xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17 
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31 
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
33 	[XE_PL_SYSTEM] = "system",
34 	[XE_PL_TT] = "gtt",
35 	[XE_PL_VRAM0] = "vram0",
36 	[XE_PL_VRAM1] = "vram1",
37 	[XE_PL_STOLEN] = "stolen"
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = XE_PL_SYSTEM,
44 	.flags = 0,
45 };
46 
47 static struct ttm_placement sys_placement = {
48 	.num_placement = 1,
49 	.placement = &sys_placement_flags,
50 };
51 
52 static const struct ttm_place tt_placement_flags[] = {
53 	{
54 		.fpfn = 0,
55 		.lpfn = 0,
56 		.mem_type = XE_PL_TT,
57 		.flags = TTM_PL_FLAG_DESIRED,
58 	},
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_SYSTEM,
63 		.flags = TTM_PL_FLAG_FALLBACK,
64 	}
65 };
66 
67 static struct ttm_placement tt_placement = {
68 	.num_placement = 2,
69 	.placement = tt_placement_flags,
70 };
71 
72 bool mem_type_is_vram(u32 mem_type)
73 {
74 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76 
77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81 
82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 	return mem_type_is_vram(res->mem_type);
85 }
86 
87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 	return resource_is_vram(bo->ttm.resource) ||
90 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92 
93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97 
98 /**
99  * xe_bo_has_single_placement - check if BO is placed only in one memory location
100  * @bo: The BO
101  *
102  * This function checks whether a given BO is placed in only one memory location.
103  *
104  * Returns: true if the BO is placed in a single memory location, false otherwise.
105  *
106  */
107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 	return bo->placement.num_placement == 1;
110 }
111 
112 /**
113  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114  * @bo: The BO
115  *
116  * The stolen memory is accessed through the PCI BAR for both DGFX and some
117  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118  *
119  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120  */
121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 	return xe_bo_is_stolen(bo) &&
124 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126 
127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 	return bo->flags & XE_BO_FLAG_USER;
130 }
131 
132 static struct xe_migrate *
133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 	struct xe_tile *tile;
136 
137 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 	return tile->migrate;
140 }
141 
142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 	struct ttm_resource_manager *mgr;
146 
147 	xe_assert(xe, resource_is_vram(res));
148 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 	return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151 
152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 			   u32 bo_flags, u32 *c)
154 {
155 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157 
158 		bo->placements[*c] = (struct ttm_place) {
159 			.mem_type = XE_PL_TT,
160 		};
161 		*c += 1;
162 	}
163 }
164 
165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 	struct ttm_place place = { .mem_type = mem_type };
169 	struct xe_mem_region *vram;
170 	u64 io_size;
171 
172 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173 
174 	vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 	xe_assert(xe, vram && vram->usable_size);
176 	io_size = vram->io_size;
177 
178 	/*
179 	 * For eviction / restore on suspend / resume objects
180 	 * pinned in VRAM must be contiguous
181 	 */
182 	if (bo_flags & (XE_BO_FLAG_PINNED |
183 			XE_BO_FLAG_GGTT))
184 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185 
186 	if (io_size < vram->usable_size) {
187 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 			place.fpfn = 0;
189 			place.lpfn = io_size >> PAGE_SHIFT;
190 		} else {
191 			place.flags |= TTM_PL_FLAG_TOPDOWN;
192 		}
193 	}
194 	places[*c] = place;
195 	*c += 1;
196 }
197 
198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 			 u32 bo_flags, u32 *c)
200 {
201 	if (bo_flags & XE_BO_FLAG_VRAM0)
202 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 	if (bo_flags & XE_BO_FLAG_VRAM1)
204 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206 
207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 			   u32 bo_flags, u32 *c)
209 {
210 	if (bo_flags & XE_BO_FLAG_STOLEN) {
211 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212 
213 		bo->placements[*c] = (struct ttm_place) {
214 			.mem_type = XE_PL_STOLEN,
215 			.flags = bo_flags & (XE_BO_FLAG_PINNED |
216 					     XE_BO_FLAG_GGTT) ?
217 				TTM_PL_FLAG_CONTIGUOUS : 0,
218 		};
219 		*c += 1;
220 	}
221 }
222 
223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 				       u32 bo_flags)
225 {
226 	u32 c = 0;
227 
228 	try_add_vram(xe, bo, bo_flags, &c);
229 	try_add_system(xe, bo, bo_flags, &c);
230 	try_add_stolen(xe, bo, bo_flags, &c);
231 
232 	if (!c)
233 		return -EINVAL;
234 
235 	bo->placement = (struct ttm_placement) {
236 		.num_placement = c,
237 		.placement = bo->placements,
238 	};
239 
240 	return 0;
241 }
242 
243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 			      u32 bo_flags)
245 {
246 	xe_bo_assert_held(bo);
247 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249 
250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 			   struct ttm_placement *placement)
252 {
253 	if (!xe_bo_is_xe_bo(tbo)) {
254 		/* Don't handle scatter gather BOs */
255 		if (tbo->type == ttm_bo_type_sg) {
256 			placement->num_placement = 0;
257 			return;
258 		}
259 
260 		*placement = sys_placement;
261 		return;
262 	}
263 
264 	/*
265 	 * For xe, sg bos that are evicted to system just triggers a
266 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 	 */
268 	switch (tbo->resource->mem_type) {
269 	case XE_PL_VRAM0:
270 	case XE_PL_VRAM1:
271 	case XE_PL_STOLEN:
272 		*placement = tt_placement;
273 		break;
274 	case XE_PL_TT:
275 	default:
276 		*placement = sys_placement;
277 		break;
278 	}
279 }
280 
281 struct xe_ttm_tt {
282 	struct ttm_tt ttm;
283 	struct device *dev;
284 	struct sg_table sgt;
285 	struct sg_table *sg;
286 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
287 	bool purgeable;
288 };
289 
290 static int xe_tt_map_sg(struct ttm_tt *tt)
291 {
292 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
293 	unsigned long num_pages = tt->num_pages;
294 	int ret;
295 
296 	XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
297 
298 	if (xe_tt->sg)
299 		return 0;
300 
301 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
302 						num_pages, 0,
303 						(u64)num_pages << PAGE_SHIFT,
304 						xe_sg_segment_size(xe_tt->dev),
305 						GFP_KERNEL);
306 	if (ret)
307 		return ret;
308 
309 	xe_tt->sg = &xe_tt->sgt;
310 	ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
311 			      DMA_ATTR_SKIP_CPU_SYNC);
312 	if (ret) {
313 		sg_free_table(xe_tt->sg);
314 		xe_tt->sg = NULL;
315 		return ret;
316 	}
317 
318 	return 0;
319 }
320 
321 static void xe_tt_unmap_sg(struct ttm_tt *tt)
322 {
323 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
324 
325 	if (xe_tt->sg) {
326 		dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
327 				  DMA_BIDIRECTIONAL, 0);
328 		sg_free_table(xe_tt->sg);
329 		xe_tt->sg = NULL;
330 	}
331 }
332 
333 struct sg_table *xe_bo_sg(struct xe_bo *bo)
334 {
335 	struct ttm_tt *tt = bo->ttm.ttm;
336 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
337 
338 	return xe_tt->sg;
339 }
340 
341 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
342 				       u32 page_flags)
343 {
344 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
345 	struct xe_device *xe = xe_bo_device(bo);
346 	struct xe_ttm_tt *tt;
347 	unsigned long extra_pages;
348 	enum ttm_caching caching = ttm_cached;
349 	int err;
350 
351 	tt = kzalloc(sizeof(*tt), GFP_KERNEL);
352 	if (!tt)
353 		return NULL;
354 
355 	tt->dev = xe->drm.dev;
356 
357 	extra_pages = 0;
358 	if (xe_bo_needs_ccs_pages(bo))
359 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
360 					   PAGE_SIZE);
361 
362 	/*
363 	 * DGFX system memory is always WB / ttm_cached, since
364 	 * other caching modes are only supported on x86. DGFX
365 	 * GPU system memory accesses are always coherent with the
366 	 * CPU.
367 	 */
368 	if (!IS_DGFX(xe)) {
369 		switch (bo->cpu_caching) {
370 		case DRM_XE_GEM_CPU_CACHING_WC:
371 			caching = ttm_write_combined;
372 			break;
373 		default:
374 			caching = ttm_cached;
375 			break;
376 		}
377 
378 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
379 
380 		/*
381 		 * Display scanout is always non-coherent with the CPU cache.
382 		 *
383 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
384 		 * non-coherent and require a CPU:WC mapping.
385 		 */
386 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
387 		    (xe->info.graphics_verx100 >= 1270 &&
388 		     bo->flags & XE_BO_FLAG_PAGETABLE))
389 			caching = ttm_write_combined;
390 	}
391 
392 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
393 		/*
394 		 * Valid only for internally-created buffers only, for
395 		 * which cpu_caching is never initialized.
396 		 */
397 		xe_assert(xe, bo->cpu_caching == 0);
398 		caching = ttm_uncached;
399 	}
400 
401 	err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
402 	if (err) {
403 		kfree(tt);
404 		return NULL;
405 	}
406 
407 	return &tt->ttm;
408 }
409 
410 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
411 			      struct ttm_operation_ctx *ctx)
412 {
413 	int err;
414 
415 	/*
416 	 * dma-bufs are not populated with pages, and the dma-
417 	 * addresses are set up when moved to XE_PL_TT.
418 	 */
419 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
420 		return 0;
421 
422 	err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
423 	if (err)
424 		return err;
425 
426 	return err;
427 }
428 
429 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
430 {
431 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
432 		return;
433 
434 	xe_tt_unmap_sg(tt);
435 
436 	return ttm_pool_free(&ttm_dev->pool, tt);
437 }
438 
439 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
440 {
441 	ttm_tt_fini(tt);
442 	kfree(tt);
443 }
444 
445 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
446 				 struct ttm_resource *mem)
447 {
448 	struct xe_device *xe = ttm_to_xe_device(bdev);
449 
450 	switch (mem->mem_type) {
451 	case XE_PL_SYSTEM:
452 	case XE_PL_TT:
453 		return 0;
454 	case XE_PL_VRAM0:
455 	case XE_PL_VRAM1: {
456 		struct xe_ttm_vram_mgr_resource *vres =
457 			to_xe_ttm_vram_mgr_resource(mem);
458 		struct xe_mem_region *vram = res_to_mem_region(mem);
459 
460 		if (vres->used_visible_size < mem->size)
461 			return -EINVAL;
462 
463 		mem->bus.offset = mem->start << PAGE_SHIFT;
464 
465 		if (vram->mapping &&
466 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
467 			mem->bus.addr = (u8 __force *)vram->mapping +
468 				mem->bus.offset;
469 
470 		mem->bus.offset += vram->io_start;
471 		mem->bus.is_iomem = true;
472 
473 #if  !IS_ENABLED(CONFIG_X86)
474 		mem->bus.caching = ttm_write_combined;
475 #endif
476 		return 0;
477 	} case XE_PL_STOLEN:
478 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
479 	default:
480 		return -EINVAL;
481 	}
482 }
483 
484 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
485 				const struct ttm_operation_ctx *ctx)
486 {
487 	struct dma_resv_iter cursor;
488 	struct dma_fence *fence;
489 	struct drm_gem_object *obj = &bo->ttm.base;
490 	struct drm_gpuvm_bo *vm_bo;
491 	bool idle = false;
492 	int ret = 0;
493 
494 	dma_resv_assert_held(bo->ttm.base.resv);
495 
496 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
497 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
498 				    DMA_RESV_USAGE_BOOKKEEP);
499 		dma_resv_for_each_fence_unlocked(&cursor, fence)
500 			dma_fence_enable_sw_signaling(fence);
501 		dma_resv_iter_end(&cursor);
502 	}
503 
504 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
505 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
506 		struct drm_gpuva *gpuva;
507 
508 		if (!xe_vm_in_fault_mode(vm)) {
509 			drm_gpuvm_bo_evict(vm_bo, true);
510 			continue;
511 		}
512 
513 		if (!idle) {
514 			long timeout;
515 
516 			if (ctx->no_wait_gpu &&
517 			    !dma_resv_test_signaled(bo->ttm.base.resv,
518 						    DMA_RESV_USAGE_BOOKKEEP))
519 				return -EBUSY;
520 
521 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
522 							DMA_RESV_USAGE_BOOKKEEP,
523 							ctx->interruptible,
524 							MAX_SCHEDULE_TIMEOUT);
525 			if (!timeout)
526 				return -ETIME;
527 			if (timeout < 0)
528 				return timeout;
529 
530 			idle = true;
531 		}
532 
533 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
534 			struct xe_vma *vma = gpuva_to_vma(gpuva);
535 
536 			trace_xe_vma_evict(vma);
537 			ret = xe_vm_invalidate_vma(vma);
538 			if (XE_WARN_ON(ret))
539 				return ret;
540 		}
541 	}
542 
543 	return ret;
544 }
545 
546 /*
547  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
548  * Note that unmapping the attachment is deferred to the next
549  * map_attachment time, or to bo destroy (after idling) whichever comes first.
550  * This is to avoid syncing before unmap_attachment(), assuming that the
551  * caller relies on idling the reservation object before moving the
552  * backing store out. Should that assumption not hold, then we will be able
553  * to unconditionally call unmap_attachment() when moving out to system.
554  */
555 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
556 			     struct ttm_resource *new_res)
557 {
558 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
559 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
560 					       ttm);
561 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
562 	struct sg_table *sg;
563 
564 	xe_assert(xe, attach);
565 	xe_assert(xe, ttm_bo->ttm);
566 
567 	if (new_res->mem_type == XE_PL_SYSTEM)
568 		goto out;
569 
570 	if (ttm_bo->sg) {
571 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
572 		ttm_bo->sg = NULL;
573 	}
574 
575 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
576 	if (IS_ERR(sg))
577 		return PTR_ERR(sg);
578 
579 	ttm_bo->sg = sg;
580 	xe_tt->sg = sg;
581 
582 out:
583 	ttm_bo_move_null(ttm_bo, new_res);
584 
585 	return 0;
586 }
587 
588 /**
589  * xe_bo_move_notify - Notify subsystems of a pending move
590  * @bo: The buffer object
591  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
592  *
593  * This function notifies subsystems of an upcoming buffer move.
594  * Upon receiving such a notification, subsystems should schedule
595  * halting access to the underlying pages and optionally add a fence
596  * to the buffer object's dma_resv object, that signals when access is
597  * stopped. The caller will wait on all dma_resv fences before
598  * starting the move.
599  *
600  * A subsystem may commence access to the object after obtaining
601  * bindings to the new backing memory under the object lock.
602  *
603  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
604  * negative error code on error.
605  */
606 static int xe_bo_move_notify(struct xe_bo *bo,
607 			     const struct ttm_operation_ctx *ctx)
608 {
609 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
610 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
611 	struct ttm_resource *old_mem = ttm_bo->resource;
612 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
613 	int ret;
614 
615 	/*
616 	 * If this starts to call into many components, consider
617 	 * using a notification chain here.
618 	 */
619 
620 	if (xe_bo_is_pinned(bo))
621 		return -EINVAL;
622 
623 	xe_bo_vunmap(bo);
624 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
625 	if (ret)
626 		return ret;
627 
628 	/* Don't call move_notify() for imported dma-bufs. */
629 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
630 		dma_buf_move_notify(ttm_bo->base.dma_buf);
631 
632 	/*
633 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
634 	 * so if we moved from VRAM make sure to unlink this from the userfault
635 	 * tracking.
636 	 */
637 	if (mem_type_is_vram(old_mem_type)) {
638 		mutex_lock(&xe->mem_access.vram_userfault.lock);
639 		if (!list_empty(&bo->vram_userfault_link))
640 			list_del_init(&bo->vram_userfault_link);
641 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
642 	}
643 
644 	return 0;
645 }
646 
647 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
648 		      struct ttm_operation_ctx *ctx,
649 		      struct ttm_resource *new_mem,
650 		      struct ttm_place *hop)
651 {
652 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
653 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
654 	struct ttm_resource *old_mem = ttm_bo->resource;
655 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
656 	struct ttm_tt *ttm = ttm_bo->ttm;
657 	struct xe_migrate *migrate = NULL;
658 	struct dma_fence *fence;
659 	bool move_lacks_source;
660 	bool tt_has_data;
661 	bool needs_clear;
662 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
663 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
664 	int ret = 0;
665 
666 	/* Bo creation path, moving to system or TT. */
667 	if ((!old_mem && ttm) && !handle_system_ccs) {
668 		if (new_mem->mem_type == XE_PL_TT)
669 			ret = xe_tt_map_sg(ttm);
670 		if (!ret)
671 			ttm_bo_move_null(ttm_bo, new_mem);
672 		goto out;
673 	}
674 
675 	if (ttm_bo->type == ttm_bo_type_sg) {
676 		ret = xe_bo_move_notify(bo, ctx);
677 		if (!ret)
678 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
679 		return ret;
680 	}
681 
682 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
683 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
684 
685 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
686 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
687 
688 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
689 		(!ttm && ttm_bo->type == ttm_bo_type_device);
690 
691 	if (new_mem->mem_type == XE_PL_TT) {
692 		ret = xe_tt_map_sg(ttm);
693 		if (ret)
694 			goto out;
695 	}
696 
697 	if ((move_lacks_source && !needs_clear)) {
698 		ttm_bo_move_null(ttm_bo, new_mem);
699 		goto out;
700 	}
701 
702 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
703 		ttm_bo_move_null(ttm_bo, new_mem);
704 		goto out;
705 	}
706 
707 	/*
708 	 * Failed multi-hop where the old_mem is still marked as
709 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
710 	 */
711 	if (old_mem_type == XE_PL_TT &&
712 	    new_mem->mem_type == XE_PL_TT) {
713 		ttm_bo_move_null(ttm_bo, new_mem);
714 		goto out;
715 	}
716 
717 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
718 		ret = xe_bo_move_notify(bo, ctx);
719 		if (ret)
720 			goto out;
721 	}
722 
723 	if (old_mem_type == XE_PL_TT &&
724 	    new_mem->mem_type == XE_PL_SYSTEM) {
725 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
726 						     DMA_RESV_USAGE_BOOKKEEP,
727 						     true,
728 						     MAX_SCHEDULE_TIMEOUT);
729 		if (timeout < 0) {
730 			ret = timeout;
731 			goto out;
732 		}
733 
734 		if (!handle_system_ccs) {
735 			ttm_bo_move_null(ttm_bo, new_mem);
736 			goto out;
737 		}
738 	}
739 
740 	if (!move_lacks_source &&
741 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
742 	     (mem_type_is_vram(old_mem_type) &&
743 	      new_mem->mem_type == XE_PL_SYSTEM))) {
744 		hop->fpfn = 0;
745 		hop->lpfn = 0;
746 		hop->mem_type = XE_PL_TT;
747 		hop->flags = TTM_PL_FLAG_TEMPORARY;
748 		ret = -EMULTIHOP;
749 		goto out;
750 	}
751 
752 	if (bo->tile)
753 		migrate = bo->tile->migrate;
754 	else if (resource_is_vram(new_mem))
755 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
756 	else if (mem_type_is_vram(old_mem_type))
757 		migrate = mem_type_to_migrate(xe, old_mem_type);
758 	else
759 		migrate = xe->tiles[0].migrate;
760 
761 	xe_assert(xe, migrate);
762 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
763 	if (xe_rpm_reclaim_safe(xe)) {
764 		/*
765 		 * We might be called through swapout in the validation path of
766 		 * another TTM device, so acquire rpm here.
767 		 */
768 		xe_pm_runtime_get(xe);
769 	} else {
770 		drm_WARN_ON(&xe->drm, handle_system_ccs);
771 		xe_pm_runtime_get_noresume(xe);
772 	}
773 
774 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
775 		/*
776 		 * Kernel memory that is pinned should only be moved on suspend
777 		 * / resume, some of the pinned memory is required for the
778 		 * device to resume / use the GPU to move other evicted memory
779 		 * (user memory) around. This likely could be optimized a bit
780 		 * futher where we find the minimum set of pinned memory
781 		 * required for resume but for simplity doing a memcpy for all
782 		 * pinned memory.
783 		 */
784 		ret = xe_bo_vmap(bo);
785 		if (!ret) {
786 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
787 
788 			/* Create a new VMAP once kernel BO back in VRAM */
789 			if (!ret && resource_is_vram(new_mem)) {
790 				struct xe_mem_region *vram = res_to_mem_region(new_mem);
791 				void __iomem *new_addr = vram->mapping +
792 					(new_mem->start << PAGE_SHIFT);
793 
794 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
795 					ret = -EINVAL;
796 					xe_pm_runtime_put(xe);
797 					goto out;
798 				}
799 
800 				xe_assert(xe, new_mem->start ==
801 					  bo->placements->fpfn);
802 
803 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
804 			}
805 		}
806 	} else {
807 		if (move_lacks_source) {
808 			u32 flags = 0;
809 
810 			if (mem_type_is_vram(new_mem->mem_type))
811 				flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
812 			else if (handle_system_ccs)
813 				flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
814 
815 			fence = xe_migrate_clear(migrate, bo, new_mem, flags);
816 		}
817 		else
818 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
819 						new_mem, handle_system_ccs);
820 		if (IS_ERR(fence)) {
821 			ret = PTR_ERR(fence);
822 			xe_pm_runtime_put(xe);
823 			goto out;
824 		}
825 		if (!move_lacks_source) {
826 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
827 							true, new_mem);
828 			if (ret) {
829 				dma_fence_wait(fence, false);
830 				ttm_bo_move_null(ttm_bo, new_mem);
831 				ret = 0;
832 			}
833 		} else {
834 			/*
835 			 * ttm_bo_move_accel_cleanup() may blow up if
836 			 * bo->resource == NULL, so just attach the
837 			 * fence and set the new resource.
838 			 */
839 			dma_resv_add_fence(ttm_bo->base.resv, fence,
840 					   DMA_RESV_USAGE_KERNEL);
841 			ttm_bo_move_null(ttm_bo, new_mem);
842 		}
843 
844 		dma_fence_put(fence);
845 	}
846 
847 	xe_pm_runtime_put(xe);
848 
849 out:
850 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
851 	    ttm_bo->ttm)
852 		xe_tt_unmap_sg(ttm_bo->ttm);
853 
854 	return ret;
855 }
856 
857 /**
858  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
859  * @bo: The buffer object to move.
860  *
861  * On successful completion, the object memory will be moved to sytem memory.
862  *
863  * This is needed to for special handling of pinned VRAM object during
864  * suspend-resume.
865  *
866  * Return: 0 on success. Negative error code on failure.
867  */
868 int xe_bo_evict_pinned(struct xe_bo *bo)
869 {
870 	struct ttm_place place = {
871 		.mem_type = XE_PL_TT,
872 	};
873 	struct ttm_placement placement = {
874 		.placement = &place,
875 		.num_placement = 1,
876 	};
877 	struct ttm_operation_ctx ctx = {
878 		.interruptible = false,
879 	};
880 	struct ttm_resource *new_mem;
881 	int ret;
882 
883 	xe_bo_assert_held(bo);
884 
885 	if (WARN_ON(!bo->ttm.resource))
886 		return -EINVAL;
887 
888 	if (WARN_ON(!xe_bo_is_pinned(bo)))
889 		return -EINVAL;
890 
891 	if (WARN_ON(!xe_bo_is_vram(bo)))
892 		return -EINVAL;
893 
894 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
895 	if (ret)
896 		return ret;
897 
898 	if (!bo->ttm.ttm) {
899 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
900 		if (!bo->ttm.ttm) {
901 			ret = -ENOMEM;
902 			goto err_res_free;
903 		}
904 	}
905 
906 	ret = ttm_bo_populate(&bo->ttm, &ctx);
907 	if (ret)
908 		goto err_res_free;
909 
910 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
911 	if (ret)
912 		goto err_res_free;
913 
914 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
915 	if (ret)
916 		goto err_res_free;
917 
918 	return 0;
919 
920 err_res_free:
921 	ttm_resource_free(&bo->ttm, &new_mem);
922 	return ret;
923 }
924 
925 /**
926  * xe_bo_restore_pinned() - Restore a pinned VRAM object
927  * @bo: The buffer object to move.
928  *
929  * On successful completion, the object memory will be moved back to VRAM.
930  *
931  * This is needed to for special handling of pinned VRAM object during
932  * suspend-resume.
933  *
934  * Return: 0 on success. Negative error code on failure.
935  */
936 int xe_bo_restore_pinned(struct xe_bo *bo)
937 {
938 	struct ttm_operation_ctx ctx = {
939 		.interruptible = false,
940 	};
941 	struct ttm_resource *new_mem;
942 	int ret;
943 
944 	xe_bo_assert_held(bo);
945 
946 	if (WARN_ON(!bo->ttm.resource))
947 		return -EINVAL;
948 
949 	if (WARN_ON(!xe_bo_is_pinned(bo)))
950 		return -EINVAL;
951 
952 	if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm))
953 		return -EINVAL;
954 
955 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
956 	if (ret)
957 		return ret;
958 
959 	ret = ttm_bo_populate(&bo->ttm, &ctx);
960 	if (ret)
961 		goto err_res_free;
962 
963 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
964 	if (ret)
965 		goto err_res_free;
966 
967 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
968 	if (ret)
969 		goto err_res_free;
970 
971 	return 0;
972 
973 err_res_free:
974 	ttm_resource_free(&bo->ttm, &new_mem);
975 	return ret;
976 }
977 
978 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
979 				       unsigned long page_offset)
980 {
981 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
982 	struct xe_res_cursor cursor;
983 	struct xe_mem_region *vram;
984 
985 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
986 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
987 
988 	vram = res_to_mem_region(ttm_bo->resource);
989 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
990 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
991 }
992 
993 static void __xe_bo_vunmap(struct xe_bo *bo);
994 
995 /*
996  * TODO: Move this function to TTM so we don't rely on how TTM does its
997  * locking, thereby abusing TTM internals.
998  */
999 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1000 {
1001 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1002 	bool locked;
1003 
1004 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1005 
1006 	/*
1007 	 * We can typically only race with TTM trylocking under the
1008 	 * lru_lock, which will immediately be unlocked again since
1009 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1010 	 * always succeed here, as long as we hold the lru lock.
1011 	 */
1012 	spin_lock(&ttm_bo->bdev->lru_lock);
1013 	locked = dma_resv_trylock(ttm_bo->base.resv);
1014 	spin_unlock(&ttm_bo->bdev->lru_lock);
1015 	xe_assert(xe, locked);
1016 
1017 	return locked;
1018 }
1019 
1020 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1021 {
1022 	struct dma_resv_iter cursor;
1023 	struct dma_fence *fence;
1024 	struct dma_fence *replacement = NULL;
1025 	struct xe_bo *bo;
1026 
1027 	if (!xe_bo_is_xe_bo(ttm_bo))
1028 		return;
1029 
1030 	bo = ttm_to_xe_bo(ttm_bo);
1031 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1032 
1033 	/*
1034 	 * Corner case where TTM fails to allocate memory and this BOs resv
1035 	 * still points the VMs resv
1036 	 */
1037 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1038 		return;
1039 
1040 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1041 		return;
1042 
1043 	/*
1044 	 * Scrub the preempt fences if any. The unbind fence is already
1045 	 * attached to the resv.
1046 	 * TODO: Don't do this for external bos once we scrub them after
1047 	 * unbind.
1048 	 */
1049 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1050 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1051 		if (xe_fence_is_xe_preempt(fence) &&
1052 		    !dma_fence_is_signaled(fence)) {
1053 			if (!replacement)
1054 				replacement = dma_fence_get_stub();
1055 
1056 			dma_resv_replace_fences(ttm_bo->base.resv,
1057 						fence->context,
1058 						replacement,
1059 						DMA_RESV_USAGE_BOOKKEEP);
1060 		}
1061 	}
1062 	dma_fence_put(replacement);
1063 
1064 	dma_resv_unlock(ttm_bo->base.resv);
1065 }
1066 
1067 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1068 {
1069 	if (!xe_bo_is_xe_bo(ttm_bo))
1070 		return;
1071 
1072 	/*
1073 	 * Object is idle and about to be destroyed. Release the
1074 	 * dma-buf attachment.
1075 	 */
1076 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1077 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1078 						       struct xe_ttm_tt, ttm);
1079 
1080 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1081 					 DMA_BIDIRECTIONAL);
1082 		ttm_bo->sg = NULL;
1083 		xe_tt->sg = NULL;
1084 	}
1085 }
1086 
1087 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1088 {
1089 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1090 
1091 	if (ttm_bo->ttm) {
1092 		struct ttm_placement place = {};
1093 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1094 
1095 		drm_WARN_ON(&xe->drm, ret);
1096 	}
1097 }
1098 
1099 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1100 {
1101 	struct ttm_operation_ctx ctx = {
1102 		.interruptible = false
1103 	};
1104 
1105 	if (ttm_bo->ttm) {
1106 		struct xe_ttm_tt *xe_tt =
1107 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1108 
1109 		if (xe_tt->purgeable)
1110 			xe_ttm_bo_purge(ttm_bo, &ctx);
1111 	}
1112 }
1113 
1114 const struct ttm_device_funcs xe_ttm_funcs = {
1115 	.ttm_tt_create = xe_ttm_tt_create,
1116 	.ttm_tt_populate = xe_ttm_tt_populate,
1117 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1118 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1119 	.evict_flags = xe_evict_flags,
1120 	.move = xe_bo_move,
1121 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1122 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1123 	.release_notify = xe_ttm_bo_release_notify,
1124 	.eviction_valuable = ttm_bo_eviction_valuable,
1125 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1126 	.swap_notify = xe_ttm_bo_swap_notify,
1127 };
1128 
1129 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1130 {
1131 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1132 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1133 
1134 	if (bo->ttm.base.import_attach)
1135 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1136 	drm_gem_object_release(&bo->ttm.base);
1137 
1138 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1139 
1140 	if (bo->ggtt_node && bo->ggtt_node->base.size)
1141 		xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1142 
1143 #ifdef CONFIG_PROC_FS
1144 	if (bo->client)
1145 		xe_drm_client_remove_bo(bo);
1146 #endif
1147 
1148 	if (bo->vm && xe_bo_is_user(bo))
1149 		xe_vm_put(bo->vm);
1150 
1151 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1152 	if (!list_empty(&bo->vram_userfault_link))
1153 		list_del(&bo->vram_userfault_link);
1154 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1155 
1156 	kfree(bo);
1157 }
1158 
1159 static void xe_gem_object_free(struct drm_gem_object *obj)
1160 {
1161 	/* Our BO reference counting scheme works as follows:
1162 	 *
1163 	 * The gem object kref is typically used throughout the driver,
1164 	 * and the gem object holds a ttm_buffer_object refcount, so
1165 	 * that when the last gem object reference is put, which is when
1166 	 * we end up in this function, we put also that ttm_buffer_object
1167 	 * refcount. Anything using gem interfaces is then no longer
1168 	 * allowed to access the object in a way that requires a gem
1169 	 * refcount, including locking the object.
1170 	 *
1171 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1172 	 * refcount directly if needed.
1173 	 */
1174 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1175 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1176 }
1177 
1178 static void xe_gem_object_close(struct drm_gem_object *obj,
1179 				struct drm_file *file_priv)
1180 {
1181 	struct xe_bo *bo = gem_to_xe_bo(obj);
1182 
1183 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1184 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1185 
1186 		xe_bo_lock(bo, false);
1187 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1188 		xe_bo_unlock(bo);
1189 	}
1190 }
1191 
1192 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1193 {
1194 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1195 	struct drm_device *ddev = tbo->base.dev;
1196 	struct xe_device *xe = to_xe_device(ddev);
1197 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1198 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1199 	vm_fault_t ret;
1200 	int idx;
1201 
1202 	if (needs_rpm)
1203 		xe_pm_runtime_get(xe);
1204 
1205 	ret = ttm_bo_vm_reserve(tbo, vmf);
1206 	if (ret)
1207 		goto out;
1208 
1209 	if (drm_dev_enter(ddev, &idx)) {
1210 		trace_xe_bo_cpu_fault(bo);
1211 
1212 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1213 					       TTM_BO_VM_NUM_PREFAULT);
1214 		drm_dev_exit(idx);
1215 	} else {
1216 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1217 	}
1218 
1219 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1220 		goto out;
1221 	/*
1222 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1223 	 */
1224 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1225 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1226 		if (list_empty(&bo->vram_userfault_link))
1227 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1228 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1229 	}
1230 
1231 	dma_resv_unlock(tbo->base.resv);
1232 out:
1233 	if (needs_rpm)
1234 		xe_pm_runtime_put(xe);
1235 
1236 	return ret;
1237 }
1238 
1239 static const struct vm_operations_struct xe_gem_vm_ops = {
1240 	.fault = xe_gem_fault,
1241 	.open = ttm_bo_vm_open,
1242 	.close = ttm_bo_vm_close,
1243 	.access = ttm_bo_vm_access
1244 };
1245 
1246 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1247 	.free = xe_gem_object_free,
1248 	.close = xe_gem_object_close,
1249 	.mmap = drm_gem_ttm_mmap,
1250 	.export = xe_gem_prime_export,
1251 	.vm_ops = &xe_gem_vm_ops,
1252 };
1253 
1254 /**
1255  * xe_bo_alloc - Allocate storage for a struct xe_bo
1256  *
1257  * This funcition is intended to allocate storage to be used for input
1258  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1259  * created is needed before the call to __xe_bo_create_locked().
1260  * If __xe_bo_create_locked ends up never to be called, then the
1261  * storage allocated with this function needs to be freed using
1262  * xe_bo_free().
1263  *
1264  * Return: A pointer to an uninitialized struct xe_bo on success,
1265  * ERR_PTR(-ENOMEM) on error.
1266  */
1267 struct xe_bo *xe_bo_alloc(void)
1268 {
1269 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1270 
1271 	if (!bo)
1272 		return ERR_PTR(-ENOMEM);
1273 
1274 	return bo;
1275 }
1276 
1277 /**
1278  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1279  * @bo: The buffer object storage.
1280  *
1281  * Refer to xe_bo_alloc() documentation for valid use-cases.
1282  */
1283 void xe_bo_free(struct xe_bo *bo)
1284 {
1285 	kfree(bo);
1286 }
1287 
1288 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1289 				     struct xe_tile *tile, struct dma_resv *resv,
1290 				     struct ttm_lru_bulk_move *bulk, size_t size,
1291 				     u16 cpu_caching, enum ttm_bo_type type,
1292 				     u32 flags)
1293 {
1294 	struct ttm_operation_ctx ctx = {
1295 		.interruptible = true,
1296 		.no_wait_gpu = false,
1297 	};
1298 	struct ttm_placement *placement;
1299 	uint32_t alignment;
1300 	size_t aligned_size;
1301 	int err;
1302 
1303 	/* Only kernel objects should set GT */
1304 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1305 
1306 	if (XE_WARN_ON(!size)) {
1307 		xe_bo_free(bo);
1308 		return ERR_PTR(-EINVAL);
1309 	}
1310 
1311 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1312 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1313 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1314 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1315 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1316 
1317 		aligned_size = ALIGN(size, align);
1318 		if (type != ttm_bo_type_device)
1319 			size = ALIGN(size, align);
1320 		flags |= XE_BO_FLAG_INTERNAL_64K;
1321 		alignment = align >> PAGE_SHIFT;
1322 	} else {
1323 		aligned_size = ALIGN(size, SZ_4K);
1324 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1325 		alignment = SZ_4K >> PAGE_SHIFT;
1326 	}
1327 
1328 	if (type == ttm_bo_type_device && aligned_size != size)
1329 		return ERR_PTR(-EINVAL);
1330 
1331 	if (!bo) {
1332 		bo = xe_bo_alloc();
1333 		if (IS_ERR(bo))
1334 			return bo;
1335 	}
1336 
1337 	bo->ccs_cleared = false;
1338 	bo->tile = tile;
1339 	bo->size = size;
1340 	bo->flags = flags;
1341 	bo->cpu_caching = cpu_caching;
1342 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1343 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1344 	INIT_LIST_HEAD(&bo->pinned_link);
1345 #ifdef CONFIG_PROC_FS
1346 	INIT_LIST_HEAD(&bo->client_link);
1347 #endif
1348 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1349 
1350 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1351 
1352 	if (resv) {
1353 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1354 		ctx.resv = resv;
1355 	}
1356 
1357 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1358 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1359 		if (WARN_ON(err)) {
1360 			xe_ttm_bo_destroy(&bo->ttm);
1361 			return ERR_PTR(err);
1362 		}
1363 	}
1364 
1365 	/* Defer populating type_sg bos */
1366 	placement = (type == ttm_bo_type_sg ||
1367 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1368 		&bo->placement;
1369 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1370 				   placement, alignment,
1371 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1372 	if (err)
1373 		return ERR_PTR(err);
1374 
1375 	/*
1376 	 * The VRAM pages underneath are potentially still being accessed by the
1377 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1378 	 * sure to add any corresponding move/clear fences into the objects
1379 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1380 	 *
1381 	 * For KMD internal buffers we don't care about GPU clearing, however we
1382 	 * still need to handle async evictions, where the VRAM is still being
1383 	 * accessed by the GPU. Most internal callers are not expecting this,
1384 	 * since they are missing the required synchronisation before accessing
1385 	 * the memory. To keep things simple just sync wait any kernel fences
1386 	 * here, if the buffer is designated KMD internal.
1387 	 *
1388 	 * For normal userspace objects we should already have the required
1389 	 * pipelining or sync waiting elsewhere, since we already have to deal
1390 	 * with things like async GPU clearing.
1391 	 */
1392 	if (type == ttm_bo_type_kernel) {
1393 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1394 						     DMA_RESV_USAGE_KERNEL,
1395 						     ctx.interruptible,
1396 						     MAX_SCHEDULE_TIMEOUT);
1397 
1398 		if (timeout < 0) {
1399 			if (!resv)
1400 				dma_resv_unlock(bo->ttm.base.resv);
1401 			xe_bo_put(bo);
1402 			return ERR_PTR(timeout);
1403 		}
1404 	}
1405 
1406 	bo->created = true;
1407 	if (bulk)
1408 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1409 	else
1410 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1411 
1412 	return bo;
1413 }
1414 
1415 static int __xe_bo_fixed_placement(struct xe_device *xe,
1416 				   struct xe_bo *bo,
1417 				   u32 flags,
1418 				   u64 start, u64 end, u64 size)
1419 {
1420 	struct ttm_place *place = bo->placements;
1421 
1422 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1423 		return -EINVAL;
1424 
1425 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1426 	place->fpfn = start >> PAGE_SHIFT;
1427 	place->lpfn = end >> PAGE_SHIFT;
1428 
1429 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1430 	case XE_BO_FLAG_VRAM0:
1431 		place->mem_type = XE_PL_VRAM0;
1432 		break;
1433 	case XE_BO_FLAG_VRAM1:
1434 		place->mem_type = XE_PL_VRAM1;
1435 		break;
1436 	case XE_BO_FLAG_STOLEN:
1437 		place->mem_type = XE_PL_STOLEN;
1438 		break;
1439 
1440 	default:
1441 		/* 0 or multiple of the above set */
1442 		return -EINVAL;
1443 	}
1444 
1445 	bo->placement = (struct ttm_placement) {
1446 		.num_placement = 1,
1447 		.placement = place,
1448 	};
1449 
1450 	return 0;
1451 }
1452 
1453 static struct xe_bo *
1454 __xe_bo_create_locked(struct xe_device *xe,
1455 		      struct xe_tile *tile, struct xe_vm *vm,
1456 		      size_t size, u64 start, u64 end,
1457 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1458 		      u64 alignment)
1459 {
1460 	struct xe_bo *bo = NULL;
1461 	int err;
1462 
1463 	if (vm)
1464 		xe_vm_assert_held(vm);
1465 
1466 	if (start || end != ~0ULL) {
1467 		bo = xe_bo_alloc();
1468 		if (IS_ERR(bo))
1469 			return bo;
1470 
1471 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1472 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1473 		if (err) {
1474 			xe_bo_free(bo);
1475 			return ERR_PTR(err);
1476 		}
1477 	}
1478 
1479 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1480 				    vm && !xe_vm_in_fault_mode(vm) &&
1481 				    flags & XE_BO_FLAG_USER ?
1482 				    &vm->lru_bulk_move : NULL, size,
1483 				    cpu_caching, type, flags);
1484 	if (IS_ERR(bo))
1485 		return bo;
1486 
1487 	bo->min_align = alignment;
1488 
1489 	/*
1490 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1491 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1492 	 * will keep a reference to the vm, and avoid circular references
1493 	 * by having all the vm's bo refereferences released at vm close
1494 	 * time.
1495 	 */
1496 	if (vm && xe_bo_is_user(bo))
1497 		xe_vm_get(vm);
1498 	bo->vm = vm;
1499 
1500 	if (bo->flags & XE_BO_FLAG_GGTT) {
1501 		if (!tile && flags & XE_BO_FLAG_STOLEN)
1502 			tile = xe_device_get_root_tile(xe);
1503 
1504 		xe_assert(xe, tile);
1505 
1506 		if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1507 			err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1508 						   start + bo->size, U64_MAX);
1509 		} else {
1510 			err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1511 		}
1512 		if (err)
1513 			goto err_unlock_put_bo;
1514 	}
1515 
1516 	return bo;
1517 
1518 err_unlock_put_bo:
1519 	__xe_bo_unset_bulk_move(bo);
1520 	xe_bo_unlock_vm_held(bo);
1521 	xe_bo_put(bo);
1522 	return ERR_PTR(err);
1523 }
1524 
1525 struct xe_bo *
1526 xe_bo_create_locked_range(struct xe_device *xe,
1527 			  struct xe_tile *tile, struct xe_vm *vm,
1528 			  size_t size, u64 start, u64 end,
1529 			  enum ttm_bo_type type, u32 flags, u64 alignment)
1530 {
1531 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
1532 				     flags, alignment);
1533 }
1534 
1535 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1536 				  struct xe_vm *vm, size_t size,
1537 				  enum ttm_bo_type type, u32 flags)
1538 {
1539 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
1540 				     flags, 0);
1541 }
1542 
1543 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1544 				struct xe_vm *vm, size_t size,
1545 				u16 cpu_caching,
1546 				u32 flags)
1547 {
1548 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1549 						 cpu_caching, ttm_bo_type_device,
1550 						 flags | XE_BO_FLAG_USER, 0);
1551 	if (!IS_ERR(bo))
1552 		xe_bo_unlock_vm_held(bo);
1553 
1554 	return bo;
1555 }
1556 
1557 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1558 			   struct xe_vm *vm, size_t size,
1559 			   enum ttm_bo_type type, u32 flags)
1560 {
1561 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1562 
1563 	if (!IS_ERR(bo))
1564 		xe_bo_unlock_vm_held(bo);
1565 
1566 	return bo;
1567 }
1568 
1569 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1570 				      struct xe_vm *vm,
1571 				      size_t size, u64 offset,
1572 				      enum ttm_bo_type type, u32 flags)
1573 {
1574 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
1575 					       type, flags, 0);
1576 }
1577 
1578 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
1579 					      struct xe_tile *tile,
1580 					      struct xe_vm *vm,
1581 					      size_t size, u64 offset,
1582 					      enum ttm_bo_type type, u32 flags,
1583 					      u64 alignment)
1584 {
1585 	struct xe_bo *bo;
1586 	int err;
1587 	u64 start = offset == ~0ull ? 0 : offset;
1588 	u64 end = offset == ~0ull ? offset : start + size;
1589 
1590 	if (flags & XE_BO_FLAG_STOLEN &&
1591 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1592 		flags |= XE_BO_FLAG_GGTT;
1593 
1594 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1595 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
1596 				       alignment);
1597 	if (IS_ERR(bo))
1598 		return bo;
1599 
1600 	err = xe_bo_pin(bo);
1601 	if (err)
1602 		goto err_put;
1603 
1604 	err = xe_bo_vmap(bo);
1605 	if (err)
1606 		goto err_unpin;
1607 
1608 	xe_bo_unlock_vm_held(bo);
1609 
1610 	return bo;
1611 
1612 err_unpin:
1613 	xe_bo_unpin(bo);
1614 err_put:
1615 	xe_bo_unlock_vm_held(bo);
1616 	xe_bo_put(bo);
1617 	return ERR_PTR(err);
1618 }
1619 
1620 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1621 				   struct xe_vm *vm, size_t size,
1622 				   enum ttm_bo_type type, u32 flags)
1623 {
1624 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1625 }
1626 
1627 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1628 				     const void *data, size_t size,
1629 				     enum ttm_bo_type type, u32 flags)
1630 {
1631 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1632 						ALIGN(size, PAGE_SIZE),
1633 						type, flags);
1634 	if (IS_ERR(bo))
1635 		return bo;
1636 
1637 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1638 
1639 	return bo;
1640 }
1641 
1642 static void __xe_bo_unpin_map_no_vm(void *arg)
1643 {
1644 	xe_bo_unpin_map_no_vm(arg);
1645 }
1646 
1647 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1648 					   size_t size, u32 flags)
1649 {
1650 	struct xe_bo *bo;
1651 	int ret;
1652 
1653 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1654 	if (IS_ERR(bo))
1655 		return bo;
1656 
1657 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1658 	if (ret)
1659 		return ERR_PTR(ret);
1660 
1661 	return bo;
1662 }
1663 
1664 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1665 					     const void *data, size_t size, u32 flags)
1666 {
1667 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1668 
1669 	if (IS_ERR(bo))
1670 		return bo;
1671 
1672 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1673 
1674 	return bo;
1675 }
1676 
1677 /**
1678  * xe_managed_bo_reinit_in_vram
1679  * @xe: xe device
1680  * @tile: Tile where the new buffer will be created
1681  * @src: Managed buffer object allocated in system memory
1682  *
1683  * Replace a managed src buffer object allocated in system memory with a new
1684  * one allocated in vram, copying the data between them.
1685  * Buffer object in VRAM is not going to have the same GGTT address, the caller
1686  * is responsible for making sure that any old references to it are updated.
1687  *
1688  * Returns 0 for success, negative error code otherwise.
1689  */
1690 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1691 {
1692 	struct xe_bo *bo;
1693 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1694 
1695 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1696 
1697 	xe_assert(xe, IS_DGFX(xe));
1698 	xe_assert(xe, !(*src)->vmap.is_iomem);
1699 
1700 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1701 					    (*src)->size, dst_flags);
1702 	if (IS_ERR(bo))
1703 		return PTR_ERR(bo);
1704 
1705 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1706 	*src = bo;
1707 
1708 	return 0;
1709 }
1710 
1711 /*
1712  * XXX: This is in the VM bind data path, likely should calculate this once and
1713  * store, with a recalculation if the BO is moved.
1714  */
1715 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1716 {
1717 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1718 
1719 	if (res->mem_type == XE_PL_STOLEN)
1720 		return xe_ttm_stolen_gpu_offset(xe);
1721 
1722 	return res_to_mem_region(res)->dpa_base;
1723 }
1724 
1725 /**
1726  * xe_bo_pin_external - pin an external BO
1727  * @bo: buffer object to be pinned
1728  *
1729  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1730  * BO. Unique call compared to xe_bo_pin as this function has it own set of
1731  * asserts and code to ensure evict / restore on suspend / resume.
1732  *
1733  * Returns 0 for success, negative error code otherwise.
1734  */
1735 int xe_bo_pin_external(struct xe_bo *bo)
1736 {
1737 	struct xe_device *xe = xe_bo_device(bo);
1738 	int err;
1739 
1740 	xe_assert(xe, !bo->vm);
1741 	xe_assert(xe, xe_bo_is_user(bo));
1742 
1743 	if (!xe_bo_is_pinned(bo)) {
1744 		err = xe_bo_validate(bo, NULL, false);
1745 		if (err)
1746 			return err;
1747 
1748 		if (xe_bo_is_vram(bo)) {
1749 			spin_lock(&xe->pinned.lock);
1750 			list_add_tail(&bo->pinned_link,
1751 				      &xe->pinned.external_vram);
1752 			spin_unlock(&xe->pinned.lock);
1753 		}
1754 	}
1755 
1756 	ttm_bo_pin(&bo->ttm);
1757 
1758 	/*
1759 	 * FIXME: If we always use the reserve / unreserve functions for locking
1760 	 * we do not need this.
1761 	 */
1762 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1763 
1764 	return 0;
1765 }
1766 
1767 int xe_bo_pin(struct xe_bo *bo)
1768 {
1769 	struct xe_device *xe = xe_bo_device(bo);
1770 	int err;
1771 
1772 	/* We currently don't expect user BO to be pinned */
1773 	xe_assert(xe, !xe_bo_is_user(bo));
1774 
1775 	/* Pinned object must be in GGTT or have pinned flag */
1776 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1777 				   XE_BO_FLAG_GGTT));
1778 
1779 	/*
1780 	 * No reason we can't support pinning imported dma-bufs we just don't
1781 	 * expect to pin an imported dma-buf.
1782 	 */
1783 	xe_assert(xe, !bo->ttm.base.import_attach);
1784 
1785 	/* We only expect at most 1 pin */
1786 	xe_assert(xe, !xe_bo_is_pinned(bo));
1787 
1788 	err = xe_bo_validate(bo, NULL, false);
1789 	if (err)
1790 		return err;
1791 
1792 	/*
1793 	 * For pinned objects in on DGFX, which are also in vram, we expect
1794 	 * these to be in contiguous VRAM memory. Required eviction / restore
1795 	 * during suspend / resume (force restore to same physical address).
1796 	 */
1797 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1798 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1799 		struct ttm_place *place = &(bo->placements[0]);
1800 
1801 		if (mem_type_is_vram(place->mem_type)) {
1802 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1803 
1804 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1805 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1806 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1807 
1808 			spin_lock(&xe->pinned.lock);
1809 			list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1810 			spin_unlock(&xe->pinned.lock);
1811 		}
1812 	}
1813 
1814 	ttm_bo_pin(&bo->ttm);
1815 
1816 	/*
1817 	 * FIXME: If we always use the reserve / unreserve functions for locking
1818 	 * we do not need this.
1819 	 */
1820 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  * xe_bo_unpin_external - unpin an external BO
1827  * @bo: buffer object to be unpinned
1828  *
1829  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1830  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1831  * asserts and code to ensure evict / restore on suspend / resume.
1832  *
1833  * Returns 0 for success, negative error code otherwise.
1834  */
1835 void xe_bo_unpin_external(struct xe_bo *bo)
1836 {
1837 	struct xe_device *xe = xe_bo_device(bo);
1838 
1839 	xe_assert(xe, !bo->vm);
1840 	xe_assert(xe, xe_bo_is_pinned(bo));
1841 	xe_assert(xe, xe_bo_is_user(bo));
1842 
1843 	spin_lock(&xe->pinned.lock);
1844 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1845 		list_del_init(&bo->pinned_link);
1846 	spin_unlock(&xe->pinned.lock);
1847 
1848 	ttm_bo_unpin(&bo->ttm);
1849 
1850 	/*
1851 	 * FIXME: If we always use the reserve / unreserve functions for locking
1852 	 * we do not need this.
1853 	 */
1854 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1855 }
1856 
1857 void xe_bo_unpin(struct xe_bo *bo)
1858 {
1859 	struct xe_device *xe = xe_bo_device(bo);
1860 
1861 	xe_assert(xe, !bo->ttm.base.import_attach);
1862 	xe_assert(xe, xe_bo_is_pinned(bo));
1863 
1864 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1865 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1866 		struct ttm_place *place = &(bo->placements[0]);
1867 
1868 		if (mem_type_is_vram(place->mem_type)) {
1869 			spin_lock(&xe->pinned.lock);
1870 			xe_assert(xe, !list_empty(&bo->pinned_link));
1871 			list_del_init(&bo->pinned_link);
1872 			spin_unlock(&xe->pinned.lock);
1873 		}
1874 	}
1875 
1876 	ttm_bo_unpin(&bo->ttm);
1877 }
1878 
1879 /**
1880  * xe_bo_validate() - Make sure the bo is in an allowed placement
1881  * @bo: The bo,
1882  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1883  *      NULL. Used together with @allow_res_evict.
1884  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1885  *                   reservation object.
1886  *
1887  * Make sure the bo is in allowed placement, migrating it if necessary. If
1888  * needed, other bos will be evicted. If bos selected for eviction shares
1889  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1890  * set to true, otherwise they will be bypassed.
1891  *
1892  * Return: 0 on success, negative error code on failure. May return
1893  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1894  */
1895 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1896 {
1897 	struct ttm_operation_ctx ctx = {
1898 		.interruptible = true,
1899 		.no_wait_gpu = false,
1900 	};
1901 
1902 	if (vm) {
1903 		lockdep_assert_held(&vm->lock);
1904 		xe_vm_assert_held(vm);
1905 
1906 		ctx.allow_res_evict = allow_res_evict;
1907 		ctx.resv = xe_vm_resv(vm);
1908 	}
1909 
1910 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1911 }
1912 
1913 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1914 {
1915 	if (bo->destroy == &xe_ttm_bo_destroy)
1916 		return true;
1917 
1918 	return false;
1919 }
1920 
1921 /*
1922  * Resolve a BO address. There is no assert to check if the proper lock is held
1923  * so it should only be used in cases where it is not fatal to get the wrong
1924  * address, such as printing debug information, but not in cases where memory is
1925  * written based on this result.
1926  */
1927 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1928 {
1929 	struct xe_device *xe = xe_bo_device(bo);
1930 	struct xe_res_cursor cur;
1931 	u64 page;
1932 
1933 	xe_assert(xe, page_size <= PAGE_SIZE);
1934 	page = offset >> PAGE_SHIFT;
1935 	offset &= (PAGE_SIZE - 1);
1936 
1937 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1938 		xe_assert(xe, bo->ttm.ttm);
1939 
1940 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1941 				page_size, &cur);
1942 		return xe_res_dma(&cur) + offset;
1943 	} else {
1944 		struct xe_res_cursor cur;
1945 
1946 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1947 			     page_size, &cur);
1948 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1949 	}
1950 }
1951 
1952 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1953 {
1954 	if (!READ_ONCE(bo->ttm.pin_count))
1955 		xe_bo_assert_held(bo);
1956 	return __xe_bo_addr(bo, offset, page_size);
1957 }
1958 
1959 int xe_bo_vmap(struct xe_bo *bo)
1960 {
1961 	void *virtual;
1962 	bool is_iomem;
1963 	int ret;
1964 
1965 	xe_bo_assert_held(bo);
1966 
1967 	if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1968 		return -EINVAL;
1969 
1970 	if (!iosys_map_is_null(&bo->vmap))
1971 		return 0;
1972 
1973 	/*
1974 	 * We use this more or less deprecated interface for now since
1975 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1976 	 * single page bos, which is done here.
1977 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1978 	 * to use struct iosys_map.
1979 	 */
1980 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1981 	if (ret)
1982 		return ret;
1983 
1984 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1985 	if (is_iomem)
1986 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1987 	else
1988 		iosys_map_set_vaddr(&bo->vmap, virtual);
1989 
1990 	return 0;
1991 }
1992 
1993 static void __xe_bo_vunmap(struct xe_bo *bo)
1994 {
1995 	if (!iosys_map_is_null(&bo->vmap)) {
1996 		iosys_map_clear(&bo->vmap);
1997 		ttm_bo_kunmap(&bo->kmap);
1998 	}
1999 }
2000 
2001 void xe_bo_vunmap(struct xe_bo *bo)
2002 {
2003 	xe_bo_assert_held(bo);
2004 	__xe_bo_vunmap(bo);
2005 }
2006 
2007 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2008 			struct drm_file *file)
2009 {
2010 	struct xe_device *xe = to_xe_device(dev);
2011 	struct xe_file *xef = to_xe_file(file);
2012 	struct drm_xe_gem_create *args = data;
2013 	struct xe_vm *vm = NULL;
2014 	struct xe_bo *bo;
2015 	unsigned int bo_flags;
2016 	u32 handle;
2017 	int err;
2018 
2019 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2020 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2021 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2022 		return -EINVAL;
2023 
2024 	/* at least one valid memory placement must be specified */
2025 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2026 			 !args->placement))
2027 		return -EINVAL;
2028 
2029 	if (XE_IOCTL_DBG(xe, args->flags &
2030 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2031 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2032 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2033 		return -EINVAL;
2034 
2035 	if (XE_IOCTL_DBG(xe, args->handle))
2036 		return -EINVAL;
2037 
2038 	if (XE_IOCTL_DBG(xe, !args->size))
2039 		return -EINVAL;
2040 
2041 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2042 		return -EINVAL;
2043 
2044 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2045 		return -EINVAL;
2046 
2047 	bo_flags = 0;
2048 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2049 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2050 
2051 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2052 		bo_flags |= XE_BO_FLAG_SCANOUT;
2053 
2054 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2055 
2056 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2057 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2058 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2059 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2060 	    IS_ALIGNED(args->size, SZ_64K))
2061 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2062 
2063 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2064 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2065 			return -EINVAL;
2066 
2067 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2068 	}
2069 
2070 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2071 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2072 		return -EINVAL;
2073 
2074 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2075 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2076 		return -EINVAL;
2077 
2078 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2079 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2080 		return -EINVAL;
2081 
2082 	if (args->vm_id) {
2083 		vm = xe_vm_lookup(xef, args->vm_id);
2084 		if (XE_IOCTL_DBG(xe, !vm))
2085 			return -ENOENT;
2086 		err = xe_vm_lock(vm, true);
2087 		if (err)
2088 			goto out_vm;
2089 	}
2090 
2091 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2092 			       bo_flags);
2093 
2094 	if (vm)
2095 		xe_vm_unlock(vm);
2096 
2097 	if (IS_ERR(bo)) {
2098 		err = PTR_ERR(bo);
2099 		goto out_vm;
2100 	}
2101 
2102 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2103 	if (err)
2104 		goto out_bulk;
2105 
2106 	args->handle = handle;
2107 	goto out_put;
2108 
2109 out_bulk:
2110 	if (vm && !xe_vm_in_fault_mode(vm)) {
2111 		xe_vm_lock(vm, false);
2112 		__xe_bo_unset_bulk_move(bo);
2113 		xe_vm_unlock(vm);
2114 	}
2115 out_put:
2116 	xe_bo_put(bo);
2117 out_vm:
2118 	if (vm)
2119 		xe_vm_put(vm);
2120 
2121 	return err;
2122 }
2123 
2124 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2125 			     struct drm_file *file)
2126 {
2127 	struct xe_device *xe = to_xe_device(dev);
2128 	struct drm_xe_gem_mmap_offset *args = data;
2129 	struct drm_gem_object *gem_obj;
2130 
2131 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2132 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2133 		return -EINVAL;
2134 
2135 	if (XE_IOCTL_DBG(xe, args->flags))
2136 		return -EINVAL;
2137 
2138 	gem_obj = drm_gem_object_lookup(file, args->handle);
2139 	if (XE_IOCTL_DBG(xe, !gem_obj))
2140 		return -ENOENT;
2141 
2142 	/* The mmap offset was set up at BO allocation time. */
2143 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2144 
2145 	xe_bo_put(gem_to_xe_bo(gem_obj));
2146 	return 0;
2147 }
2148 
2149 /**
2150  * xe_bo_lock() - Lock the buffer object's dma_resv object
2151  * @bo: The struct xe_bo whose lock is to be taken
2152  * @intr: Whether to perform any wait interruptible
2153  *
2154  * Locks the buffer object's dma_resv object. If the buffer object is
2155  * pointing to a shared dma_resv object, that shared lock is locked.
2156  *
2157  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2158  * contended lock was interrupted. If @intr is set to false, the
2159  * function always returns 0.
2160  */
2161 int xe_bo_lock(struct xe_bo *bo, bool intr)
2162 {
2163 	if (intr)
2164 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2165 
2166 	dma_resv_lock(bo->ttm.base.resv, NULL);
2167 
2168 	return 0;
2169 }
2170 
2171 /**
2172  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2173  * @bo: The struct xe_bo whose lock is to be released.
2174  *
2175  * Unlock a buffer object lock that was locked by xe_bo_lock().
2176  */
2177 void xe_bo_unlock(struct xe_bo *bo)
2178 {
2179 	dma_resv_unlock(bo->ttm.base.resv);
2180 }
2181 
2182 /**
2183  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2184  * @bo: The buffer object to migrate
2185  * @mem_type: The TTM memory type intended to migrate to
2186  *
2187  * Check whether the buffer object supports migration to the
2188  * given memory type. Note that pinning may affect the ability to migrate as
2189  * returned by this function.
2190  *
2191  * This function is primarily intended as a helper for checking the
2192  * possibility to migrate buffer objects and can be called without
2193  * the object lock held.
2194  *
2195  * Return: true if migration is possible, false otherwise.
2196  */
2197 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2198 {
2199 	unsigned int cur_place;
2200 
2201 	if (bo->ttm.type == ttm_bo_type_kernel)
2202 		return true;
2203 
2204 	if (bo->ttm.type == ttm_bo_type_sg)
2205 		return false;
2206 
2207 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2208 	     cur_place++) {
2209 		if (bo->placements[cur_place].mem_type == mem_type)
2210 			return true;
2211 	}
2212 
2213 	return false;
2214 }
2215 
2216 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2217 {
2218 	memset(place, 0, sizeof(*place));
2219 	place->mem_type = mem_type;
2220 }
2221 
2222 /**
2223  * xe_bo_migrate - Migrate an object to the desired region id
2224  * @bo: The buffer object to migrate.
2225  * @mem_type: The TTM region type to migrate to.
2226  *
2227  * Attempt to migrate the buffer object to the desired memory region. The
2228  * buffer object may not be pinned, and must be locked.
2229  * On successful completion, the object memory type will be updated,
2230  * but an async migration task may not have completed yet, and to
2231  * accomplish that, the object's kernel fences must be signaled with
2232  * the object lock held.
2233  *
2234  * Return: 0 on success. Negative error code on failure. In particular may
2235  * return -EINTR or -ERESTARTSYS if signal pending.
2236  */
2237 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2238 {
2239 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2240 	struct ttm_operation_ctx ctx = {
2241 		.interruptible = true,
2242 		.no_wait_gpu = false,
2243 	};
2244 	struct ttm_placement placement;
2245 	struct ttm_place requested;
2246 
2247 	xe_bo_assert_held(bo);
2248 
2249 	if (bo->ttm.resource->mem_type == mem_type)
2250 		return 0;
2251 
2252 	if (xe_bo_is_pinned(bo))
2253 		return -EBUSY;
2254 
2255 	if (!xe_bo_can_migrate(bo, mem_type))
2256 		return -EINVAL;
2257 
2258 	xe_place_from_ttm_type(mem_type, &requested);
2259 	placement.num_placement = 1;
2260 	placement.placement = &requested;
2261 
2262 	/*
2263 	 * Stolen needs to be handled like below VRAM handling if we ever need
2264 	 * to support it.
2265 	 */
2266 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2267 
2268 	if (mem_type_is_vram(mem_type)) {
2269 		u32 c = 0;
2270 
2271 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2272 	}
2273 
2274 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2275 }
2276 
2277 /**
2278  * xe_bo_evict - Evict an object to evict placement
2279  * @bo: The buffer object to migrate.
2280  * @force_alloc: Set force_alloc in ttm_operation_ctx
2281  *
2282  * On successful completion, the object memory will be moved to evict
2283  * placement. Ths function blocks until the object has been fully moved.
2284  *
2285  * Return: 0 on success. Negative error code on failure.
2286  */
2287 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2288 {
2289 	struct ttm_operation_ctx ctx = {
2290 		.interruptible = false,
2291 		.no_wait_gpu = false,
2292 		.force_alloc = force_alloc,
2293 	};
2294 	struct ttm_placement placement;
2295 	int ret;
2296 
2297 	xe_evict_flags(&bo->ttm, &placement);
2298 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2299 	if (ret)
2300 		return ret;
2301 
2302 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2303 			      false, MAX_SCHEDULE_TIMEOUT);
2304 
2305 	return 0;
2306 }
2307 
2308 /**
2309  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2310  * placed in system memory.
2311  * @bo: The xe_bo
2312  *
2313  * Return: true if extra pages need to be allocated, false otherwise.
2314  */
2315 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2316 {
2317 	struct xe_device *xe = xe_bo_device(bo);
2318 
2319 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2320 		return false;
2321 
2322 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2323 		return false;
2324 
2325 	/* On discrete GPUs, if the GPU can access this buffer from
2326 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2327 	 * can't be used since there's no CCS storage associated with
2328 	 * non-VRAM addresses.
2329 	 */
2330 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2331 		return false;
2332 
2333 	return true;
2334 }
2335 
2336 /**
2337  * __xe_bo_release_dummy() - Dummy kref release function
2338  * @kref: The embedded struct kref.
2339  *
2340  * Dummy release function for xe_bo_put_deferred(). Keep off.
2341  */
2342 void __xe_bo_release_dummy(struct kref *kref)
2343 {
2344 }
2345 
2346 /**
2347  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2348  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2349  *
2350  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2351  * The @deferred list can be either an onstack local list or a global
2352  * shared list used by a workqueue.
2353  */
2354 void xe_bo_put_commit(struct llist_head *deferred)
2355 {
2356 	struct llist_node *freed;
2357 	struct xe_bo *bo, *next;
2358 
2359 	if (!deferred)
2360 		return;
2361 
2362 	freed = llist_del_all(deferred);
2363 	if (!freed)
2364 		return;
2365 
2366 	llist_for_each_entry_safe(bo, next, freed, freed)
2367 		drm_gem_object_free(&bo->ttm.base.refcount);
2368 }
2369 
2370 void xe_bo_put(struct xe_bo *bo)
2371 {
2372 	might_sleep();
2373 	if (bo) {
2374 #ifdef CONFIG_PROC_FS
2375 		if (bo->client)
2376 			might_lock(&bo->client->bos_lock);
2377 #endif
2378 		if (bo->ggtt_node && bo->ggtt_node->ggtt)
2379 			might_lock(&bo->ggtt_node->ggtt->lock);
2380 		drm_gem_object_put(&bo->ttm.base);
2381 	}
2382 }
2383 
2384 /**
2385  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2386  * @file_priv: ...
2387  * @dev: ...
2388  * @args: ...
2389  *
2390  * See dumb_create() hook in include/drm/drm_drv.h
2391  *
2392  * Return: ...
2393  */
2394 int xe_bo_dumb_create(struct drm_file *file_priv,
2395 		      struct drm_device *dev,
2396 		      struct drm_mode_create_dumb *args)
2397 {
2398 	struct xe_device *xe = to_xe_device(dev);
2399 	struct xe_bo *bo;
2400 	uint32_t handle;
2401 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2402 	int err;
2403 	u32 page_size = max_t(u32, PAGE_SIZE,
2404 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2405 
2406 	args->pitch = ALIGN(args->width * cpp, 64);
2407 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2408 			   page_size);
2409 
2410 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2411 			       DRM_XE_GEM_CPU_CACHING_WC,
2412 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2413 			       XE_BO_FLAG_SCANOUT |
2414 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2415 	if (IS_ERR(bo))
2416 		return PTR_ERR(bo);
2417 
2418 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2419 	/* drop reference from allocate - handle holds it now */
2420 	drm_gem_object_put(&bo->ttm.base);
2421 	if (!err)
2422 		args->handle = handle;
2423 	return err;
2424 }
2425 
2426 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2427 {
2428 	struct ttm_buffer_object *tbo = &bo->ttm;
2429 	struct ttm_device *bdev = tbo->bdev;
2430 
2431 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2432 
2433 	list_del_init(&bo->vram_userfault_link);
2434 }
2435 
2436 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2437 #include "tests/xe_bo.c"
2438 #endif
2439