 598 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 599 * so if we moved from VRAM make sure to unlink this from the userfault 600 * tracking. 601 */ 602 if (mem_type_is_vram(old_mem_type)) { 603 mutex_lock(&xe->mem_access.vram_userfault.lock); 604 if (!list_empty(&bo->vram_userfault_link)) 605 list_del_init(&bo->vram_userfault_link); 606 mutex_unlock(&xe->mem_access.vram_userfault.lock); 607 } 608 609 return 0; 610 } 611 612 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 613 struct ttm_operation_ctx *ctx, 614 struct ttm_resource *new_mem, 615 struct ttm_place *hop) 616 { 617 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 618 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 619 struct ttm_resource *old_mem = ttm_bo->resource; 620 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 621 struct ttm_tt *ttm = ttm_bo->ttm; 622 struct xe_migrate *migrate = NULL; 623 struct dma_fence *fence; 624 bool move_lacks_source; 625 bool tt_has_data; 626 bool needs_clear; 627 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 628 ttm && ttm_tt_is_populated(ttm)) ? true : false; 629 int ret = 0; 630 /* Bo creation path, moving to system or TT. */ 631 if ((!old_mem && ttm) && !handle_system_ccs) { 632 ttm_bo_move_null(ttm_bo, new_mem); 633 return 0; 634 } 635 636 if (ttm_bo->type == ttm_bo_type_sg) { 637 ret = xe_bo_move_notify(bo, ctx); 638 if (!ret) 639 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 640 goto out; 641 } 642 643 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 644 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 645 646 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 647 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 648 649 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 650 (!ttm && ttm_bo->type == ttm_bo_type_device); 651 652 if ((move_lacks_source && !needs_clear)) { 653 ttm_bo_move_null(ttm_bo, new_mem); 654 goto out; 655 } 656 657 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 658 ttm_bo_move_null(ttm_bo, new_mem); 659 goto out; 660 } 661 662 /* 663 * Failed multi-hop where the old_mem is still marked as 664 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 665 */ 666 if (old_mem_type == XE_PL_TT && 667 new_mem->mem_type == XE_PL_TT) { 668 ttm_bo_move_null(ttm_bo, new_mem); 669 goto out; 670 } 671 672 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 673 ret = xe_bo_move_notify(bo, ctx); 674 if (ret) 675 goto out; 676 } 677 678 if (old_mem_type == XE_PL_TT && 679 new_mem->mem_type == XE_PL_SYSTEM) { 680 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 681 DMA_RESV_USAGE_BOOKKEEP, 682 true, 683 MAX_SCHEDULE_TIMEOUT); 684 if (timeout < 0) { 685 ret = timeout; 686 goto out; 687 } 688 689 if (!handle_system_ccs) { 690 ttm_bo_move_null(ttm_bo, new_mem); 691 goto out; 692 } 693 } 694 695 if (!move_lacks_source && 696 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 697 (mem_type_is_vram(old_mem_type) && 698 new_mem->mem_type == XE_PL_SYSTEM))) { 699 hop->fpfn = 0; 700 hop->lpfn = 0; 701 hop->mem_type = XE_PL_TT; 702 hop->flags = TTM_PL_FLAG_TEMPORARY; 703 ret = -EMULTIHOP; 704 goto out; 705 } 706 707 if (bo->tile) 708 migrate = bo->tile->migrate; 709 else if (resource_is_vram(new_mem)) 710 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 711 else if (mem_type_is_vram(old_mem_type)) 712 migrate = mem_type_to_migrate(xe, old_mem_type); 713 else 714 migrate = xe->tiles[0].migrate; 715 716 xe_assert(xe, migrate); 717 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 718 xe_device_mem_access_get(xe); 719 720 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 721 /* 722 * Kernel memory that is pinned should only be moved on suspend 723 * / resume, some of the pinned memory is required for the 724 * device to resume / use the GPU to move other evicted memory 725 * (user memory) around. This likely could be optimized a bit 726 * futher where we find the minimum set of pinned memory 727 * required for resume but for simplity doing a memcpy for all 728 * pinned memory. 729 */ 730 ret = xe_bo_vmap(bo); 731 if (!ret) { 732 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 733 734 /* Create a new VMAP once kernel BO back in VRAM */ 735 if (!ret && resource_is_vram(new_mem)) { 736 struct xe_mem_region *vram = res_to_mem_region(new_mem); 737 void __iomem *new_addr = vram->mapping + 738 (new_mem->start << PAGE_SHIFT); 739 740 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 741 ret = -EINVAL; 742 xe_device_mem_access_put(xe); 743 goto out; 744 } 745 746 xe_assert(xe, new_mem->start == 747 bo->placements->fpfn); 748 749 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 750 } 751 } 752 } else { 753 if (move_lacks_source) 754 fence = xe_migrate_clear(migrate, bo, new_mem); 755 else 756 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 757 new_mem, handle_system_ccs); 758 if (IS_ERR(fence)) { 759 ret = PTR_ERR(fence); 760 xe_device_mem_access_put(xe); 761 goto out; 762 } 763 if (!move_lacks_source) { 764 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 765 true, new_mem); 766 if (ret) { 767 dma_fence_wait(fence, false); 768 ttm_bo_move_null(ttm_bo, new_mem); 769 ret = 0; 770 } 771 } else { 772 /* 773 * ttm_bo_move_accel_cleanup() may blow up if 774 * bo->resource == NULL, so just attach the 775 * fence and set the new resource. 776 */ 777 dma_resv_add_fence(ttm_bo->base.resv, fence, 778 DMA_RESV_USAGE_KERNEL); 779 ttm_bo_move_null(ttm_bo, new_mem); 780 } 781 782 dma_fence_put(fence); 783 } 784 785 xe_device_mem_access_put(xe); 786 787 out: 788 return ret; 789 790 } 791 792 /** 793 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 794 * @bo: The buffer object to move. 795 * 796 * On successful completion, the object memory will be moved to sytem memory. 797 * This function blocks until the object has been fully moved. 798 * 799 * This is needed to for special handling of pinned VRAM object during 800 * suspend-resume. 801 * 802 * Return: 0 on success. Negative error code on failure. 803 */ 804 int xe_bo_evict_pinned(struct xe_bo *bo) 805 { 806 struct ttm_place place = { 807 .mem_type = XE_PL_TT, 808 }; 809 struct ttm_placement placement = { 810 .placement = &place, 811 .num_placement = 1, 812 }; 813 struct ttm_operation_ctx ctx = { 814 .interruptible = false, 815 }; 816 struct ttm_resource *new_mem; 817 int ret; 818 819 xe_bo_assert_held(bo); 820 821 if (WARN_ON(!bo->ttm.resource)) 822 return -EINVAL; 823 824 if (WARN_ON(!xe_bo_is_pinned(bo))) 825 return -EINVAL; 826 827 if (WARN_ON(!xe_bo_is_vram(bo))) 828 return -EINVAL; 829 830 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 831 if (ret) 832 return ret; 833 834 if (!bo->ttm.ttm) { 835 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 836 if (!bo->ttm.ttm) { 837 ret = -ENOMEM; 838 goto err_res_free; 839 } 840 } 841 842 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 843 if (ret) 844 goto err_res_free; 845 846 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 847 if (ret) 848 goto err_res_free; 849 850 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 851 if (ret) 852 goto err_res_free; 853 854 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 855 false, MAX_SCHEDULE_TIMEOUT); 856 857 return 0; 858 859 err_res_free: 860 ttm_resource_free(&bo->ttm, &new_mem); 861 return ret; 862 } 863 864 /** 865 * xe_bo_restore_pinned() - Restore a pinned VRAM object 866 * @bo: The buffer object to move. 867 * 868 * On successful completion, the object memory will be moved back to VRAM. 869 * This function blocks until the object has been fully moved. 870 * 871 * This is needed to for special handling of pinned VRAM object during 872 * suspend-resume. 873 * 874 * Return: 0 on success. Negative error code on failure. 875 */ 876 int xe_bo_restore_pinned(struct xe_bo *bo) 877 { 878 struct ttm_operation_ctx ctx = { 879 .interruptible = false, 880 }; 881 struct ttm_resource *new_mem; 882 int ret; 883 884 xe_bo_assert_held(bo); 885 886 if (WARN_ON(!bo->ttm.resource)) 887 return -EINVAL; 888 889 if (WARN_ON(!xe_bo_is_pinned(bo))) 890 return -EINVAL; 891 892 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 893 return -EINVAL; 894 895 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 896 if (ret) 897 return ret; 898 899 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 900 if (ret) 901 goto err_res_free; 902 903 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 904 if (ret) 905 goto err_res_free; 906 907 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 908 if (ret) 909 goto err_res_free; 910 911 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 912 false, MAX_SCHEDULE_TIMEOUT); 913 914 return 0; 915 916 err_res_free: 917 ttm_resource_free(&bo->ttm, &new_mem); 918 return ret; 919 } 920 921 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 922 unsigned long page_offset) 923 { 924 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 925 struct xe_res_cursor cursor; 926 struct xe_mem_region *vram; 927 928 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 929 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 930 931 vram = res_to_mem_region(ttm_bo->resource); 932 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 933 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 934 } 935 936 static void __xe_bo_vunmap(struct xe_bo *bo); 937 938 /* 939 * TODO: Move this function to TTM so we don't rely on how TTM does its 940 * locking, thereby abusing TTM internals. 941 */ 942 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 943 { 944 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 945 bool locked; 946 947 xe_assert(xe, !kref_read(&ttm_bo->kref)); 948 949 /* 950 * We can typically only race with TTM trylocking under the 951 * lru_lock, which will immediately be unlocked again since 952 * the ttm_bo refcount is zero at this point. So trylocking *should* 953 * always succeed here, as long as we hold the lru lock. 954 */ 955 spin_lock(&ttm_bo->bdev->lru_lock); 956 locked = dma_resv_trylock(ttm_bo->base.resv); 957 spin_unlock(&ttm_bo->bdev->lru_lock); 958 xe_assert(xe, locked); 959 960 return locked; 961 } 962 963 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 964 { 965 struct dma_resv_iter cursor; 966 struct dma_fence *fence; 967 struct dma_fence *replacement = NULL; 968 struct xe_bo *bo; 969 970 if (!xe_bo_is_xe_bo(ttm_bo)) 971 return; 972 973 bo = ttm_to_xe_bo(ttm_bo); 974 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 975 976 /* 977 * Corner case where TTM fails to allocate memory and this BOs resv 978 * still points the VMs resv 979 */ 980 if (ttm_bo->base.resv != &ttm_bo->base._resv) 981 return; 982 983 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 984 return; 985 986 /* 987 * Scrub the preempt fences if any. The unbind fence is already 988 * attached to the resv. 989 * TODO: Don't do this for external bos once we scrub them after 990 * unbind. 991 */ 992 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 993 DMA_RESV_USAGE_BOOKKEEP, fence) { 994 if (xe_fence_is_xe_preempt(fence) && 995 !dma_fence_is_signaled(fence)) { 996 if (!replacement) 997 replacement = dma_fence_get_stub(); 998 999 dma_resv_replace_fences(ttm_bo->base.resv, 1000 fence->context, 1001 replacement, 1002 DMA_RESV_USAGE_BOOKKEEP); 1003 } 1004 } 1005 dma_fence_put(replacement); 1006 1007 dma_resv_unlock(ttm_bo->base.resv); 1008 } 1009 1010 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1011 { 1012 if (!xe_bo_is_xe_bo(ttm_bo)) 1013 return; 1014 1015 /* 1016 * Object is idle and about to be destroyed. Release the 1017 * dma-buf attachment. 1018 */ 1019 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1020 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1021 struct xe_ttm_tt, ttm); 1022 1023 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1024 DMA_BIDIRECTIONAL); 1025 ttm_bo->sg = NULL; 1026 xe_tt->sg = NULL; 1027 } 1028 } 1029 1030 const struct ttm_device_funcs xe_ttm_funcs = { 1031 .ttm_tt_create = xe_ttm_tt_create, 1032 .ttm_tt_populate = xe_ttm_tt_populate, 1033 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1034 .ttm_tt_destroy = xe_ttm_tt_destroy, 1035 .evict_flags = xe_evict_flags, 1036 .move = xe_bo_move, 1037 .io_mem_reserve = xe_ttm_io_mem_reserve, 1038 .io_mem_pfn = xe_ttm_io_mem_pfn, 1039 .release_notify = xe_ttm_bo_release_notify, 1040 .eviction_valuable = ttm_bo_eviction_valuable, 1041 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1042 }; 1043 1044 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1045 { 1046 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1047 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1048 1049 if (bo->ttm.base.import_attach) 1050 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1051 drm_gem_object_release(&bo->ttm.base); 1052 1053 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1054 1055 if (bo->ggtt_node.size) 1056 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1057 1058 #ifdef CONFIG_PROC_FS 1059 if (bo->client) 1060 xe_drm_client_remove_bo(bo); 1061 #endif 1062 1063 if (bo->vm && xe_bo_is_user(bo)) 1064 xe_vm_put(bo->vm); 1065 1066 mutex_lock(&xe->mem_access.vram_userfault.lock); 1067 if (!list_empty(&bo->vram_userfault_link)) 1068 list_del(&bo->vram_userfault_link); 1069 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1070 1071 kfree(bo); 1072 } 1073 1074 static void xe_gem_object_free(struct drm_gem_object *obj) 1075 { 1076 /* Our BO reference counting scheme works as follows: 1077 * 1078 * The gem object kref is typically used throughout the driver, 1079 * and the gem object holds a ttm_buffer_object refcount, so 1080 * that when the last gem object reference is put, which is when 1081 * we end up in this function, we put also that ttm_buffer_object 1082 * refcount. Anything using gem interfaces is then no longer 1083 * allowed to access the object in a way that requires a gem 1084 * refcount, including locking the object. 1085 * 1086 * driver ttm callbacks is allowed to use the ttm_buffer_object 1087 * refcount directly if needed. 1088 */ 1089 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1090 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1091 } 1092 1093 static void xe_gem_object_close(struct drm_gem_object *obj, 1094 struct drm_file *file_priv) 1095 { 1096 struct xe_bo *bo = gem_to_xe_bo(obj); 1097 1098 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1099 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1100 1101 xe_bo_lock(bo, false); 1102 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1103 xe_bo_unlock(bo); 1104 } 1105 } 1106 1107 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1108 { 1109 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1110 struct drm_device *ddev = tbo->base.dev; 1111 struct xe_device *xe = to_xe_device(ddev); 1112 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1113 bool needs_rpm = bo->flags & XE_BO_CREATE_VRAM_MASK; 1114 vm_fault_t ret; 1115 int idx; 1116 1117 if (needs_rpm) 1118 xe_device_mem_access_get(xe); 1119 1120 ret = ttm_bo_vm_reserve(tbo, vmf); 1121 if (ret) 1122 goto out; 1123 1124 if (drm_dev_enter(ddev, &idx)) { 1125 trace_xe_bo_cpu_fault(bo); 1126 1127 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1128 TTM_BO_VM_NUM_PREFAULT); 1129 drm_dev_exit(idx); 1130 } else { 1131 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1132 } 1133 1134 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1135 goto out; 1136 /* 1137 * ttm_bo_vm_reserve() already has dma_resv_lock. 1138 */ 1139 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1140 mutex_lock(&xe->mem_access.vram_userfault.lock); 1141 if (list_empty(&bo->vram_userfault_link)) 1142 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1143 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1144 } 1145 1146 dma_resv_unlock(tbo->base.resv); 1147 out: 1148 if (needs_rpm) 1149 xe_device_mem_access_put(xe); 1150 1151 return ret; 1152 } 1153 1154 static const struct vm_operations_struct xe_gem_vm_ops = { 1155 .fault = xe_gem_fault, 1156 .open = ttm_bo_vm_open, 1157 .close = ttm_bo_vm_close, 1158 .access = ttm_bo_vm_access 1159 }; 1160 1161 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1162 .free = xe_gem_object_free, 1163 .close = xe_gem_object_close, 1164 .mmap = drm_gem_ttm_mmap, 1165 .export = xe_gem_prime_export, 1166 .vm_ops = &xe_gem_vm_ops, 1167 }; 1168 1169 /** 1170 * xe_bo_alloc - Allocate storage for a struct xe_bo 1171 * 1172 * This funcition is intended to allocate storage to be used for input 1173 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1174 * created is needed before the call to __xe_bo_create_locked(). 1175 * If __xe_bo_create_locked ends up never to be called, then the 1176 * storage allocated with this function needs to be freed using 1177 * xe_bo_free(). 1178 * 1179 * Return: A pointer to an uninitialized struct xe_bo on success, 1180 * ERR_PTR(-ENOMEM) on error. 1181 */ 1182 struct xe_bo *xe_bo_alloc(void) 1183 { 1184 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1185 1186 if (!bo) 1187 return ERR_PTR(-ENOMEM); 1188 1189 return bo; 1190 } 1191 1192 /** 1193 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1194 * @bo: The buffer object storage. 1195 * 1196 * Refer to xe_bo_alloc() documentation for valid use-cases. 1197 */ 1198 void xe_bo_free(struct xe_bo *bo) 1199 { 1200 kfree(bo); 1201 } 1202 1203 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1204 struct xe_tile *tile, struct dma_resv *resv, 1205 struct ttm_lru_bulk_move *bulk, size_t size, 1206 u16 cpu_caching, enum ttm_bo_type type, 1207 u32 flags) 1208 { 1209 struct ttm_operation_ctx ctx = { 1210 .interruptible = true, 1211 .no_wait_gpu = false, 1212 }; 1213 struct ttm_placement *placement; 1214 uint32_t alignment; 1215 size_t aligned_size; 1216 int err; 1217 1218 /* Only kernel objects should set GT */ 1219 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1220 1221 if (XE_WARN_ON(!size)) { 1222 xe_bo_free(bo); 1223 return ERR_PTR(-EINVAL); 1224 } 1225 1226 if (flags & (XE_BO_CREATE_VRAM_MASK | XE_BO_CREATE_STOLEN_BIT) && 1227 !(flags & XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT) && 1228 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) { 1229 aligned_size = ALIGN(size, SZ_64K); 1230 if (type != ttm_bo_type_device) 1231 size = ALIGN(size, SZ_64K); 1232 flags |= XE_BO_INTERNAL_64K; 1233 alignment = SZ_64K >> PAGE_SHIFT; 1234 1235 } else { 1236 aligned_size = ALIGN(size, SZ_4K); 1237 flags &= ~XE_BO_INTERNAL_64K; 1238 alignment = SZ_4K >> PAGE_SHIFT; 1239 } 1240 1241 if (type == ttm_bo_type_device && aligned_size != size) 1242 return ERR_PTR(-EINVAL); 1243 1244 if (!bo) { 1245 bo = xe_bo_alloc(); 1246 if (IS_ERR(bo)) 1247 return bo; 1248 } 1249 1250 bo->ccs_cleared = false; 1251 bo->tile = tile; 1252 bo->size = size; 1253 bo->flags = flags; 1254 bo->cpu_caching = cpu_caching; 1255 bo->ttm.base.funcs = &xe_gem_object_funcs; 1256 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1257 INIT_LIST_HEAD(&bo->pinned_link); 1258 #ifdef CONFIG_PROC_FS 1259 INIT_LIST_HEAD(&bo->client_link); 1260 #endif 1261 INIT_LIST_HEAD(&bo->vram_userfault_link); 1262 1263 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1264 1265 if (resv) { 1266 ctx.allow_res_evict = !(flags & XE_BO_CREATE_NO_RESV_EVICT); 1267 ctx.resv = resv; 1268 } 1269 1270 if (!(flags & XE_BO_FIXED_PLACEMENT_BIT)) { 1271 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1272 if (WARN_ON(err)) { 1273 xe_ttm_bo_destroy(&bo->ttm); 1274 return ERR_PTR(err); 1275 } 1276 } 1277 1278 /* Defer populating type_sg bos */ 1279 placement = (type == ttm_bo_type_sg || 1280 bo->flags & XE_BO_DEFER_BACKING) ? &sys_placement : 1281 &bo->placement; 1282 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1283 placement, alignment, 1284 &ctx, NULL, resv, xe_ttm_bo_destroy); 1285 if (err) 1286 return ERR_PTR(err); 1287 1288 /* 1289 * The VRAM pages underneath are potentially still being accessed by the 1290 * GPU, as per async GPU clearing and async evictions. However TTM makes 1291 * sure to add any corresponding move/clear fences into the objects 1292 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1293 * 1294 * For KMD internal buffers we don't care about GPU clearing, however we 1295 * still need to handle async evictions, where the VRAM is still being 1296 * accessed by the GPU. Most internal callers are not expecting this, 1297 * since they are missing the required synchronisation before accessing 1298 * the memory. To keep things simple just sync wait any kernel fences 1299 * here, if the buffer is designated KMD internal. 1300 * 1301 * For normal userspace objects we should already have the required 1302 * pipelining or sync waiting elsewhere, since we already have to deal 1303 * with things like async GPU clearing. 1304 */ 1305 if (type == ttm_bo_type_kernel) { 1306 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1307 DMA_RESV_USAGE_KERNEL, 1308 ctx.interruptible, 1309 MAX_SCHEDULE_TIMEOUT); 1310 1311 if (timeout < 0) { 1312 if (!resv) 1313 dma_resv_unlock(bo->ttm.base.resv); 1314 xe_bo_put(bo); 1315 return ERR_PTR(timeout); 1316 } 1317 } 1318 1319 bo->created = true; 1320 if (bulk) 1321 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1322 else 1323 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1324 1325 return bo; 1326 } 1327 1328 static int __xe_bo_fixed_placement(struct xe_device *xe, 1329 struct xe_bo *bo, 1330 u32 flags, 1331 u64 start, u64 end, u64 size) 1332 { 1333 struct ttm_place *place = bo->placements; 1334 1335 if (flags & (XE_BO_CREATE_USER_BIT|XE_BO_CREATE_SYSTEM_BIT)) 1336 return -EINVAL; 1337 1338 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1339 place->fpfn = start >> PAGE_SHIFT; 1340 place->lpfn = end >> PAGE_SHIFT; 1341 1342 switch (flags & (XE_BO_CREATE_STOLEN_BIT | XE_BO_CREATE_VRAM_MASK)) { 1343 case XE_BO_CREATE_VRAM0_BIT: 1344 place->mem_type = XE_PL_VRAM0; 1345 break; 1346 case XE_BO_CREATE_VRAM1_BIT: 1347 place->mem_type = XE_PL_VRAM1; 1348 break; 1349 case XE_BO_CREATE_STOLEN_BIT: 1350 place->mem_type = XE_PL_STOLEN; 1351 break; 1352 1353 default: 1354 /* 0 or multiple of the above set */ 1355 return -EINVAL; 1356 } 1357 1358 bo->placement = (struct ttm_placement) { 1359 .num_placement = 1, 1360 .placement = place, 1361 }; 1362 1363 return 0; 1364 } 1365 1366 static struct xe_bo * 1367 __xe_bo_create_locked(struct xe_device *xe, 1368 struct xe_tile *tile, struct xe_vm *vm, 1369 size_t size, u64 start, u64 end, 1370 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1371 { 1372 struct xe_bo *bo = NULL; 1373 int err; 1374 1375 if (vm) 1376 xe_vm_assert_held(vm); 1377 1378 if (start || end != ~0ULL) { 1379 bo = xe_bo_alloc(); 1380 if (IS_ERR(bo)) 1381 return bo; 1382 1383 flags |= XE_BO_FIXED_PLACEMENT_BIT; 1384 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1385 if (err) { 1386 xe_bo_free(bo); 1387 return ERR_PTR(err); 1388 } 1389 } 1390 1391 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1392 vm && !xe_vm_in_fault_mode(vm) && 1393 flags & XE_BO_CREATE_USER_BIT ? 1394 &vm->lru_bulk_move : NULL, size, 1395 cpu_caching, type, flags); 1396 if (IS_ERR(bo)) 1397 return bo; 1398 1399 /* 1400 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1401 * to ensure the shared resv doesn't disappear under the bo, the bo 1402 * will keep a reference to the vm, and avoid circular references 1403 * by having all the vm's bo refereferences released at vm close 1404 * time. 1405 */ 1406 if (vm && xe_bo_is_user(bo)) 1407 xe_vm_get(vm); 1408 bo->vm = vm; 1409 1410 if (bo->flags & XE_BO_CREATE_GGTT_BIT) { 1411 if (!tile && flags & XE_BO_CREATE_STOLEN_BIT) 1412 tile = xe_device_get_root_tile(xe); 1413 1414 xe_assert(xe, tile); 1415 1416 if (flags & XE_BO_FIXED_PLACEMENT_BIT) { 1417 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1418 start + bo->size, U64_MAX); 1419 } else { 1420 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1421 } 1422 if (err) 1423 goto err_unlock_put_bo; 1424 } 1425 1426 return bo; 1427 1428 err_unlock_put_bo: 1429 __xe_bo_unset_bulk_move(bo); 1430 xe_bo_unlock_vm_held(bo); 1431 xe_bo_put(bo); 1432 return ERR_PTR(err); 1433 } 1434 1435 struct xe_bo * 1436 xe_bo_create_locked_range(struct xe_device *xe, 1437 struct xe_tile *tile, struct xe_vm *vm, 1438 size_t size, u64 start, u64 end, 1439 enum ttm_bo_type type, u32 flags) 1440 { 1441 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1442 } 1443 1444 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1445 struct xe_vm *vm, size_t size, 1446 enum ttm_bo_type type, u32 flags) 1447 { 1448 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1449 } 1450 1451 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1452 struct xe_vm *vm, size_t size, 1453 u16 cpu_caching, 1454 enum ttm_bo_type type, 1455 u32 flags) 1456 { 1457 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1458 cpu_caching, type, 1459 flags | XE_BO_CREATE_USER_BIT); 1460 if (!IS_ERR(bo)) 1461 xe_bo_unlock_vm_held(bo); 1462 1463 return bo; 1464 } 1465 1466 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1467 struct xe_vm *vm, size_t size, 1468 enum ttm_bo_type type, u32 flags) 1469 { 1470 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1471 1472 if (!IS_ERR(bo)) 1473 xe_bo_unlock_vm_held(bo); 1474 1475 return bo; 1476 } 1477 1478 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1479 struct xe_vm *vm, 1480 size_t size, u64 offset, 1481 enum ttm_bo_type type, u32 flags) 1482 { 1483 struct xe_bo *bo; 1484 int err; 1485 u64 start = offset == ~0ull ? 0 : offset; 1486 u64 end = offset == ~0ull ? offset : start + size; 1487 1488 if (flags & XE_BO_CREATE_STOLEN_BIT && 1489 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1490 flags |= XE_BO_CREATE_GGTT_BIT; 1491 1492 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1493 flags | XE_BO_NEEDS_CPU_ACCESS); 1494 if (IS_ERR(bo)) 1495 return bo; 1496 1497 err = xe_bo_pin(bo); 1498 if (err) 1499 goto err_put; 1500 1501 err = xe_bo_vmap(bo); 1502 if (err) 1503 goto err_unpin; 1504 1505 xe_bo_unlock_vm_held(bo); 1506 1507 return bo; 1508 1509 err_unpin: 1510 xe_bo_unpin(bo); 1511 err_put: 1512 xe_bo_unlock_vm_held(bo); 1513 xe_bo_put(bo); 1514 return ERR_PTR(err); 1515 } 1516 1517 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1518 struct xe_vm *vm, size_t size, 1519 enum ttm_bo_type type, u32 flags) 1520 { 1521 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1522 } 1523 1524 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1525 const void *data, size_t size, 1526 enum ttm_bo_type type, u32 flags) 1527 { 1528 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1529 ALIGN(size, PAGE_SIZE), 1530 type, flags); 1531 if (IS_ERR(bo)) 1532 return bo; 1533 1534 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1535 1536 return bo; 1537 } 1538 1539 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1540 { 1541 xe_bo_unpin_map_no_vm(arg); 1542 } 1543 1544 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1545 size_t size, u32 flags) 1546 { 1547 struct xe_bo *bo; 1548 int ret; 1549 1550 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1551 if (IS_ERR(bo)) 1552 return bo; 1553 1554 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1555 if (ret) 1556 return ERR_PTR(ret); 1557 1558 return bo; 1559 } 1560 1561 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1562 const void *data, size_t size, u32 flags) 1563 { 1564 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1565 1566 if (IS_ERR(bo)) 1567 return bo; 1568 1569 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1570 1571 return bo; 1572 } 1573 1574 /** 1575 * xe_managed_bo_reinit_in_vram 1576 * @xe: xe device 1577 * @tile: Tile where the new buffer will be created 1578 * @src: Managed buffer object allocated in system memory 1579 * 1580 * Replace a managed src buffer object allocated in system memory with a new 1581 * one allocated in vram, copying the data between them. 1582 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1583 * is responsible for making sure that any old references to it are updated. 1584 * 1585 * Returns 0 for success, negative error code otherwise. 1586 */ 1587 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1588 { 1589 struct xe_bo *bo; 1590 1591 xe_assert(xe, IS_DGFX(xe)); 1592 xe_assert(xe, !(*src)->vmap.is_iomem); 1593 1594 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, (*src)->size, 1595 XE_BO_CREATE_VRAM_IF_DGFX(tile) | 1596 XE_BO_CREATE_GGTT_BIT); 1597 if (IS_ERR(bo)) 1598 return PTR_ERR(bo); 1599 1600 drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); 1601 *src = bo; 1602 1603 return 0; 1604 } 1605 1606 /* 1607 * XXX: This is in the VM bind data path, likely should calculate this once and 1608 * store, with a recalculation if the BO is moved. 1609 */ 1610 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1611 { 1612 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1613 1614 if (res->mem_type == XE_PL_STOLEN) 1615 return xe_ttm_stolen_gpu_offset(xe); 1616 1617 return res_to_mem_region(res)->dpa_base; 1618 } 1619 1620 /** 1621 * xe_bo_pin_external - pin an external BO 1622 * @bo: buffer object to be pinned 1623 * 1624 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1625 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1626 * asserts and code to ensure evict / restore on suspend / resume. 1627 * 1628 * Returns 0 for success, negative error code otherwise. 1629 */ 1630 int xe_bo_pin_external(struct xe_bo *bo) 1631 { 1632 struct xe_device *xe = xe_bo_device(bo); 1633 int err; 1634 1635 xe_assert(xe, !bo->vm); 1636 xe_assert(xe, xe_bo_is_user(bo)); 1637 1638 if (!xe_bo_is_pinned(bo)) { 1639 err = xe_bo_validate(bo, NULL, false); 1640 if (err) 1641 return err; 1642 1643 if (xe_bo_is_vram(bo)) { 1644 spin_lock(&xe->pinned.lock); 1645 list_add_tail(&bo->pinned_link, 1646 &xe->pinned.external_vram); 1647 spin_unlock(&xe->pinned.lock); 1648 } 1649 } 1650 1651 ttm_bo_pin(&bo->ttm); 1652 1653 /* 1654 * FIXME: If we always use the reserve / unreserve functions for locking 1655 * we do not need this. 1656 */ 1657 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1658 1659 return 0; 1660 } 1661 1662 int xe_bo_pin(struct xe_bo *bo) 1663 { 1664 struct xe_device *xe = xe_bo_device(bo); 1665 int err; 1666 1667 /* We currently don't expect user BO to be pinned */ 1668 xe_assert(xe, !xe_bo_is_user(bo)); 1669 1670 /* Pinned object must be in GGTT or have pinned flag */ 1671 xe_assert(xe, bo->flags & (XE_BO_CREATE_PINNED_BIT | 1672 XE_BO_CREATE_GGTT_BIT)); 1673 1674 /* 1675 * No reason we can't support pinning imported dma-bufs we just don't 1676 * expect to pin an imported dma-buf. 1677 */ 1678 xe_assert(xe, !bo->ttm.base.import_attach); 1679 1680 /* We only expect at most 1 pin */ 1681 xe_assert(xe, !xe_bo_is_pinned(bo)); 1682 1683 err = xe_bo_validate(bo, NULL, false); 1684 if (err) 1685 return err; 1686 1687 /* 1688 * For pinned objects in on DGFX, which are also in vram, we expect 1689 * these to be in contiguous VRAM memory. Required eviction / restore 1690 * during suspend / resume (force restore to same physical address). 1691 */ 1692 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1693 bo->flags & XE_BO_INTERNAL_TEST)) { 1694 struct ttm_place *place = &(bo->placements[0]); 1695 1696 if (mem_type_is_vram(place->mem_type)) { 1697 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1698 1699 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1700 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1701 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1702 1703 spin_lock(&xe->pinned.lock); 1704 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1705 spin_unlock(&xe->pinned.lock); 1706 } 1707 } 1708 1709 ttm_bo_pin(&bo->ttm); 1710 1711 /* 1712 * FIXME: If we always use the reserve / unreserve functions for locking 1713 * we do not need this. 1714 */ 1715 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1716 1717 return 0; 1718 } 1719 1720 /** 1721 * xe_bo_unpin_external - unpin an external BO 1722 * @bo: buffer object to be unpinned 1723 * 1724 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1725 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1726 * asserts and code to ensure evict / restore on suspend / resume. 1727 * 1728 * Returns 0 for success, negative error code otherwise. 1729 */ 1730 void xe_bo_unpin_external(struct xe_bo *bo) 1731 { 1732 struct xe_device *xe = xe_bo_device(bo); 1733 1734 xe_assert(xe, !bo->vm); 1735 xe_assert(xe, xe_bo_is_pinned(bo)); 1736 xe_assert(xe, xe_bo_is_user(bo)); 1737 1738 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { 1739 spin_lock(&xe->pinned.lock); 1740 list_del_init(&bo->pinned_link); 1741 spin_unlock(&xe->pinned.lock); 1742 } 1743 1744 ttm_bo_unpin(&bo->ttm); 1745 1746 /* 1747 * FIXME: If we always use the reserve / unreserve functions for locking 1748 * we do not need this. 1749 */ 1750 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1751 } 1752 1753 void xe_bo_unpin(struct xe_bo *bo) 1754 { 1755 struct xe_device *xe = xe_bo_device(bo); 1756 1757 xe_assert(xe, !bo->ttm.base.import_attach); 1758 xe_assert(xe, xe_bo_is_pinned(bo)); 1759 1760 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1761 bo->flags & XE_BO_INTERNAL_TEST)) { 1762 struct ttm_place *place = &(bo->placements[0]); 1763 1764 if (mem_type_is_vram(place->mem_type)) { 1765 xe_assert(xe, !list_empty(&bo->pinned_link)); 1766 1767 spin_lock(&xe->pinned.lock); 1768 list_del_init(&bo->pinned_link); 1769 spin_unlock(&xe->pinned.lock); 1770 } 1771 } 1772 1773 ttm_bo_unpin(&bo->ttm); 1774 } 1775 1776 /** 1777 * xe_bo_validate() - Make sure the bo is in an allowed placement 1778 * @bo: The bo, 1779 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1780 * NULL. Used together with @allow_res_evict. 1781 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1782 * reservation object. 1783 * 1784 * Make sure the bo is in allowed placement, migrating it if necessary. If 1785 * needed, other bos will be evicted. If bos selected for eviction shares 1786 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1787 * set to true, otherwise they will be bypassed. 1788 * 1789 * Return: 0 on success, negative error code on failure. May return 1790 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1791 */ 1792 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1793 { 1794 struct ttm_operation_ctx ctx = { 1795 .interruptible = true, 1796 .no_wait_gpu = false, 1797 }; 1798 1799 if (vm) { 1800 lockdep_assert_held(&vm->lock); 1801 xe_vm_assert_held(vm); 1802 1803 ctx.allow_res_evict = allow_res_evict; 1804 ctx.resv = xe_vm_resv(vm); 1805 } 1806 1807 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1808 } 1809 1810 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1811 { 1812 if (bo->destroy == &xe_ttm_bo_destroy) 1813 return true; 1814 1815 return false; 1816 } 1817 1818 /* 1819 * Resolve a BO address. There is no assert to check if the proper lock is held 1820 * so it should only be used in cases where it is not fatal to get the wrong 1821 * address, such as printing debug information, but not in cases where memory is 1822 * written based on this result. 1823 */ 1824 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1825 { 1826 struct xe_device *xe = xe_bo_device(bo); 1827 struct xe_res_cursor cur; 1828 u64 page; 1829 1830 xe_assert(xe, page_size <= PAGE_SIZE); 1831 page = offset >> PAGE_SHIFT; 1832 offset &= (PAGE_SIZE - 1); 1833 1834 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1835 xe_assert(xe, bo->ttm.ttm); 1836 1837 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1838 page_size, &cur); 1839 return xe_res_dma(&cur) + offset; 1840 } else { 1841 struct xe_res_cursor cur; 1842 1843 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1844 page_size, &cur); 1845 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1846 } 1847 } 1848 1849 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1850 { 1851 if (!READ_ONCE(bo->ttm.pin_count)) 1852 xe_bo_assert_held(bo); 1853 return __xe_bo_addr(bo, offset, page_size); 1854 } 1855 1856 int xe_bo_vmap(struct xe_bo *bo) 1857 { 1858 void *virtual; 1859 bool is_iomem; 1860 int ret; 1861 1862 xe_bo_assert_held(bo); 1863 1864 if (!(bo->flags & XE_BO_NEEDS_CPU_ACCESS)) 1865 return -EINVAL; 1866 1867 if (!iosys_map_is_null(&bo->vmap)) 1868 return 0; 1869 1870 /* 1871 * We use this more or less deprecated interface for now since 1872 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1873 * single page bos, which is done here. 1874 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1875 * to use struct iosys_map. 1876 */ 1877 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1878 if (ret) 1879 return ret; 1880 1881 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1882 if (is_iomem) 1883 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1884 else 1885 iosys_map_set_vaddr(&bo->vmap, virtual); 1886 1887 return 0; 1888 } 1889 1890 static void __xe_bo_vunmap(struct xe_bo *bo) 1891 { 1892 if (!iosys_map_is_null(&bo->vmap)) { 1893 iosys_map_clear(&bo->vmap); 1894 ttm_bo_kunmap(&bo->kmap); 1895 } 1896 } 1897 1898 void xe_bo_vunmap(struct xe_bo *bo) 1899 { 1900 xe_bo_assert_held(bo); 1901 __xe_bo_vunmap(bo); 1902 } 1903 1904 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1905 struct drm_file *file) 1906 { 1907 struct xe_device *xe = to_xe_device(dev); 1908 struct xe_file *xef = to_xe_file(file); 1909 struct drm_xe_gem_create *args = data; 1910 struct xe_vm *vm = NULL; 1911 struct xe_bo *bo; 1912 unsigned int bo_flags; 1913 u32 handle; 1914 int err; 1915 1916 if (XE_IOCTL_DBG(xe, args->extensions) || 1917 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1918 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1919 return -EINVAL; 1920 1921 /* at least one valid memory placement must be specified */ 1922 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1923 !args->placement)) 1924 return -EINVAL; 1925 1926 if (XE_IOCTL_DBG(xe, args->flags & 1927 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1928 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1929 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1930 return -EINVAL; 1931 1932 if (XE_IOCTL_DBG(xe, args->handle)) 1933 return -EINVAL; 1934 1935 if (XE_IOCTL_DBG(xe, !args->size)) 1936 return -EINVAL; 1937 1938 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1939 return -EINVAL; 1940 1941 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1942 return -EINVAL; 1943 1944 bo_flags = 0; 1945 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1946 bo_flags |= XE_BO_DEFER_BACKING; 1947 1948 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1949 bo_flags |= XE_BO_SCANOUT_BIT; 1950 1951 bo_flags |= args->placement << (ffs(XE_BO_CREATE_SYSTEM_BIT) - 1); 1952 1953 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1954 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_CREATE_VRAM_MASK))) 1955 return -EINVAL; 1956 1957 bo_flags |= XE_BO_NEEDS_CPU_ACCESS; 1958 } 1959 1960 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1961 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1962 return -EINVAL; 1963 1964 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_CREATE_VRAM_MASK && 1965 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1966 return -EINVAL; 1967 1968 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_SCANOUT_BIT && 1969 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 1970 return -EINVAL; 1971 1972 if (args->vm_id) { 1973 vm = xe_vm_lookup(xef, args->vm_id); 1974 if (XE_IOCTL_DBG(xe, !vm)) 1975 return -ENOENT; 1976 err = xe_vm_lock(vm, true); 1977 if (err) 1978 goto out_vm; 1979 } 1980 1981 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 1982 ttm_bo_type_device, bo_flags); 1983 1984 if (vm) 1985 xe_vm_unlock(vm); 1986 1987 if (IS_ERR(bo)) { 1988 err = PTR_ERR(bo); 1989 goto out_vm; 1990 } 1991 1992 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 1993 if (err) 1994 goto out_bulk; 1995 1996 args->handle = handle; 1997 goto out_put; 1998 1999 out_bulk: 2000 if (vm && !xe_vm_in_fault_mode(vm)) { 2001 xe_vm_lock(vm, false); 2002 __xe_bo_unset_bulk_move(bo); 2003 xe_vm_unlock(vm); 2004 } 2005 out_put: 2006 xe_bo_put(bo); 2007 out_vm: 2008 if (vm) 2009 xe_vm_put(vm); 2010 2011 return err; 2012 } 2013 2014 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2015 struct drm_file *file) 2016 { 2017 struct xe_device *xe = to_xe_device(dev); 2018 struct drm_xe_gem_mmap_offset *args = data; 2019 struct drm_gem_object *gem_obj; 2020 2021 if (XE_IOCTL_DBG(xe, args->extensions) || 2022 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2023 return -EINVAL; 2024 2025 if (XE_IOCTL_DBG(xe, args->flags)) 2026 return -EINVAL; 2027 2028 gem_obj = drm_gem_object_lookup(file, args->handle); 2029 if (XE_IOCTL_DBG(xe, !gem_obj)) 2030 return -ENOENT; 2031 2032 /* The mmap offset was set up at BO allocation time. */ 2033 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2034 2035 xe_bo_put(gem_to_xe_bo(gem_obj)); 2036 return 0; 2037 } 2038 2039 /** 2040 * xe_bo_lock() - Lock the buffer object's dma_resv object 2041 * @bo: The struct xe_bo whose lock is to be taken 2042 * @intr: Whether to perform any wait interruptible 2043 * 2044 * Locks the buffer object's dma_resv object. If the buffer object is 2045 * pointing to a shared dma_resv object, that shared lock is locked. 2046 * 2047 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2048 * contended lock was interrupted. If @intr is set to false, the 2049 * function always returns 0. 2050 */ 2051 int xe_bo_lock(struct xe_bo *bo, bool intr) 2052 { 2053 if (intr) 2054 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2055 2056 dma_resv_lock(bo->ttm.base.resv, NULL); 2057 2058 return 0; 2059 } 2060 2061 /** 2062 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2063 * @bo: The struct xe_bo whose lock is to be released. 2064 * 2065 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2066 */ 2067 void xe_bo_unlock(struct xe_bo *bo) 2068 { 2069 dma_resv_unlock(bo->ttm.base.resv); 2070 } 2071 2072 /** 2073 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2074 * @bo: The buffer object to migrate 2075 * @mem_type: The TTM memory type intended to migrate to 2076 * 2077 * Check whether the buffer object supports migration to the 2078 * given memory type. Note that pinning may affect the ability to migrate as 2079 * returned by this function. 2080 * 2081 * This function is primarily intended as a helper for checking the 2082 * possibility to migrate buffer objects and can be called without 2083 * the object lock held. 2084 * 2085 * Return: true if migration is possible, false otherwise. 2086 */ 2087 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2088 { 2089 unsigned int cur_place; 2090 2091 if (bo->ttm.type == ttm_bo_type_kernel) 2092 return true; 2093 2094 if (bo->ttm.type == ttm_bo_type_sg) 2095 return false; 2096 2097 for (cur_place = 0; cur_place < bo->placement.num_placement; 2098 cur_place++) { 2099 if (bo->placements[cur_place].mem_type == mem_type) 2100 return true; 2101 } 2102 2103 return false; 2104 } 2105 2106 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2107 { 2108 memset(place, 0, sizeof(*place)); 2109 place->mem_type = mem_type; 2110 } 2111 2112 /** 2113 * xe_bo_migrate - Migrate an object to the desired region id 2114 * @bo: The buffer object to migrate. 2115 * @mem_type: The TTM region type to migrate to. 2116 * 2117 * Attempt to migrate the buffer object to the desired memory region. The 2118 * buffer object may not be pinned, and must be locked. 2119 * On successful completion, the object memory type will be updated, 2120 * but an async migration task may not have completed yet, and to 2121 * accomplish that, the object's kernel fences must be signaled with 2122 * the object lock held. 2123 * 2124 * Return: 0 on success. Negative error code on failure. In particular may 2125 * return -EINTR or -ERESTARTSYS if signal pending. 2126 */ 2127 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2128 { 2129 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2130 struct ttm_operation_ctx ctx = { 2131 .interruptible = true, 2132 .no_wait_gpu = false, 2133 }; 2134 struct ttm_placement placement; 2135 struct ttm_place requested; 2136 2137 xe_bo_assert_held(bo); 2138 2139 if (bo->ttm.resource->mem_type == mem_type) 2140 return 0; 2141 2142 if (xe_bo_is_pinned(bo)) 2143 return -EBUSY; 2144 2145 if (!xe_bo_can_migrate(bo, mem_type)) 2146 return -EINVAL; 2147 2148 xe_place_from_ttm_type(mem_type, &requested); 2149 placement.num_placement = 1; 2150 placement.placement = &requested; 2151 2152 /* 2153 * Stolen needs to be handled like below VRAM handling if we ever need 2154 * to support it. 2155 */ 2156 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2157 2158 if (mem_type_is_vram(mem_type)) { 2159 u32 c = 0; 2160 2161 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2162 } 2163 2164 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2165 } 2166 2167 /** 2168 * xe_bo_evict - Evict an object to evict placement 2169 * @bo: The buffer object to migrate. 2170 * @force_alloc: Set force_alloc in ttm_operation_ctx 2171 * 2172 * On successful completion, the object memory will be moved to evict 2173 * placement. Ths function blocks until the object has been fully moved. 2174 * 2175 * Return: 0 on success. Negative error code on failure. 2176 */ 2177 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2178 { 2179 struct ttm_operation_ctx ctx = { 2180 .interruptible = false, 2181 .no_wait_gpu = false, 2182 .force_alloc = force_alloc, 2183 }; 2184 struct ttm_placement placement; 2185 int ret; 2186 2187 xe_evict_flags(&bo->ttm, &placement); 2188 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2189 if (ret) 2190 return ret; 2191 2192 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2193 false, MAX_SCHEDULE_TIMEOUT); 2194 2195 return 0; 2196 } 2197 2198 /** 2199 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2200 * placed in system memory. 2201 * @bo: The xe_bo 2202 * 2203 * Return: true if extra pages need to be allocated, false otherwise. 2204 */ 2205 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2206 { 2207 struct xe_device *xe = xe_bo_device(bo); 2208 2209 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2210 return false; 2211 2212 /* On discrete GPUs, if the GPU can access this buffer from 2213 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2214 * can't be used since there's no CCS storage associated with 2215 * non-VRAM addresses. 2216 */ 2217 if (IS_DGFX(xe) && (bo->flags & XE_BO_CREATE_SYSTEM_BIT)) 2218 return false; 2219 2220 return true; 2221 } 2222 2223 /** 2224 * __xe_bo_release_dummy() - Dummy kref release function 2225 * @kref: The embedded struct kref. 2226 * 2227 * Dummy release function for xe_bo_put_deferred(). Keep off. 2228 */ 2229 void __xe_bo_release_dummy(struct kref *kref) 2230 { 2231 } 2232 2233 /** 2234 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2235 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2236 * 2237 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2238 * The @deferred list can be either an onstack local list or a global 2239 * shared list used by a workqueue. 2240 */ 2241 void xe_bo_put_commit(struct llist_head *deferred) 2242 { 2243 struct llist_node *freed; 2244 struct xe_bo *bo, *next; 2245 2246 if (!deferred) 2247 return; 2248 2249 freed = llist_del_all(deferred); 2250 if (!freed) 2251 return; 2252 2253 llist_for_each_entry_safe(bo, next, freed, freed) 2254 drm_gem_object_free(&bo->ttm.base.refcount); 2255 } 2256 2257 /** 2258 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2259 * @file_priv: ... 2260 * @dev: ... 2261 * @args: ... 2262 * 2263 * See dumb_create() hook in include/drm/drm_drv.h 2264 * 2265 * Return: ... 2266 */ 2267 int xe_bo_dumb_create(struct drm_file *file_priv, 2268 struct drm_device *dev, 2269 struct drm_mode_create_dumb *args) 2270 { 2271 struct xe_device *xe = to_xe_device(dev); 2272 struct xe_bo *bo; 2273 uint32_t handle; 2274 int cpp = DIV_ROUND_UP(args->bpp, 8); 2275 int err; 2276 u32 page_size = max_t(u32, PAGE_SIZE, 2277 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2278 2279 args->pitch = ALIGN(args->width * cpp, 64); 2280 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2281 page_size); 2282 2283 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2284 DRM_XE_GEM_CPU_CACHING_WC, 2285 ttm_bo_type_device, 2286 XE_BO_CREATE_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2287 XE_BO_CREATE_USER_BIT | XE_BO_SCANOUT_BIT | 2288 XE_BO_NEEDS_CPU_ACCESS); 2289 if (IS_ERR(bo)) 2290 return PTR_ERR(bo); 2291 2292 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2293 /* drop reference from allocate - handle holds it now */ 2294 drm_gem_object_put(&bo->ttm.base); 2295 if (!err) 2296 args->handle = handle; 2297 return err; 2298 } 2299 2300 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2301 { 2302 struct ttm_buffer_object *tbo = &bo->ttm; 2303 struct ttm_device *bdev = tbo->bdev; 2304 2305 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2306 2307 list_del_init(&bo->vram_userfault_link); 2308 } 2309 2310 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2311 #include "tests/xe_bo.c" 2312 #endif 2313