1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_managed.h> 14 #include <drm/ttm/ttm_backup.h> 15 #include <drm/ttm/ttm_device.h> 16 #include <drm/ttm/ttm_placement.h> 17 #include <drm/ttm/ttm_tt.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include <kunit/static_stub.h> 21 22 #include "xe_device.h" 23 #include "xe_dma_buf.h" 24 #include "xe_drm_client.h" 25 #include "xe_ggtt.h" 26 #include "xe_gt.h" 27 #include "xe_map.h" 28 #include "xe_migrate.h" 29 #include "xe_pm.h" 30 #include "xe_preempt_fence.h" 31 #include "xe_pxp.h" 32 #include "xe_res_cursor.h" 33 #include "xe_shrinker.h" 34 #include "xe_trace_bo.h" 35 #include "xe_ttm_stolen_mgr.h" 36 #include "xe_vm.h" 37 38 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 39 [XE_PL_SYSTEM] = "system", 40 [XE_PL_TT] = "gtt", 41 [XE_PL_VRAM0] = "vram0", 42 [XE_PL_VRAM1] = "vram1", 43 [XE_PL_STOLEN] = "stolen" 44 }; 45 46 static const struct ttm_place sys_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = XE_PL_SYSTEM, 50 .flags = 0, 51 }; 52 53 static struct ttm_placement sys_placement = { 54 .num_placement = 1, 55 .placement = &sys_placement_flags, 56 }; 57 58 static const struct ttm_place tt_placement_flags[] = { 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_TT, 63 .flags = TTM_PL_FLAG_DESIRED, 64 }, 65 { 66 .fpfn = 0, 67 .lpfn = 0, 68 .mem_type = XE_PL_SYSTEM, 69 .flags = TTM_PL_FLAG_FALLBACK, 70 } 71 }; 72 73 static struct ttm_placement tt_placement = { 74 .num_placement = 2, 75 .placement = tt_placement_flags, 76 }; 77 78 bool mem_type_is_vram(u32 mem_type) 79 { 80 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 81 } 82 83 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 84 { 85 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 86 } 87 88 static bool resource_is_vram(struct ttm_resource *res) 89 { 90 return mem_type_is_vram(res->mem_type); 91 } 92 93 bool xe_bo_is_vram(struct xe_bo *bo) 94 { 95 return resource_is_vram(bo->ttm.resource) || 96 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 97 } 98 99 bool xe_bo_is_stolen(struct xe_bo *bo) 100 { 101 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 102 } 103 104 /** 105 * xe_bo_has_single_placement - check if BO is placed only in one memory location 106 * @bo: The BO 107 * 108 * This function checks whether a given BO is placed in only one memory location. 109 * 110 * Returns: true if the BO is placed in a single memory location, false otherwise. 111 * 112 */ 113 bool xe_bo_has_single_placement(struct xe_bo *bo) 114 { 115 return bo->placement.num_placement == 1; 116 } 117 118 /** 119 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 120 * @bo: The BO 121 * 122 * The stolen memory is accessed through the PCI BAR for both DGFX and some 123 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 124 * 125 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 126 */ 127 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 128 { 129 return xe_bo_is_stolen(bo) && 130 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 131 } 132 133 /** 134 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 135 * @bo: The BO 136 * 137 * Check if a given bo is bound through VM_BIND. This requires the 138 * reservation lock for the BO to be held. 139 * 140 * Returns: boolean 141 */ 142 bool xe_bo_is_vm_bound(struct xe_bo *bo) 143 { 144 xe_bo_assert_held(bo); 145 146 return !list_empty(&bo->ttm.base.gpuva.list); 147 } 148 149 static bool xe_bo_is_user(struct xe_bo *bo) 150 { 151 return bo->flags & XE_BO_FLAG_USER; 152 } 153 154 static struct xe_migrate * 155 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 156 { 157 struct xe_tile *tile; 158 159 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 160 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 161 return tile->migrate; 162 } 163 164 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 165 { 166 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 167 struct ttm_resource_manager *mgr; 168 struct xe_ttm_vram_mgr *vram_mgr; 169 170 xe_assert(xe, resource_is_vram(res)); 171 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 172 vram_mgr = to_xe_ttm_vram_mgr(mgr); 173 174 return container_of(vram_mgr, struct xe_vram_region, ttm); 175 } 176 177 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 178 u32 bo_flags, u32 *c) 179 { 180 if (bo_flags & XE_BO_FLAG_SYSTEM) { 181 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 182 183 bo->placements[*c] = (struct ttm_place) { 184 .mem_type = XE_PL_TT, 185 }; 186 *c += 1; 187 } 188 } 189 190 static bool force_contiguous(u32 bo_flags) 191 { 192 /* 193 * For eviction / restore on suspend / resume objects pinned in VRAM 194 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 195 */ 196 return bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT); 197 } 198 199 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 200 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 201 { 202 struct ttm_place place = { .mem_type = mem_type }; 203 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 204 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 205 206 struct xe_vram_region *vram; 207 u64 io_size; 208 209 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 210 211 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 212 xe_assert(xe, vram && vram->usable_size); 213 io_size = vram->io_size; 214 215 if (force_contiguous(bo_flags)) 216 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 217 218 if (io_size < vram->usable_size) { 219 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 220 place.fpfn = 0; 221 place.lpfn = io_size >> PAGE_SHIFT; 222 } else { 223 place.flags |= TTM_PL_FLAG_TOPDOWN; 224 } 225 } 226 places[*c] = place; 227 *c += 1; 228 } 229 230 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 231 u32 bo_flags, u32 *c) 232 { 233 if (bo_flags & XE_BO_FLAG_VRAM0) 234 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 235 if (bo_flags & XE_BO_FLAG_VRAM1) 236 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 237 } 238 239 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 240 u32 bo_flags, u32 *c) 241 { 242 if (bo_flags & XE_BO_FLAG_STOLEN) { 243 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 244 245 bo->placements[*c] = (struct ttm_place) { 246 .mem_type = XE_PL_STOLEN, 247 .flags = force_contiguous(bo_flags) ? 248 TTM_PL_FLAG_CONTIGUOUS : 0, 249 }; 250 *c += 1; 251 } 252 } 253 254 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 255 u32 bo_flags) 256 { 257 u32 c = 0; 258 259 try_add_vram(xe, bo, bo_flags, &c); 260 try_add_system(xe, bo, bo_flags, &c); 261 try_add_stolen(xe, bo, bo_flags, &c); 262 263 if (!c) 264 return -EINVAL; 265 266 bo->placement = (struct ttm_placement) { 267 .num_placement = c, 268 .placement = bo->placements, 269 }; 270 271 return 0; 272 } 273 274 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 275 u32 bo_flags) 276 { 277 xe_bo_assert_held(bo); 278 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 279 } 280 281 static void xe_evict_flags(struct ttm_buffer_object *tbo, 282 struct ttm_placement *placement) 283 { 284 struct xe_bo *bo; 285 286 if (!xe_bo_is_xe_bo(tbo)) { 287 /* Don't handle scatter gather BOs */ 288 if (tbo->type == ttm_bo_type_sg) { 289 placement->num_placement = 0; 290 return; 291 } 292 293 *placement = sys_placement; 294 return; 295 } 296 297 bo = ttm_to_xe_bo(tbo); 298 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 299 *placement = sys_placement; 300 return; 301 } 302 303 /* 304 * For xe, sg bos that are evicted to system just triggers a 305 * rebind of the sg list upon subsequent validation to XE_PL_TT. 306 */ 307 switch (tbo->resource->mem_type) { 308 case XE_PL_VRAM0: 309 case XE_PL_VRAM1: 310 case XE_PL_STOLEN: 311 *placement = tt_placement; 312 break; 313 case XE_PL_TT: 314 default: 315 *placement = sys_placement; 316 break; 317 } 318 } 319 320 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 321 struct xe_ttm_tt { 322 struct ttm_tt ttm; 323 /** @xe - The xe device */ 324 struct xe_device *xe; 325 struct sg_table sgt; 326 struct sg_table *sg; 327 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 328 bool purgeable; 329 }; 330 331 static int xe_tt_map_sg(struct ttm_tt *tt) 332 { 333 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 334 unsigned long num_pages = tt->num_pages; 335 int ret; 336 337 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 338 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 339 340 if (xe_tt->sg) 341 return 0; 342 343 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 344 num_pages, 0, 345 (u64)num_pages << PAGE_SHIFT, 346 xe_sg_segment_size(xe_tt->xe->drm.dev), 347 GFP_KERNEL); 348 if (ret) 349 return ret; 350 351 xe_tt->sg = &xe_tt->sgt; 352 ret = dma_map_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 353 DMA_ATTR_SKIP_CPU_SYNC); 354 if (ret) { 355 sg_free_table(xe_tt->sg); 356 xe_tt->sg = NULL; 357 return ret; 358 } 359 360 return 0; 361 } 362 363 static void xe_tt_unmap_sg(struct ttm_tt *tt) 364 { 365 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 366 367 if (xe_tt->sg) { 368 dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, 369 DMA_BIDIRECTIONAL, 0); 370 sg_free_table(xe_tt->sg); 371 xe_tt->sg = NULL; 372 } 373 } 374 375 struct sg_table *xe_bo_sg(struct xe_bo *bo) 376 { 377 struct ttm_tt *tt = bo->ttm.ttm; 378 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 379 380 return xe_tt->sg; 381 } 382 383 /* 384 * Account ttm pages against the device shrinker's shrinkable and 385 * purgeable counts. 386 */ 387 static void xe_ttm_tt_account_add(struct ttm_tt *tt) 388 { 389 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 390 391 if (xe_tt->purgeable) 392 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, tt->num_pages); 393 else 394 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, tt->num_pages, 0); 395 } 396 397 static void xe_ttm_tt_account_subtract(struct ttm_tt *tt) 398 { 399 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 400 401 if (xe_tt->purgeable) 402 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, -(long)tt->num_pages); 403 else 404 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, -(long)tt->num_pages, 0); 405 } 406 407 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 408 u32 page_flags) 409 { 410 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 411 struct xe_device *xe = xe_bo_device(bo); 412 struct xe_ttm_tt *xe_tt; 413 struct ttm_tt *tt; 414 unsigned long extra_pages; 415 enum ttm_caching caching = ttm_cached; 416 int err; 417 418 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 419 if (!xe_tt) 420 return NULL; 421 422 tt = &xe_tt->ttm; 423 xe_tt->xe = xe; 424 425 extra_pages = 0; 426 if (xe_bo_needs_ccs_pages(bo)) 427 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 428 PAGE_SIZE); 429 430 /* 431 * DGFX system memory is always WB / ttm_cached, since 432 * other caching modes are only supported on x86. DGFX 433 * GPU system memory accesses are always coherent with the 434 * CPU. 435 */ 436 if (!IS_DGFX(xe)) { 437 switch (bo->cpu_caching) { 438 case DRM_XE_GEM_CPU_CACHING_WC: 439 caching = ttm_write_combined; 440 break; 441 default: 442 caching = ttm_cached; 443 break; 444 } 445 446 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 447 448 /* 449 * Display scanout is always non-coherent with the CPU cache. 450 * 451 * For Xe_LPG and beyond, PPGTT PTE lookups are also 452 * non-coherent and require a CPU:WC mapping. 453 */ 454 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 455 (xe->info.graphics_verx100 >= 1270 && 456 bo->flags & XE_BO_FLAG_PAGETABLE)) 457 caching = ttm_write_combined; 458 } 459 460 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 461 /* 462 * Valid only for internally-created buffers only, for 463 * which cpu_caching is never initialized. 464 */ 465 xe_assert(xe, bo->cpu_caching == 0); 466 caching = ttm_uncached; 467 } 468 469 if (ttm_bo->type != ttm_bo_type_sg) 470 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 471 472 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 473 if (err) { 474 kfree(xe_tt); 475 return NULL; 476 } 477 478 if (ttm_bo->type != ttm_bo_type_sg) { 479 err = ttm_tt_setup_backup(tt); 480 if (err) { 481 ttm_tt_fini(tt); 482 kfree(xe_tt); 483 return NULL; 484 } 485 } 486 487 return tt; 488 } 489 490 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 491 struct ttm_operation_ctx *ctx) 492 { 493 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 494 int err; 495 496 /* 497 * dma-bufs are not populated with pages, and the dma- 498 * addresses are set up when moved to XE_PL_TT. 499 */ 500 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 501 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 502 return 0; 503 504 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 505 err = ttm_tt_restore(ttm_dev, tt, ctx); 506 } else { 507 ttm_tt_clear_backed_up(tt); 508 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 509 } 510 if (err) 511 return err; 512 513 xe_tt->purgeable = false; 514 xe_ttm_tt_account_add(tt); 515 516 return 0; 517 } 518 519 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 520 { 521 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 522 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 523 return; 524 525 xe_tt_unmap_sg(tt); 526 527 ttm_pool_free(&ttm_dev->pool, tt); 528 xe_ttm_tt_account_subtract(tt); 529 } 530 531 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 532 { 533 ttm_tt_fini(tt); 534 kfree(tt); 535 } 536 537 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 538 { 539 struct xe_ttm_vram_mgr_resource *vres = 540 to_xe_ttm_vram_mgr_resource(mem); 541 542 return vres->used_visible_size == mem->size; 543 } 544 545 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 546 struct ttm_resource *mem) 547 { 548 struct xe_device *xe = ttm_to_xe_device(bdev); 549 550 switch (mem->mem_type) { 551 case XE_PL_SYSTEM: 552 case XE_PL_TT: 553 return 0; 554 case XE_PL_VRAM0: 555 case XE_PL_VRAM1: { 556 struct xe_vram_region *vram = res_to_mem_region(mem); 557 558 if (!xe_ttm_resource_visible(mem)) 559 return -EINVAL; 560 561 mem->bus.offset = mem->start << PAGE_SHIFT; 562 563 if (vram->mapping && 564 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 565 mem->bus.addr = (u8 __force *)vram->mapping + 566 mem->bus.offset; 567 568 mem->bus.offset += vram->io_start; 569 mem->bus.is_iomem = true; 570 571 #if !IS_ENABLED(CONFIG_X86) 572 mem->bus.caching = ttm_write_combined; 573 #endif 574 return 0; 575 } case XE_PL_STOLEN: 576 return xe_ttm_stolen_io_mem_reserve(xe, mem); 577 default: 578 return -EINVAL; 579 } 580 } 581 582 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 583 const struct ttm_operation_ctx *ctx) 584 { 585 struct dma_resv_iter cursor; 586 struct dma_fence *fence; 587 struct drm_gem_object *obj = &bo->ttm.base; 588 struct drm_gpuvm_bo *vm_bo; 589 bool idle = false; 590 int ret = 0; 591 592 dma_resv_assert_held(bo->ttm.base.resv); 593 594 if (!list_empty(&bo->ttm.base.gpuva.list)) { 595 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 596 DMA_RESV_USAGE_BOOKKEEP); 597 dma_resv_for_each_fence_unlocked(&cursor, fence) 598 dma_fence_enable_sw_signaling(fence); 599 dma_resv_iter_end(&cursor); 600 } 601 602 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 603 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 604 struct drm_gpuva *gpuva; 605 606 if (!xe_vm_in_fault_mode(vm)) { 607 drm_gpuvm_bo_evict(vm_bo, true); 608 continue; 609 } 610 611 if (!idle) { 612 long timeout; 613 614 if (ctx->no_wait_gpu && 615 !dma_resv_test_signaled(bo->ttm.base.resv, 616 DMA_RESV_USAGE_BOOKKEEP)) 617 return -EBUSY; 618 619 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 620 DMA_RESV_USAGE_BOOKKEEP, 621 ctx->interruptible, 622 MAX_SCHEDULE_TIMEOUT); 623 if (!timeout) 624 return -ETIME; 625 if (timeout < 0) 626 return timeout; 627 628 idle = true; 629 } 630 631 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 632 struct xe_vma *vma = gpuva_to_vma(gpuva); 633 634 trace_xe_vma_evict(vma); 635 ret = xe_vm_invalidate_vma(vma); 636 if (XE_WARN_ON(ret)) 637 return ret; 638 } 639 } 640 641 return ret; 642 } 643 644 /* 645 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 646 * Note that unmapping the attachment is deferred to the next 647 * map_attachment time, or to bo destroy (after idling) whichever comes first. 648 * This is to avoid syncing before unmap_attachment(), assuming that the 649 * caller relies on idling the reservation object before moving the 650 * backing store out. Should that assumption not hold, then we will be able 651 * to unconditionally call unmap_attachment() when moving out to system. 652 */ 653 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 654 struct ttm_resource *new_res) 655 { 656 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 657 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 658 ttm); 659 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 660 struct sg_table *sg; 661 662 xe_assert(xe, attach); 663 xe_assert(xe, ttm_bo->ttm); 664 665 if (new_res->mem_type == XE_PL_SYSTEM) 666 goto out; 667 668 if (ttm_bo->sg) { 669 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 670 ttm_bo->sg = NULL; 671 } 672 673 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 674 if (IS_ERR(sg)) 675 return PTR_ERR(sg); 676 677 ttm_bo->sg = sg; 678 xe_tt->sg = sg; 679 680 out: 681 ttm_bo_move_null(ttm_bo, new_res); 682 683 return 0; 684 } 685 686 /** 687 * xe_bo_move_notify - Notify subsystems of a pending move 688 * @bo: The buffer object 689 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 690 * 691 * This function notifies subsystems of an upcoming buffer move. 692 * Upon receiving such a notification, subsystems should schedule 693 * halting access to the underlying pages and optionally add a fence 694 * to the buffer object's dma_resv object, that signals when access is 695 * stopped. The caller will wait on all dma_resv fences before 696 * starting the move. 697 * 698 * A subsystem may commence access to the object after obtaining 699 * bindings to the new backing memory under the object lock. 700 * 701 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 702 * negative error code on error. 703 */ 704 static int xe_bo_move_notify(struct xe_bo *bo, 705 const struct ttm_operation_ctx *ctx) 706 { 707 struct ttm_buffer_object *ttm_bo = &bo->ttm; 708 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 709 struct ttm_resource *old_mem = ttm_bo->resource; 710 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 711 int ret; 712 713 /* 714 * If this starts to call into many components, consider 715 * using a notification chain here. 716 */ 717 718 if (xe_bo_is_pinned(bo)) 719 return -EINVAL; 720 721 xe_bo_vunmap(bo); 722 ret = xe_bo_trigger_rebind(xe, bo, ctx); 723 if (ret) 724 return ret; 725 726 /* Don't call move_notify() for imported dma-bufs. */ 727 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 728 dma_buf_move_notify(ttm_bo->base.dma_buf); 729 730 /* 731 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 732 * so if we moved from VRAM make sure to unlink this from the userfault 733 * tracking. 734 */ 735 if (mem_type_is_vram(old_mem_type)) { 736 mutex_lock(&xe->mem_access.vram_userfault.lock); 737 if (!list_empty(&bo->vram_userfault_link)) 738 list_del_init(&bo->vram_userfault_link); 739 mutex_unlock(&xe->mem_access.vram_userfault.lock); 740 } 741 742 return 0; 743 } 744 745 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 746 struct ttm_operation_ctx *ctx, 747 struct ttm_resource *new_mem, 748 struct ttm_place *hop) 749 { 750 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 751 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 752 struct ttm_resource *old_mem = ttm_bo->resource; 753 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 754 struct ttm_tt *ttm = ttm_bo->ttm; 755 struct xe_migrate *migrate = NULL; 756 struct dma_fence *fence; 757 bool move_lacks_source; 758 bool tt_has_data; 759 bool needs_clear; 760 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 761 ttm && ttm_tt_is_populated(ttm)) ? true : false; 762 int ret = 0; 763 764 /* Bo creation path, moving to system or TT. */ 765 if ((!old_mem && ttm) && !handle_system_ccs) { 766 if (new_mem->mem_type == XE_PL_TT) 767 ret = xe_tt_map_sg(ttm); 768 if (!ret) 769 ttm_bo_move_null(ttm_bo, new_mem); 770 goto out; 771 } 772 773 if (ttm_bo->type == ttm_bo_type_sg) { 774 ret = xe_bo_move_notify(bo, ctx); 775 if (!ret) 776 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 777 return ret; 778 } 779 780 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 781 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 782 783 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 784 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 785 786 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 787 (!ttm && ttm_bo->type == ttm_bo_type_device); 788 789 if (new_mem->mem_type == XE_PL_TT) { 790 ret = xe_tt_map_sg(ttm); 791 if (ret) 792 goto out; 793 } 794 795 if ((move_lacks_source && !needs_clear)) { 796 ttm_bo_move_null(ttm_bo, new_mem); 797 goto out; 798 } 799 800 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 801 new_mem->mem_type == XE_PL_SYSTEM) { 802 ret = xe_svm_bo_evict(bo); 803 if (!ret) { 804 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 805 ttm_bo_move_null(ttm_bo, new_mem); 806 } else { 807 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 808 ERR_PTR(ret)); 809 } 810 811 goto out; 812 } 813 814 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 815 ttm_bo_move_null(ttm_bo, new_mem); 816 goto out; 817 } 818 819 /* Reject BO eviction if BO is bound to current VM. */ 820 if (evict && ctx->resv) { 821 struct drm_gpuvm_bo *vm_bo; 822 823 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->ttm.base) { 824 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 825 826 if (xe_vm_resv(vm) == ctx->resv && 827 xe_vm_in_preempt_fence_mode(vm)) { 828 ret = -EBUSY; 829 goto out; 830 } 831 } 832 } 833 834 /* 835 * Failed multi-hop where the old_mem is still marked as 836 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 837 */ 838 if (old_mem_type == XE_PL_TT && 839 new_mem->mem_type == XE_PL_TT) { 840 ttm_bo_move_null(ttm_bo, new_mem); 841 goto out; 842 } 843 844 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 845 ret = xe_bo_move_notify(bo, ctx); 846 if (ret) 847 goto out; 848 } 849 850 if (old_mem_type == XE_PL_TT && 851 new_mem->mem_type == XE_PL_SYSTEM) { 852 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 853 DMA_RESV_USAGE_BOOKKEEP, 854 false, 855 MAX_SCHEDULE_TIMEOUT); 856 if (timeout < 0) { 857 ret = timeout; 858 goto out; 859 } 860 861 if (!handle_system_ccs) { 862 ttm_bo_move_null(ttm_bo, new_mem); 863 goto out; 864 } 865 } 866 867 if (!move_lacks_source && 868 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 869 (mem_type_is_vram(old_mem_type) && 870 new_mem->mem_type == XE_PL_SYSTEM))) { 871 hop->fpfn = 0; 872 hop->lpfn = 0; 873 hop->mem_type = XE_PL_TT; 874 hop->flags = TTM_PL_FLAG_TEMPORARY; 875 ret = -EMULTIHOP; 876 goto out; 877 } 878 879 if (bo->tile) 880 migrate = bo->tile->migrate; 881 else if (resource_is_vram(new_mem)) 882 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 883 else if (mem_type_is_vram(old_mem_type)) 884 migrate = mem_type_to_migrate(xe, old_mem_type); 885 else 886 migrate = xe->tiles[0].migrate; 887 888 xe_assert(xe, migrate); 889 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 890 if (xe_rpm_reclaim_safe(xe)) { 891 /* 892 * We might be called through swapout in the validation path of 893 * another TTM device, so acquire rpm here. 894 */ 895 xe_pm_runtime_get(xe); 896 } else { 897 drm_WARN_ON(&xe->drm, handle_system_ccs); 898 xe_pm_runtime_get_noresume(xe); 899 } 900 901 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 902 /* 903 * Kernel memory that is pinned should only be moved on suspend 904 * / resume, some of the pinned memory is required for the 905 * device to resume / use the GPU to move other evicted memory 906 * (user memory) around. This likely could be optimized a bit 907 * further where we find the minimum set of pinned memory 908 * required for resume but for simplity doing a memcpy for all 909 * pinned memory. 910 */ 911 ret = xe_bo_vmap(bo); 912 if (!ret) { 913 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 914 915 /* Create a new VMAP once kernel BO back in VRAM */ 916 if (!ret && resource_is_vram(new_mem)) { 917 struct xe_vram_region *vram = res_to_mem_region(new_mem); 918 void __iomem *new_addr = vram->mapping + 919 (new_mem->start << PAGE_SHIFT); 920 921 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 922 ret = -EINVAL; 923 xe_pm_runtime_put(xe); 924 goto out; 925 } 926 927 xe_assert(xe, new_mem->start == 928 bo->placements->fpfn); 929 930 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 931 } 932 } 933 } else { 934 if (move_lacks_source) { 935 u32 flags = 0; 936 937 if (mem_type_is_vram(new_mem->mem_type)) 938 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 939 else if (handle_system_ccs) 940 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 941 942 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 943 } 944 else 945 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 946 new_mem, handle_system_ccs); 947 if (IS_ERR(fence)) { 948 ret = PTR_ERR(fence); 949 xe_pm_runtime_put(xe); 950 goto out; 951 } 952 if (!move_lacks_source) { 953 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 954 true, new_mem); 955 if (ret) { 956 dma_fence_wait(fence, false); 957 ttm_bo_move_null(ttm_bo, new_mem); 958 ret = 0; 959 } 960 } else { 961 /* 962 * ttm_bo_move_accel_cleanup() may blow up if 963 * bo->resource == NULL, so just attach the 964 * fence and set the new resource. 965 */ 966 dma_resv_add_fence(ttm_bo->base.resv, fence, 967 DMA_RESV_USAGE_KERNEL); 968 ttm_bo_move_null(ttm_bo, new_mem); 969 } 970 971 dma_fence_put(fence); 972 } 973 974 xe_pm_runtime_put(xe); 975 976 out: 977 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 978 ttm_bo->ttm) { 979 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 980 DMA_RESV_USAGE_KERNEL, 981 false, 982 MAX_SCHEDULE_TIMEOUT); 983 if (timeout < 0) 984 ret = timeout; 985 986 xe_tt_unmap_sg(ttm_bo->ttm); 987 } 988 989 return ret; 990 } 991 992 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 993 struct ttm_buffer_object *bo, 994 unsigned long *scanned) 995 { 996 long lret; 997 998 /* Fake move to system, without copying data. */ 999 if (bo->resource->mem_type != XE_PL_SYSTEM) { 1000 struct ttm_resource *new_resource; 1001 1002 lret = ttm_bo_wait_ctx(bo, ctx); 1003 if (lret) 1004 return lret; 1005 1006 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 1007 if (lret) 1008 return lret; 1009 1010 xe_tt_unmap_sg(bo->ttm); 1011 ttm_bo_move_null(bo, new_resource); 1012 } 1013 1014 *scanned += bo->ttm->num_pages; 1015 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1016 {.purge = true, 1017 .writeback = false, 1018 .allow_move = false}); 1019 1020 if (lret > 0) 1021 xe_ttm_tt_account_subtract(bo->ttm); 1022 1023 return lret; 1024 } 1025 1026 /** 1027 * xe_bo_shrink() - Try to shrink an xe bo. 1028 * @ctx: The struct ttm_operation_ctx used for shrinking. 1029 * @bo: The TTM buffer object whose pages to shrink. 1030 * @flags: Flags governing the shrink behaviour. 1031 * @scanned: Pointer to a counter of the number of pages 1032 * attempted to shrink. 1033 * 1034 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1035 * Note that we need to be able to handle also non xe bos 1036 * (ghost bos), but only if the struct ttm_tt is embedded in 1037 * a struct xe_ttm_tt. When the function attempts to shrink 1038 * the pages of a buffer object, The value pointed to by @scanned 1039 * is updated. 1040 * 1041 * Return: The number of pages shrunken or purged, or negative error 1042 * code on failure. 1043 */ 1044 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1045 const struct xe_bo_shrink_flags flags, 1046 unsigned long *scanned) 1047 { 1048 struct ttm_tt *tt = bo->ttm; 1049 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1050 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1051 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1052 struct xe_device *xe = xe_tt->xe; 1053 bool needs_rpm; 1054 long lret = 0L; 1055 1056 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1057 (flags.purge && !xe_tt->purgeable)) 1058 return -EBUSY; 1059 1060 if (!ttm_bo_eviction_valuable(bo, &place)) 1061 return -EBUSY; 1062 1063 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1064 return xe_bo_shrink_purge(ctx, bo, scanned); 1065 1066 if (xe_tt->purgeable) { 1067 if (bo->resource->mem_type != XE_PL_SYSTEM) 1068 lret = xe_bo_move_notify(xe_bo, ctx); 1069 if (!lret) 1070 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1071 goto out_unref; 1072 } 1073 1074 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1075 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1076 xe_bo_needs_ccs_pages(xe_bo)); 1077 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1078 goto out_unref; 1079 1080 *scanned += tt->num_pages; 1081 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1082 {.purge = false, 1083 .writeback = flags.writeback, 1084 .allow_move = true}); 1085 if (needs_rpm) 1086 xe_pm_runtime_put(xe); 1087 1088 if (lret > 0) 1089 xe_ttm_tt_account_subtract(tt); 1090 1091 out_unref: 1092 xe_bo_put(xe_bo); 1093 1094 return lret; 1095 } 1096 1097 /** 1098 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1099 * @bo: The buffer object to move. 1100 * 1101 * On successful completion, the object memory will be moved to system memory. 1102 * 1103 * This is needed to for special handling of pinned VRAM object during 1104 * suspend-resume. 1105 * 1106 * Return: 0 on success. Negative error code on failure. 1107 */ 1108 int xe_bo_evict_pinned(struct xe_bo *bo) 1109 { 1110 struct ttm_place place = { 1111 .mem_type = XE_PL_TT, 1112 }; 1113 struct ttm_placement placement = { 1114 .placement = &place, 1115 .num_placement = 1, 1116 }; 1117 struct ttm_operation_ctx ctx = { 1118 .interruptible = false, 1119 .gfp_retry_mayfail = true, 1120 }; 1121 struct ttm_resource *new_mem; 1122 int ret; 1123 1124 xe_bo_assert_held(bo); 1125 1126 if (WARN_ON(!bo->ttm.resource)) 1127 return -EINVAL; 1128 1129 if (WARN_ON(!xe_bo_is_pinned(bo))) 1130 return -EINVAL; 1131 1132 if (!xe_bo_is_vram(bo)) 1133 return 0; 1134 1135 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 1136 if (ret) 1137 return ret; 1138 1139 if (!bo->ttm.ttm) { 1140 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 1141 if (!bo->ttm.ttm) { 1142 ret = -ENOMEM; 1143 goto err_res_free; 1144 } 1145 } 1146 1147 ret = ttm_bo_populate(&bo->ttm, &ctx); 1148 if (ret) 1149 goto err_res_free; 1150 1151 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1152 if (ret) 1153 goto err_res_free; 1154 1155 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 1156 if (ret) 1157 goto err_res_free; 1158 1159 return 0; 1160 1161 err_res_free: 1162 ttm_resource_free(&bo->ttm, &new_mem); 1163 return ret; 1164 } 1165 1166 /** 1167 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1168 * @bo: The buffer object to move. 1169 * 1170 * On successful completion, the object memory will be moved back to VRAM. 1171 * 1172 * This is needed to for special handling of pinned VRAM object during 1173 * suspend-resume. 1174 * 1175 * Return: 0 on success. Negative error code on failure. 1176 */ 1177 int xe_bo_restore_pinned(struct xe_bo *bo) 1178 { 1179 struct ttm_operation_ctx ctx = { 1180 .interruptible = false, 1181 .gfp_retry_mayfail = false, 1182 }; 1183 struct ttm_resource *new_mem; 1184 struct ttm_place *place = &bo->placements[0]; 1185 int ret; 1186 1187 xe_bo_assert_held(bo); 1188 1189 if (WARN_ON(!bo->ttm.resource)) 1190 return -EINVAL; 1191 1192 if (WARN_ON(!xe_bo_is_pinned(bo))) 1193 return -EINVAL; 1194 1195 if (WARN_ON(xe_bo_is_vram(bo))) 1196 return -EINVAL; 1197 1198 if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo))) 1199 return -EINVAL; 1200 1201 if (!mem_type_is_vram(place->mem_type)) 1202 return 0; 1203 1204 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 1205 if (ret) 1206 return ret; 1207 1208 ret = ttm_bo_populate(&bo->ttm, &ctx); 1209 if (ret) 1210 goto err_res_free; 1211 1212 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1213 if (ret) 1214 goto err_res_free; 1215 1216 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 1217 if (ret) 1218 goto err_res_free; 1219 1220 return 0; 1221 1222 err_res_free: 1223 ttm_resource_free(&bo->ttm, &new_mem); 1224 return ret; 1225 } 1226 1227 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1228 unsigned long page_offset) 1229 { 1230 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1231 struct xe_res_cursor cursor; 1232 struct xe_vram_region *vram; 1233 1234 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1235 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1236 1237 vram = res_to_mem_region(ttm_bo->resource); 1238 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1239 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1240 } 1241 1242 static void __xe_bo_vunmap(struct xe_bo *bo); 1243 1244 /* 1245 * TODO: Move this function to TTM so we don't rely on how TTM does its 1246 * locking, thereby abusing TTM internals. 1247 */ 1248 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1249 { 1250 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1251 bool locked; 1252 1253 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1254 1255 /* 1256 * We can typically only race with TTM trylocking under the 1257 * lru_lock, which will immediately be unlocked again since 1258 * the ttm_bo refcount is zero at this point. So trylocking *should* 1259 * always succeed here, as long as we hold the lru lock. 1260 */ 1261 spin_lock(&ttm_bo->bdev->lru_lock); 1262 locked = dma_resv_trylock(ttm_bo->base.resv); 1263 spin_unlock(&ttm_bo->bdev->lru_lock); 1264 xe_assert(xe, locked); 1265 1266 return locked; 1267 } 1268 1269 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1270 { 1271 struct dma_resv_iter cursor; 1272 struct dma_fence *fence; 1273 struct dma_fence *replacement = NULL; 1274 struct xe_bo *bo; 1275 1276 if (!xe_bo_is_xe_bo(ttm_bo)) 1277 return; 1278 1279 bo = ttm_to_xe_bo(ttm_bo); 1280 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1281 1282 /* 1283 * Corner case where TTM fails to allocate memory and this BOs resv 1284 * still points the VMs resv 1285 */ 1286 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1287 return; 1288 1289 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1290 return; 1291 1292 /* 1293 * Scrub the preempt fences if any. The unbind fence is already 1294 * attached to the resv. 1295 * TODO: Don't do this for external bos once we scrub them after 1296 * unbind. 1297 */ 1298 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1299 DMA_RESV_USAGE_BOOKKEEP, fence) { 1300 if (xe_fence_is_xe_preempt(fence) && 1301 !dma_fence_is_signaled(fence)) { 1302 if (!replacement) 1303 replacement = dma_fence_get_stub(); 1304 1305 dma_resv_replace_fences(ttm_bo->base.resv, 1306 fence->context, 1307 replacement, 1308 DMA_RESV_USAGE_BOOKKEEP); 1309 } 1310 } 1311 dma_fence_put(replacement); 1312 1313 dma_resv_unlock(ttm_bo->base.resv); 1314 } 1315 1316 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1317 { 1318 if (!xe_bo_is_xe_bo(ttm_bo)) 1319 return; 1320 1321 /* 1322 * Object is idle and about to be destroyed. Release the 1323 * dma-buf attachment. 1324 */ 1325 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1326 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1327 struct xe_ttm_tt, ttm); 1328 1329 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1330 DMA_BIDIRECTIONAL); 1331 ttm_bo->sg = NULL; 1332 xe_tt->sg = NULL; 1333 } 1334 } 1335 1336 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1337 { 1338 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1339 1340 if (ttm_bo->ttm) { 1341 struct ttm_placement place = {}; 1342 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1343 1344 drm_WARN_ON(&xe->drm, ret); 1345 } 1346 } 1347 1348 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1349 { 1350 struct ttm_operation_ctx ctx = { 1351 .interruptible = false, 1352 .gfp_retry_mayfail = false, 1353 }; 1354 1355 if (ttm_bo->ttm) { 1356 struct xe_ttm_tt *xe_tt = 1357 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1358 1359 if (xe_tt->purgeable) 1360 xe_ttm_bo_purge(ttm_bo, &ctx); 1361 } 1362 } 1363 1364 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1365 unsigned long offset, void *buf, int len, 1366 int write) 1367 { 1368 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1369 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1370 struct iosys_map vmap; 1371 struct xe_res_cursor cursor; 1372 struct xe_vram_region *vram; 1373 int bytes_left = len; 1374 1375 xe_bo_assert_held(bo); 1376 xe_device_assert_mem_access(xe); 1377 1378 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1379 return -EIO; 1380 1381 /* FIXME: Use GPU for non-visible VRAM */ 1382 if (!xe_ttm_resource_visible(ttm_bo->resource)) 1383 return -EIO; 1384 1385 vram = res_to_mem_region(ttm_bo->resource); 1386 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1387 bo->size - (offset & PAGE_MASK), &cursor); 1388 1389 do { 1390 unsigned long page_offset = (offset & ~PAGE_MASK); 1391 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1392 1393 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1394 cursor.start); 1395 if (write) 1396 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1397 else 1398 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1399 1400 buf += byte_count; 1401 offset += byte_count; 1402 bytes_left -= byte_count; 1403 if (bytes_left) 1404 xe_res_next(&cursor, PAGE_SIZE); 1405 } while (bytes_left); 1406 1407 return len; 1408 } 1409 1410 const struct ttm_device_funcs xe_ttm_funcs = { 1411 .ttm_tt_create = xe_ttm_tt_create, 1412 .ttm_tt_populate = xe_ttm_tt_populate, 1413 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1414 .ttm_tt_destroy = xe_ttm_tt_destroy, 1415 .evict_flags = xe_evict_flags, 1416 .move = xe_bo_move, 1417 .io_mem_reserve = xe_ttm_io_mem_reserve, 1418 .io_mem_pfn = xe_ttm_io_mem_pfn, 1419 .access_memory = xe_ttm_access_memory, 1420 .release_notify = xe_ttm_bo_release_notify, 1421 .eviction_valuable = ttm_bo_eviction_valuable, 1422 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1423 .swap_notify = xe_ttm_bo_swap_notify, 1424 }; 1425 1426 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1427 { 1428 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1429 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1430 struct xe_tile *tile; 1431 u8 id; 1432 1433 if (bo->ttm.base.import_attach) 1434 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1435 drm_gem_object_release(&bo->ttm.base); 1436 1437 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1438 1439 for_each_tile(tile, xe, id) 1440 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1441 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1442 1443 #ifdef CONFIG_PROC_FS 1444 if (bo->client) 1445 xe_drm_client_remove_bo(bo); 1446 #endif 1447 1448 if (bo->vm && xe_bo_is_user(bo)) 1449 xe_vm_put(bo->vm); 1450 1451 mutex_lock(&xe->mem_access.vram_userfault.lock); 1452 if (!list_empty(&bo->vram_userfault_link)) 1453 list_del(&bo->vram_userfault_link); 1454 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1455 1456 kfree(bo); 1457 } 1458 1459 static void xe_gem_object_free(struct drm_gem_object *obj) 1460 { 1461 /* Our BO reference counting scheme works as follows: 1462 * 1463 * The gem object kref is typically used throughout the driver, 1464 * and the gem object holds a ttm_buffer_object refcount, so 1465 * that when the last gem object reference is put, which is when 1466 * we end up in this function, we put also that ttm_buffer_object 1467 * refcount. Anything using gem interfaces is then no longer 1468 * allowed to access the object in a way that requires a gem 1469 * refcount, including locking the object. 1470 * 1471 * driver ttm callbacks is allowed to use the ttm_buffer_object 1472 * refcount directly if needed. 1473 */ 1474 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1475 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1476 } 1477 1478 static void xe_gem_object_close(struct drm_gem_object *obj, 1479 struct drm_file *file_priv) 1480 { 1481 struct xe_bo *bo = gem_to_xe_bo(obj); 1482 1483 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1484 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1485 1486 xe_bo_lock(bo, false); 1487 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1488 xe_bo_unlock(bo); 1489 } 1490 } 1491 1492 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1493 { 1494 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1495 struct drm_device *ddev = tbo->base.dev; 1496 struct xe_device *xe = to_xe_device(ddev); 1497 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1498 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1499 vm_fault_t ret; 1500 int idx; 1501 1502 if (needs_rpm) 1503 xe_pm_runtime_get(xe); 1504 1505 ret = ttm_bo_vm_reserve(tbo, vmf); 1506 if (ret) 1507 goto out; 1508 1509 if (drm_dev_enter(ddev, &idx)) { 1510 trace_xe_bo_cpu_fault(bo); 1511 1512 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1513 TTM_BO_VM_NUM_PREFAULT); 1514 drm_dev_exit(idx); 1515 } else { 1516 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1517 } 1518 1519 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1520 goto out; 1521 /* 1522 * ttm_bo_vm_reserve() already has dma_resv_lock. 1523 */ 1524 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1525 mutex_lock(&xe->mem_access.vram_userfault.lock); 1526 if (list_empty(&bo->vram_userfault_link)) 1527 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1528 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1529 } 1530 1531 dma_resv_unlock(tbo->base.resv); 1532 out: 1533 if (needs_rpm) 1534 xe_pm_runtime_put(xe); 1535 1536 return ret; 1537 } 1538 1539 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1540 void *buf, int len, int write) 1541 { 1542 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1543 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1544 struct xe_device *xe = xe_bo_device(bo); 1545 int ret; 1546 1547 xe_pm_runtime_get(xe); 1548 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1549 xe_pm_runtime_put(xe); 1550 1551 return ret; 1552 } 1553 1554 /** 1555 * xe_bo_read() - Read from an xe_bo 1556 * @bo: The buffer object to read from. 1557 * @offset: The byte offset to start reading from. 1558 * @dst: Location to store the read. 1559 * @size: Size in bytes for the read. 1560 * 1561 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1562 * 1563 * Return: Zero on success, or negative error. 1564 */ 1565 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1566 { 1567 int ret; 1568 1569 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1570 if (ret >= 0 && ret != size) 1571 ret = -EIO; 1572 else if (ret == size) 1573 ret = 0; 1574 1575 return ret; 1576 } 1577 1578 static const struct vm_operations_struct xe_gem_vm_ops = { 1579 .fault = xe_gem_fault, 1580 .open = ttm_bo_vm_open, 1581 .close = ttm_bo_vm_close, 1582 .access = xe_bo_vm_access, 1583 }; 1584 1585 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1586 .free = xe_gem_object_free, 1587 .close = xe_gem_object_close, 1588 .mmap = drm_gem_ttm_mmap, 1589 .export = xe_gem_prime_export, 1590 .vm_ops = &xe_gem_vm_ops, 1591 }; 1592 1593 /** 1594 * xe_bo_alloc - Allocate storage for a struct xe_bo 1595 * 1596 * This function is intended to allocate storage to be used for input 1597 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1598 * created is needed before the call to __xe_bo_create_locked(). 1599 * If __xe_bo_create_locked ends up never to be called, then the 1600 * storage allocated with this function needs to be freed using 1601 * xe_bo_free(). 1602 * 1603 * Return: A pointer to an uninitialized struct xe_bo on success, 1604 * ERR_PTR(-ENOMEM) on error. 1605 */ 1606 struct xe_bo *xe_bo_alloc(void) 1607 { 1608 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1609 1610 if (!bo) 1611 return ERR_PTR(-ENOMEM); 1612 1613 return bo; 1614 } 1615 1616 /** 1617 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1618 * @bo: The buffer object storage. 1619 * 1620 * Refer to xe_bo_alloc() documentation for valid use-cases. 1621 */ 1622 void xe_bo_free(struct xe_bo *bo) 1623 { 1624 kfree(bo); 1625 } 1626 1627 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1628 struct xe_tile *tile, struct dma_resv *resv, 1629 struct ttm_lru_bulk_move *bulk, size_t size, 1630 u16 cpu_caching, enum ttm_bo_type type, 1631 u32 flags) 1632 { 1633 struct ttm_operation_ctx ctx = { 1634 .interruptible = true, 1635 .no_wait_gpu = false, 1636 .gfp_retry_mayfail = true, 1637 }; 1638 struct ttm_placement *placement; 1639 uint32_t alignment; 1640 size_t aligned_size; 1641 int err; 1642 1643 /* Only kernel objects should set GT */ 1644 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1645 1646 if (XE_WARN_ON(!size)) { 1647 xe_bo_free(bo); 1648 return ERR_PTR(-EINVAL); 1649 } 1650 1651 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1652 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1653 return ERR_PTR(-EINVAL); 1654 1655 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1656 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1657 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1658 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1659 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1660 1661 aligned_size = ALIGN(size, align); 1662 if (type != ttm_bo_type_device) 1663 size = ALIGN(size, align); 1664 flags |= XE_BO_FLAG_INTERNAL_64K; 1665 alignment = align >> PAGE_SHIFT; 1666 } else { 1667 aligned_size = ALIGN(size, SZ_4K); 1668 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1669 alignment = SZ_4K >> PAGE_SHIFT; 1670 } 1671 1672 if (type == ttm_bo_type_device && aligned_size != size) 1673 return ERR_PTR(-EINVAL); 1674 1675 if (!bo) { 1676 bo = xe_bo_alloc(); 1677 if (IS_ERR(bo)) 1678 return bo; 1679 } 1680 1681 bo->ccs_cleared = false; 1682 bo->tile = tile; 1683 bo->size = size; 1684 bo->flags = flags; 1685 bo->cpu_caching = cpu_caching; 1686 bo->ttm.base.funcs = &xe_gem_object_funcs; 1687 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1688 INIT_LIST_HEAD(&bo->pinned_link); 1689 #ifdef CONFIG_PROC_FS 1690 INIT_LIST_HEAD(&bo->client_link); 1691 #endif 1692 INIT_LIST_HEAD(&bo->vram_userfault_link); 1693 1694 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1695 1696 if (resv) { 1697 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1698 ctx.resv = resv; 1699 } 1700 1701 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1702 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1703 if (WARN_ON(err)) { 1704 xe_ttm_bo_destroy(&bo->ttm); 1705 return ERR_PTR(err); 1706 } 1707 } 1708 1709 /* Defer populating type_sg bos */ 1710 placement = (type == ttm_bo_type_sg || 1711 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1712 &bo->placement; 1713 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1714 placement, alignment, 1715 &ctx, NULL, resv, xe_ttm_bo_destroy); 1716 if (err) 1717 return ERR_PTR(err); 1718 1719 /* 1720 * The VRAM pages underneath are potentially still being accessed by the 1721 * GPU, as per async GPU clearing and async evictions. However TTM makes 1722 * sure to add any corresponding move/clear fences into the objects 1723 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1724 * 1725 * For KMD internal buffers we don't care about GPU clearing, however we 1726 * still need to handle async evictions, where the VRAM is still being 1727 * accessed by the GPU. Most internal callers are not expecting this, 1728 * since they are missing the required synchronisation before accessing 1729 * the memory. To keep things simple just sync wait any kernel fences 1730 * here, if the buffer is designated KMD internal. 1731 * 1732 * For normal userspace objects we should already have the required 1733 * pipelining or sync waiting elsewhere, since we already have to deal 1734 * with things like async GPU clearing. 1735 */ 1736 if (type == ttm_bo_type_kernel) { 1737 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1738 DMA_RESV_USAGE_KERNEL, 1739 ctx.interruptible, 1740 MAX_SCHEDULE_TIMEOUT); 1741 1742 if (timeout < 0) { 1743 if (!resv) 1744 dma_resv_unlock(bo->ttm.base.resv); 1745 xe_bo_put(bo); 1746 return ERR_PTR(timeout); 1747 } 1748 } 1749 1750 bo->created = true; 1751 if (bulk) 1752 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1753 else 1754 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1755 1756 return bo; 1757 } 1758 1759 static int __xe_bo_fixed_placement(struct xe_device *xe, 1760 struct xe_bo *bo, 1761 u32 flags, 1762 u64 start, u64 end, u64 size) 1763 { 1764 struct ttm_place *place = bo->placements; 1765 1766 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1767 return -EINVAL; 1768 1769 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1770 place->fpfn = start >> PAGE_SHIFT; 1771 place->lpfn = end >> PAGE_SHIFT; 1772 1773 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1774 case XE_BO_FLAG_VRAM0: 1775 place->mem_type = XE_PL_VRAM0; 1776 break; 1777 case XE_BO_FLAG_VRAM1: 1778 place->mem_type = XE_PL_VRAM1; 1779 break; 1780 case XE_BO_FLAG_STOLEN: 1781 place->mem_type = XE_PL_STOLEN; 1782 break; 1783 1784 default: 1785 /* 0 or multiple of the above set */ 1786 return -EINVAL; 1787 } 1788 1789 bo->placement = (struct ttm_placement) { 1790 .num_placement = 1, 1791 .placement = place, 1792 }; 1793 1794 return 0; 1795 } 1796 1797 static struct xe_bo * 1798 __xe_bo_create_locked(struct xe_device *xe, 1799 struct xe_tile *tile, struct xe_vm *vm, 1800 size_t size, u64 start, u64 end, 1801 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 1802 u64 alignment) 1803 { 1804 struct xe_bo *bo = NULL; 1805 int err; 1806 1807 if (vm) 1808 xe_vm_assert_held(vm); 1809 1810 if (start || end != ~0ULL) { 1811 bo = xe_bo_alloc(); 1812 if (IS_ERR(bo)) 1813 return bo; 1814 1815 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1816 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1817 if (err) { 1818 xe_bo_free(bo); 1819 return ERR_PTR(err); 1820 } 1821 } 1822 1823 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1824 vm && !xe_vm_in_fault_mode(vm) && 1825 flags & XE_BO_FLAG_USER ? 1826 &vm->lru_bulk_move : NULL, size, 1827 cpu_caching, type, flags); 1828 if (IS_ERR(bo)) 1829 return bo; 1830 1831 bo->min_align = alignment; 1832 1833 /* 1834 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1835 * to ensure the shared resv doesn't disappear under the bo, the bo 1836 * will keep a reference to the vm, and avoid circular references 1837 * by having all the vm's bo refereferences released at vm close 1838 * time. 1839 */ 1840 if (vm && xe_bo_is_user(bo)) 1841 xe_vm_get(vm); 1842 bo->vm = vm; 1843 1844 if (bo->flags & XE_BO_FLAG_GGTT) { 1845 struct xe_tile *t; 1846 u8 id; 1847 1848 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 1849 if (!tile && flags & XE_BO_FLAG_STOLEN) 1850 tile = xe_device_get_root_tile(xe); 1851 1852 xe_assert(xe, tile); 1853 } 1854 1855 for_each_tile(t, xe, id) { 1856 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 1857 continue; 1858 1859 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1860 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 1861 start + bo->size, U64_MAX); 1862 } else { 1863 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 1864 } 1865 if (err) 1866 goto err_unlock_put_bo; 1867 } 1868 } 1869 1870 trace_xe_bo_create(bo); 1871 return bo; 1872 1873 err_unlock_put_bo: 1874 __xe_bo_unset_bulk_move(bo); 1875 xe_bo_unlock_vm_held(bo); 1876 xe_bo_put(bo); 1877 return ERR_PTR(err); 1878 } 1879 1880 struct xe_bo * 1881 xe_bo_create_locked_range(struct xe_device *xe, 1882 struct xe_tile *tile, struct xe_vm *vm, 1883 size_t size, u64 start, u64 end, 1884 enum ttm_bo_type type, u32 flags, u64 alignment) 1885 { 1886 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 1887 flags, alignment); 1888 } 1889 1890 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1891 struct xe_vm *vm, size_t size, 1892 enum ttm_bo_type type, u32 flags) 1893 { 1894 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 1895 flags, 0); 1896 } 1897 1898 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1899 struct xe_vm *vm, size_t size, 1900 u16 cpu_caching, 1901 u32 flags) 1902 { 1903 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1904 cpu_caching, ttm_bo_type_device, 1905 flags | XE_BO_FLAG_USER, 0); 1906 if (!IS_ERR(bo)) 1907 xe_bo_unlock_vm_held(bo); 1908 1909 return bo; 1910 } 1911 1912 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1913 struct xe_vm *vm, size_t size, 1914 enum ttm_bo_type type, u32 flags) 1915 { 1916 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1917 1918 if (!IS_ERR(bo)) 1919 xe_bo_unlock_vm_held(bo); 1920 1921 return bo; 1922 } 1923 1924 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1925 struct xe_vm *vm, 1926 size_t size, u64 offset, 1927 enum ttm_bo_type type, u32 flags) 1928 { 1929 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 1930 type, flags, 0); 1931 } 1932 1933 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 1934 struct xe_tile *tile, 1935 struct xe_vm *vm, 1936 size_t size, u64 offset, 1937 enum ttm_bo_type type, u32 flags, 1938 u64 alignment) 1939 { 1940 struct xe_bo *bo; 1941 int err; 1942 u64 start = offset == ~0ull ? 0 : offset; 1943 u64 end = offset == ~0ull ? offset : start + size; 1944 1945 if (flags & XE_BO_FLAG_STOLEN && 1946 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1947 flags |= XE_BO_FLAG_GGTT; 1948 1949 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1950 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS, 1951 alignment); 1952 if (IS_ERR(bo)) 1953 return bo; 1954 1955 err = xe_bo_pin(bo); 1956 if (err) 1957 goto err_put; 1958 1959 err = xe_bo_vmap(bo); 1960 if (err) 1961 goto err_unpin; 1962 1963 xe_bo_unlock_vm_held(bo); 1964 1965 return bo; 1966 1967 err_unpin: 1968 xe_bo_unpin(bo); 1969 err_put: 1970 xe_bo_unlock_vm_held(bo); 1971 xe_bo_put(bo); 1972 return ERR_PTR(err); 1973 } 1974 1975 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1976 struct xe_vm *vm, size_t size, 1977 enum ttm_bo_type type, u32 flags) 1978 { 1979 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1980 } 1981 1982 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1983 const void *data, size_t size, 1984 enum ttm_bo_type type, u32 flags) 1985 { 1986 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1987 ALIGN(size, PAGE_SIZE), 1988 type, flags); 1989 if (IS_ERR(bo)) 1990 return bo; 1991 1992 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1993 1994 return bo; 1995 } 1996 1997 static void __xe_bo_unpin_map_no_vm(void *arg) 1998 { 1999 xe_bo_unpin_map_no_vm(arg); 2000 } 2001 2002 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2003 size_t size, u32 flags) 2004 { 2005 struct xe_bo *bo; 2006 int ret; 2007 2008 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2009 2010 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2011 if (IS_ERR(bo)) 2012 return bo; 2013 2014 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2015 if (ret) 2016 return ERR_PTR(ret); 2017 2018 return bo; 2019 } 2020 2021 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2022 const void *data, size_t size, u32 flags) 2023 { 2024 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2025 2026 if (IS_ERR(bo)) 2027 return bo; 2028 2029 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2030 2031 return bo; 2032 } 2033 2034 /** 2035 * xe_managed_bo_reinit_in_vram 2036 * @xe: xe device 2037 * @tile: Tile where the new buffer will be created 2038 * @src: Managed buffer object allocated in system memory 2039 * 2040 * Replace a managed src buffer object allocated in system memory with a new 2041 * one allocated in vram, copying the data between them. 2042 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2043 * is responsible for making sure that any old references to it are updated. 2044 * 2045 * Returns 0 for success, negative error code otherwise. 2046 */ 2047 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2048 { 2049 struct xe_bo *bo; 2050 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2051 2052 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 2053 2054 xe_assert(xe, IS_DGFX(xe)); 2055 xe_assert(xe, !(*src)->vmap.is_iomem); 2056 2057 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2058 (*src)->size, dst_flags); 2059 if (IS_ERR(bo)) 2060 return PTR_ERR(bo); 2061 2062 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2063 *src = bo; 2064 2065 return 0; 2066 } 2067 2068 /* 2069 * XXX: This is in the VM bind data path, likely should calculate this once and 2070 * store, with a recalculation if the BO is moved. 2071 */ 2072 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2073 { 2074 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2075 2076 if (res->mem_type == XE_PL_STOLEN) 2077 return xe_ttm_stolen_gpu_offset(xe); 2078 2079 return res_to_mem_region(res)->dpa_base; 2080 } 2081 2082 /** 2083 * xe_bo_pin_external - pin an external BO 2084 * @bo: buffer object to be pinned 2085 * 2086 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2087 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2088 * asserts and code to ensure evict / restore on suspend / resume. 2089 * 2090 * Returns 0 for success, negative error code otherwise. 2091 */ 2092 int xe_bo_pin_external(struct xe_bo *bo) 2093 { 2094 struct xe_device *xe = xe_bo_device(bo); 2095 int err; 2096 2097 xe_assert(xe, !bo->vm); 2098 xe_assert(xe, xe_bo_is_user(bo)); 2099 2100 if (!xe_bo_is_pinned(bo)) { 2101 err = xe_bo_validate(bo, NULL, false); 2102 if (err) 2103 return err; 2104 2105 if (xe_bo_is_vram(bo)) { 2106 spin_lock(&xe->pinned.lock); 2107 list_add_tail(&bo->pinned_link, 2108 &xe->pinned.external_vram); 2109 spin_unlock(&xe->pinned.lock); 2110 } 2111 } 2112 2113 ttm_bo_pin(&bo->ttm); 2114 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2115 xe_ttm_tt_account_subtract(bo->ttm.ttm); 2116 2117 /* 2118 * FIXME: If we always use the reserve / unreserve functions for locking 2119 * we do not need this. 2120 */ 2121 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2122 2123 return 0; 2124 } 2125 2126 int xe_bo_pin(struct xe_bo *bo) 2127 { 2128 struct ttm_place *place = &bo->placements[0]; 2129 struct xe_device *xe = xe_bo_device(bo); 2130 int err; 2131 2132 /* We currently don't expect user BO to be pinned */ 2133 xe_assert(xe, !xe_bo_is_user(bo)); 2134 2135 /* Pinned object must be in GGTT or have pinned flag */ 2136 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2137 XE_BO_FLAG_GGTT)); 2138 2139 /* 2140 * No reason we can't support pinning imported dma-bufs we just don't 2141 * expect to pin an imported dma-buf. 2142 */ 2143 xe_assert(xe, !bo->ttm.base.import_attach); 2144 2145 /* We only expect at most 1 pin */ 2146 xe_assert(xe, !xe_bo_is_pinned(bo)); 2147 2148 err = xe_bo_validate(bo, NULL, false); 2149 if (err) 2150 return err; 2151 2152 /* 2153 * For pinned objects in on DGFX, which are also in vram, we expect 2154 * these to be in contiguous VRAM memory. Required eviction / restore 2155 * during suspend / resume (force restore to same physical address). 2156 */ 2157 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 2158 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 2159 if (mem_type_is_vram(place->mem_type)) { 2160 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 2161 2162 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 2163 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 2164 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 2165 } 2166 } 2167 2168 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2169 spin_lock(&xe->pinned.lock); 2170 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 2171 spin_unlock(&xe->pinned.lock); 2172 } 2173 2174 ttm_bo_pin(&bo->ttm); 2175 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2176 xe_ttm_tt_account_subtract(bo->ttm.ttm); 2177 2178 /* 2179 * FIXME: If we always use the reserve / unreserve functions for locking 2180 * we do not need this. 2181 */ 2182 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2183 2184 return 0; 2185 } 2186 2187 /** 2188 * xe_bo_unpin_external - unpin an external BO 2189 * @bo: buffer object to be unpinned 2190 * 2191 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2192 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2193 * asserts and code to ensure evict / restore on suspend / resume. 2194 * 2195 * Returns 0 for success, negative error code otherwise. 2196 */ 2197 void xe_bo_unpin_external(struct xe_bo *bo) 2198 { 2199 struct xe_device *xe = xe_bo_device(bo); 2200 2201 xe_assert(xe, !bo->vm); 2202 xe_assert(xe, xe_bo_is_pinned(bo)); 2203 xe_assert(xe, xe_bo_is_user(bo)); 2204 2205 spin_lock(&xe->pinned.lock); 2206 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2207 list_del_init(&bo->pinned_link); 2208 spin_unlock(&xe->pinned.lock); 2209 2210 ttm_bo_unpin(&bo->ttm); 2211 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2212 xe_ttm_tt_account_add(bo->ttm.ttm); 2213 2214 /* 2215 * FIXME: If we always use the reserve / unreserve functions for locking 2216 * we do not need this. 2217 */ 2218 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2219 } 2220 2221 void xe_bo_unpin(struct xe_bo *bo) 2222 { 2223 struct ttm_place *place = &bo->placements[0]; 2224 struct xe_device *xe = xe_bo_device(bo); 2225 2226 xe_assert(xe, !bo->ttm.base.import_attach); 2227 xe_assert(xe, xe_bo_is_pinned(bo)); 2228 2229 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2230 spin_lock(&xe->pinned.lock); 2231 xe_assert(xe, !list_empty(&bo->pinned_link)); 2232 list_del_init(&bo->pinned_link); 2233 spin_unlock(&xe->pinned.lock); 2234 } 2235 ttm_bo_unpin(&bo->ttm); 2236 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2237 xe_ttm_tt_account_add(bo->ttm.ttm); 2238 } 2239 2240 /** 2241 * xe_bo_validate() - Make sure the bo is in an allowed placement 2242 * @bo: The bo, 2243 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2244 * NULL. Used together with @allow_res_evict. 2245 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2246 * reservation object. 2247 * 2248 * Make sure the bo is in allowed placement, migrating it if necessary. If 2249 * needed, other bos will be evicted. If bos selected for eviction shares 2250 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2251 * set to true, otherwise they will be bypassed. 2252 * 2253 * Return: 0 on success, negative error code on failure. May return 2254 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2255 */ 2256 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2257 { 2258 struct ttm_operation_ctx ctx = { 2259 .interruptible = true, 2260 .no_wait_gpu = false, 2261 .gfp_retry_mayfail = true, 2262 }; 2263 2264 if (vm) { 2265 lockdep_assert_held(&vm->lock); 2266 xe_vm_assert_held(vm); 2267 2268 ctx.allow_res_evict = allow_res_evict; 2269 ctx.resv = xe_vm_resv(vm); 2270 } 2271 2272 trace_xe_bo_validate(bo); 2273 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2274 } 2275 2276 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2277 { 2278 if (bo->destroy == &xe_ttm_bo_destroy) 2279 return true; 2280 2281 return false; 2282 } 2283 2284 /* 2285 * Resolve a BO address. There is no assert to check if the proper lock is held 2286 * so it should only be used in cases where it is not fatal to get the wrong 2287 * address, such as printing debug information, but not in cases where memory is 2288 * written based on this result. 2289 */ 2290 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2291 { 2292 struct xe_device *xe = xe_bo_device(bo); 2293 struct xe_res_cursor cur; 2294 u64 page; 2295 2296 xe_assert(xe, page_size <= PAGE_SIZE); 2297 page = offset >> PAGE_SHIFT; 2298 offset &= (PAGE_SIZE - 1); 2299 2300 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2301 xe_assert(xe, bo->ttm.ttm); 2302 2303 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2304 page_size, &cur); 2305 return xe_res_dma(&cur) + offset; 2306 } else { 2307 struct xe_res_cursor cur; 2308 2309 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2310 page_size, &cur); 2311 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2312 } 2313 } 2314 2315 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2316 { 2317 if (!READ_ONCE(bo->ttm.pin_count)) 2318 xe_bo_assert_held(bo); 2319 return __xe_bo_addr(bo, offset, page_size); 2320 } 2321 2322 int xe_bo_vmap(struct xe_bo *bo) 2323 { 2324 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2325 void *virtual; 2326 bool is_iomem; 2327 int ret; 2328 2329 xe_bo_assert_held(bo); 2330 2331 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2332 !force_contiguous(bo->flags))) 2333 return -EINVAL; 2334 2335 if (!iosys_map_is_null(&bo->vmap)) 2336 return 0; 2337 2338 /* 2339 * We use this more or less deprecated interface for now since 2340 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2341 * single page bos, which is done here. 2342 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2343 * to use struct iosys_map. 2344 */ 2345 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 2346 if (ret) 2347 return ret; 2348 2349 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2350 if (is_iomem) 2351 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2352 else 2353 iosys_map_set_vaddr(&bo->vmap, virtual); 2354 2355 return 0; 2356 } 2357 2358 static void __xe_bo_vunmap(struct xe_bo *bo) 2359 { 2360 if (!iosys_map_is_null(&bo->vmap)) { 2361 iosys_map_clear(&bo->vmap); 2362 ttm_bo_kunmap(&bo->kmap); 2363 } 2364 } 2365 2366 void xe_bo_vunmap(struct xe_bo *bo) 2367 { 2368 xe_bo_assert_held(bo); 2369 __xe_bo_vunmap(bo); 2370 } 2371 2372 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2373 { 2374 if (value == DRM_XE_PXP_TYPE_NONE) 2375 return 0; 2376 2377 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2378 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2379 return -EINVAL; 2380 2381 return xe_pxp_key_assign(xe->pxp, bo); 2382 } 2383 2384 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2385 struct xe_bo *bo, 2386 u64 value); 2387 2388 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2389 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_set_pxp_type, 2390 }; 2391 2392 static int gem_create_user_ext_set_property(struct xe_device *xe, 2393 struct xe_bo *bo, 2394 u64 extension) 2395 { 2396 u64 __user *address = u64_to_user_ptr(extension); 2397 struct drm_xe_ext_set_property ext; 2398 int err; 2399 u32 idx; 2400 2401 err = __copy_from_user(&ext, address, sizeof(ext)); 2402 if (XE_IOCTL_DBG(xe, err)) 2403 return -EFAULT; 2404 2405 if (XE_IOCTL_DBG(xe, ext.property >= 2406 ARRAY_SIZE(gem_create_set_property_funcs)) || 2407 XE_IOCTL_DBG(xe, ext.pad) || 2408 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2409 return -EINVAL; 2410 2411 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2412 if (!gem_create_set_property_funcs[idx]) 2413 return -EINVAL; 2414 2415 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2416 } 2417 2418 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2419 struct xe_bo *bo, 2420 u64 extension); 2421 2422 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2423 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2424 }; 2425 2426 #define MAX_USER_EXTENSIONS 16 2427 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2428 u64 extensions, int ext_number) 2429 { 2430 u64 __user *address = u64_to_user_ptr(extensions); 2431 struct drm_xe_user_extension ext; 2432 int err; 2433 u32 idx; 2434 2435 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2436 return -E2BIG; 2437 2438 err = __copy_from_user(&ext, address, sizeof(ext)); 2439 if (XE_IOCTL_DBG(xe, err)) 2440 return -EFAULT; 2441 2442 if (XE_IOCTL_DBG(xe, ext.pad) || 2443 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2444 return -EINVAL; 2445 2446 idx = array_index_nospec(ext.name, 2447 ARRAY_SIZE(gem_create_user_extension_funcs)); 2448 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2449 if (XE_IOCTL_DBG(xe, err)) 2450 return err; 2451 2452 if (ext.next_extension) 2453 return gem_create_user_extensions(xe, bo, ext.next_extension, 2454 ++ext_number); 2455 2456 return 0; 2457 } 2458 2459 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2460 struct drm_file *file) 2461 { 2462 struct xe_device *xe = to_xe_device(dev); 2463 struct xe_file *xef = to_xe_file(file); 2464 struct drm_xe_gem_create *args = data; 2465 struct xe_vm *vm = NULL; 2466 ktime_t end = 0; 2467 struct xe_bo *bo; 2468 unsigned int bo_flags; 2469 u32 handle; 2470 int err; 2471 2472 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2473 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2474 return -EINVAL; 2475 2476 /* at least one valid memory placement must be specified */ 2477 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2478 !args->placement)) 2479 return -EINVAL; 2480 2481 if (XE_IOCTL_DBG(xe, args->flags & 2482 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2483 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2484 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2485 return -EINVAL; 2486 2487 if (XE_IOCTL_DBG(xe, args->handle)) 2488 return -EINVAL; 2489 2490 if (XE_IOCTL_DBG(xe, !args->size)) 2491 return -EINVAL; 2492 2493 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2494 return -EINVAL; 2495 2496 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2497 return -EINVAL; 2498 2499 bo_flags = 0; 2500 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2501 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2502 2503 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2504 bo_flags |= XE_BO_FLAG_SCANOUT; 2505 2506 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2507 2508 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2509 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2510 (bo_flags & XE_BO_FLAG_SCANOUT) && 2511 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2512 IS_ALIGNED(args->size, SZ_64K)) 2513 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2514 2515 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2516 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2517 return -EINVAL; 2518 2519 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2520 } 2521 2522 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2523 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2524 return -EINVAL; 2525 2526 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2527 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2528 return -EINVAL; 2529 2530 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2531 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2532 return -EINVAL; 2533 2534 if (args->vm_id) { 2535 vm = xe_vm_lookup(xef, args->vm_id); 2536 if (XE_IOCTL_DBG(xe, !vm)) 2537 return -ENOENT; 2538 } 2539 2540 retry: 2541 if (vm) { 2542 err = xe_vm_lock(vm, true); 2543 if (err) 2544 goto out_vm; 2545 } 2546 2547 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2548 bo_flags); 2549 2550 if (vm) 2551 xe_vm_unlock(vm); 2552 2553 if (IS_ERR(bo)) { 2554 err = PTR_ERR(bo); 2555 if (xe_vm_validate_should_retry(NULL, err, &end)) 2556 goto retry; 2557 goto out_vm; 2558 } 2559 2560 if (args->extensions) { 2561 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2562 if (err) 2563 goto out_bulk; 2564 } 2565 2566 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2567 if (err) 2568 goto out_bulk; 2569 2570 args->handle = handle; 2571 goto out_put; 2572 2573 out_bulk: 2574 if (vm && !xe_vm_in_fault_mode(vm)) { 2575 xe_vm_lock(vm, false); 2576 __xe_bo_unset_bulk_move(bo); 2577 xe_vm_unlock(vm); 2578 } 2579 out_put: 2580 xe_bo_put(bo); 2581 out_vm: 2582 if (vm) 2583 xe_vm_put(vm); 2584 2585 return err; 2586 } 2587 2588 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2589 struct drm_file *file) 2590 { 2591 struct xe_device *xe = to_xe_device(dev); 2592 struct drm_xe_gem_mmap_offset *args = data; 2593 struct drm_gem_object *gem_obj; 2594 2595 if (XE_IOCTL_DBG(xe, args->extensions) || 2596 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2597 return -EINVAL; 2598 2599 if (XE_IOCTL_DBG(xe, args->flags & 2600 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2601 return -EINVAL; 2602 2603 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2604 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2605 return -EINVAL; 2606 2607 if (XE_IOCTL_DBG(xe, args->handle)) 2608 return -EINVAL; 2609 2610 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2611 return -EINVAL; 2612 2613 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2614 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2615 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2616 return 0; 2617 } 2618 2619 gem_obj = drm_gem_object_lookup(file, args->handle); 2620 if (XE_IOCTL_DBG(xe, !gem_obj)) 2621 return -ENOENT; 2622 2623 /* The mmap offset was set up at BO allocation time. */ 2624 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2625 2626 xe_bo_put(gem_to_xe_bo(gem_obj)); 2627 return 0; 2628 } 2629 2630 /** 2631 * xe_bo_lock() - Lock the buffer object's dma_resv object 2632 * @bo: The struct xe_bo whose lock is to be taken 2633 * @intr: Whether to perform any wait interruptible 2634 * 2635 * Locks the buffer object's dma_resv object. If the buffer object is 2636 * pointing to a shared dma_resv object, that shared lock is locked. 2637 * 2638 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2639 * contended lock was interrupted. If @intr is set to false, the 2640 * function always returns 0. 2641 */ 2642 int xe_bo_lock(struct xe_bo *bo, bool intr) 2643 { 2644 if (intr) 2645 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2646 2647 dma_resv_lock(bo->ttm.base.resv, NULL); 2648 2649 return 0; 2650 } 2651 2652 /** 2653 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2654 * @bo: The struct xe_bo whose lock is to be released. 2655 * 2656 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2657 */ 2658 void xe_bo_unlock(struct xe_bo *bo) 2659 { 2660 dma_resv_unlock(bo->ttm.base.resv); 2661 } 2662 2663 /** 2664 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2665 * @bo: The buffer object to migrate 2666 * @mem_type: The TTM memory type intended to migrate to 2667 * 2668 * Check whether the buffer object supports migration to the 2669 * given memory type. Note that pinning may affect the ability to migrate as 2670 * returned by this function. 2671 * 2672 * This function is primarily intended as a helper for checking the 2673 * possibility to migrate buffer objects and can be called without 2674 * the object lock held. 2675 * 2676 * Return: true if migration is possible, false otherwise. 2677 */ 2678 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2679 { 2680 unsigned int cur_place; 2681 2682 if (bo->ttm.type == ttm_bo_type_kernel) 2683 return true; 2684 2685 if (bo->ttm.type == ttm_bo_type_sg) 2686 return false; 2687 2688 for (cur_place = 0; cur_place < bo->placement.num_placement; 2689 cur_place++) { 2690 if (bo->placements[cur_place].mem_type == mem_type) 2691 return true; 2692 } 2693 2694 return false; 2695 } 2696 2697 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2698 { 2699 memset(place, 0, sizeof(*place)); 2700 place->mem_type = mem_type; 2701 } 2702 2703 /** 2704 * xe_bo_migrate - Migrate an object to the desired region id 2705 * @bo: The buffer object to migrate. 2706 * @mem_type: The TTM region type to migrate to. 2707 * 2708 * Attempt to migrate the buffer object to the desired memory region. The 2709 * buffer object may not be pinned, and must be locked. 2710 * On successful completion, the object memory type will be updated, 2711 * but an async migration task may not have completed yet, and to 2712 * accomplish that, the object's kernel fences must be signaled with 2713 * the object lock held. 2714 * 2715 * Return: 0 on success. Negative error code on failure. In particular may 2716 * return -EINTR or -ERESTARTSYS if signal pending. 2717 */ 2718 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2719 { 2720 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2721 struct ttm_operation_ctx ctx = { 2722 .interruptible = true, 2723 .no_wait_gpu = false, 2724 .gfp_retry_mayfail = true, 2725 }; 2726 struct ttm_placement placement; 2727 struct ttm_place requested; 2728 2729 xe_bo_assert_held(bo); 2730 2731 if (bo->ttm.resource->mem_type == mem_type) 2732 return 0; 2733 2734 if (xe_bo_is_pinned(bo)) 2735 return -EBUSY; 2736 2737 if (!xe_bo_can_migrate(bo, mem_type)) 2738 return -EINVAL; 2739 2740 xe_place_from_ttm_type(mem_type, &requested); 2741 placement.num_placement = 1; 2742 placement.placement = &requested; 2743 2744 /* 2745 * Stolen needs to be handled like below VRAM handling if we ever need 2746 * to support it. 2747 */ 2748 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2749 2750 if (mem_type_is_vram(mem_type)) { 2751 u32 c = 0; 2752 2753 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2754 } 2755 2756 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2757 } 2758 2759 /** 2760 * xe_bo_evict - Evict an object to evict placement 2761 * @bo: The buffer object to migrate. 2762 * @force_alloc: Set force_alloc in ttm_operation_ctx 2763 * 2764 * On successful completion, the object memory will be moved to evict 2765 * placement. This function blocks until the object has been fully moved. 2766 * 2767 * Return: 0 on success. Negative error code on failure. 2768 */ 2769 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2770 { 2771 struct ttm_operation_ctx ctx = { 2772 .interruptible = false, 2773 .no_wait_gpu = false, 2774 .force_alloc = force_alloc, 2775 .gfp_retry_mayfail = true, 2776 }; 2777 struct ttm_placement placement; 2778 int ret; 2779 2780 xe_evict_flags(&bo->ttm, &placement); 2781 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2782 if (ret) 2783 return ret; 2784 2785 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2786 false, MAX_SCHEDULE_TIMEOUT); 2787 2788 return 0; 2789 } 2790 2791 /** 2792 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2793 * placed in system memory. 2794 * @bo: The xe_bo 2795 * 2796 * Return: true if extra pages need to be allocated, false otherwise. 2797 */ 2798 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2799 { 2800 struct xe_device *xe = xe_bo_device(bo); 2801 2802 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2803 return false; 2804 2805 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2806 return false; 2807 2808 /* On discrete GPUs, if the GPU can access this buffer from 2809 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2810 * can't be used since there's no CCS storage associated with 2811 * non-VRAM addresses. 2812 */ 2813 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2814 return false; 2815 2816 return true; 2817 } 2818 2819 /** 2820 * __xe_bo_release_dummy() - Dummy kref release function 2821 * @kref: The embedded struct kref. 2822 * 2823 * Dummy release function for xe_bo_put_deferred(). Keep off. 2824 */ 2825 void __xe_bo_release_dummy(struct kref *kref) 2826 { 2827 } 2828 2829 /** 2830 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2831 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2832 * 2833 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2834 * The @deferred list can be either an onstack local list or a global 2835 * shared list used by a workqueue. 2836 */ 2837 void xe_bo_put_commit(struct llist_head *deferred) 2838 { 2839 struct llist_node *freed; 2840 struct xe_bo *bo, *next; 2841 2842 if (!deferred) 2843 return; 2844 2845 freed = llist_del_all(deferred); 2846 if (!freed) 2847 return; 2848 2849 llist_for_each_entry_safe(bo, next, freed, freed) 2850 drm_gem_object_free(&bo->ttm.base.refcount); 2851 } 2852 2853 static void xe_bo_dev_work_func(struct work_struct *work) 2854 { 2855 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 2856 2857 xe_bo_put_commit(&bo_dev->async_list); 2858 } 2859 2860 /** 2861 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 2862 * @bo_dev: The BO dev structure 2863 */ 2864 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 2865 { 2866 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 2867 } 2868 2869 /** 2870 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 2871 * @bo_dev: The BO dev structure 2872 */ 2873 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 2874 { 2875 flush_work(&bo_dev->async_free); 2876 } 2877 2878 void xe_bo_put(struct xe_bo *bo) 2879 { 2880 struct xe_tile *tile; 2881 u8 id; 2882 2883 might_sleep(); 2884 if (bo) { 2885 #ifdef CONFIG_PROC_FS 2886 if (bo->client) 2887 might_lock(&bo->client->bos_lock); 2888 #endif 2889 for_each_tile(tile, xe_bo_device(bo), id) 2890 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 2891 might_lock(&bo->ggtt_node[id]->ggtt->lock); 2892 drm_gem_object_put(&bo->ttm.base); 2893 } 2894 } 2895 2896 /** 2897 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2898 * @file_priv: ... 2899 * @dev: ... 2900 * @args: ... 2901 * 2902 * See dumb_create() hook in include/drm/drm_drv.h 2903 * 2904 * Return: ... 2905 */ 2906 int xe_bo_dumb_create(struct drm_file *file_priv, 2907 struct drm_device *dev, 2908 struct drm_mode_create_dumb *args) 2909 { 2910 struct xe_device *xe = to_xe_device(dev); 2911 struct xe_bo *bo; 2912 uint32_t handle; 2913 int cpp = DIV_ROUND_UP(args->bpp, 8); 2914 int err; 2915 u32 page_size = max_t(u32, PAGE_SIZE, 2916 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2917 2918 args->pitch = ALIGN(args->width * cpp, 64); 2919 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2920 page_size); 2921 2922 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2923 DRM_XE_GEM_CPU_CACHING_WC, 2924 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2925 XE_BO_FLAG_SCANOUT | 2926 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2927 if (IS_ERR(bo)) 2928 return PTR_ERR(bo); 2929 2930 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2931 /* drop reference from allocate - handle holds it now */ 2932 drm_gem_object_put(&bo->ttm.base); 2933 if (!err) 2934 args->handle = handle; 2935 return err; 2936 } 2937 2938 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2939 { 2940 struct ttm_buffer_object *tbo = &bo->ttm; 2941 struct ttm_device *bdev = tbo->bdev; 2942 2943 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2944 2945 list_del_init(&bo->vram_userfault_link); 2946 } 2947 2948 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2949 #include "tests/xe_bo.c" 2950 #endif 2951