1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_preempt_fence.h" 26 #include "xe_res_cursor.h" 27 #include "xe_trace.h" 28 #include "xe_ttm_stolen_mgr.h" 29 #include "xe_vm.h" 30 31 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 32 [XE_PL_SYSTEM] = "system", 33 [XE_PL_TT] = "gtt", 34 [XE_PL_VRAM0] = "vram0", 35 [XE_PL_VRAM1] = "vram1", 36 [XE_PL_STOLEN] = "stolen" 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = XE_PL_SYSTEM, 43 .flags = 0, 44 }; 45 46 static struct ttm_placement sys_placement = { 47 .num_placement = 1, 48 .placement = &sys_placement_flags, 49 }; 50 51 static const struct ttm_place tt_placement_flags[] = { 52 { 53 .fpfn = 0, 54 .lpfn = 0, 55 .mem_type = XE_PL_TT, 56 .flags = TTM_PL_FLAG_DESIRED, 57 }, 58 { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = XE_PL_SYSTEM, 62 .flags = TTM_PL_FLAG_FALLBACK, 63 } 64 }; 65 66 static struct ttm_placement tt_placement = { 67 .num_placement = 2, 68 .placement = tt_placement_flags, 69 }; 70 71 bool mem_type_is_vram(u32 mem_type) 72 { 73 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 74 } 75 76 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 77 { 78 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 79 } 80 81 static bool resource_is_vram(struct ttm_resource *res) 82 { 83 return mem_type_is_vram(res->mem_type); 84 } 85 86 bool xe_bo_is_vram(struct xe_bo *bo) 87 { 88 return resource_is_vram(bo->ttm.resource) || 89 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 90 } 91 92 bool xe_bo_is_stolen(struct xe_bo *bo) 93 { 94 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 95 } 96 97 /** 98 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 99 * @bo: The BO 100 * 101 * The stolen memory is accessed through the PCI BAR for both DGFX and some 102 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 103 * 104 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 105 */ 106 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 107 { 108 return xe_bo_is_stolen(bo) && 109 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 110 } 111 112 static bool xe_bo_is_user(struct xe_bo *bo) 113 { 114 return bo->flags & XE_BO_CREATE_USER_BIT; 115 } 116 117 static struct xe_migrate * 118 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 119 { 120 struct xe_tile *tile; 121 122 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 123 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 124 return tile->migrate; 125 } 126 127 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 128 { 129 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 130 struct ttm_resource_manager *mgr; 131 132 xe_assert(xe, resource_is_vram(res)); 133 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 134 return to_xe_ttm_vram_mgr(mgr)->vram; 135 } 136 137 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 138 u32 bo_flags, u32 *c) 139 { 140 if (bo_flags & XE_BO_CREATE_SYSTEM_BIT) { 141 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 142 143 bo->placements[*c] = (struct ttm_place) { 144 .mem_type = XE_PL_TT, 145 }; 146 *c += 1; 147 148 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 149 bo->props.preferred_mem_type = XE_PL_TT; 150 } 151 } 152 153 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 154 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 155 { 156 struct ttm_place place = { .mem_type = mem_type }; 157 struct xe_mem_region *vram; 158 u64 io_size; 159 160 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 161 162 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 163 xe_assert(xe, vram && vram->usable_size); 164 io_size = vram->io_size; 165 166 /* 167 * For eviction / restore on suspend / resume objects 168 * pinned in VRAM must be contiguous 169 */ 170 if (bo_flags & (XE_BO_CREATE_PINNED_BIT | 171 XE_BO_CREATE_GGTT_BIT)) 172 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 173 174 if (io_size < vram->usable_size) { 175 if (bo_flags & XE_BO_NEEDS_CPU_ACCESS) { 176 place.fpfn = 0; 177 place.lpfn = io_size >> PAGE_SHIFT; 178 } else { 179 place.flags |= TTM_PL_FLAG_TOPDOWN; 180 } 181 } 182 places[*c] = place; 183 *c += 1; 184 185 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 186 bo->props.preferred_mem_type = mem_type; 187 } 188 189 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 190 u32 bo_flags, u32 *c) 191 { 192 if (bo->props.preferred_gt == XE_GT1) { 193 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 194 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 195 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 196 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 197 } else { 198 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 199 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 200 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 201 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 202 } 203 } 204 205 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 206 u32 bo_flags, u32 *c) 207 { 208 if (bo_flags & XE_BO_CREATE_STOLEN_BIT) { 209 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 210 211 bo->placements[*c] = (struct ttm_place) { 212 .mem_type = XE_PL_STOLEN, 213 .flags = bo_flags & (XE_BO_CREATE_PINNED_BIT | 214 XE_BO_CREATE_GGTT_BIT) ? 215 TTM_PL_FLAG_CONTIGUOUS : 0, 216 }; 217 *c += 1; 218 } 219 } 220 221 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 222 u32 bo_flags) 223 { 224 u32 c = 0; 225 226 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 227 228 /* The order of placements should indicate preferred location */ 229 230 if (bo->props.preferred_mem_class == DRM_XE_MEM_REGION_CLASS_SYSMEM) { 231 try_add_system(xe, bo, bo_flags, &c); 232 try_add_vram(xe, bo, bo_flags, &c); 233 } else { 234 try_add_vram(xe, bo, bo_flags, &c); 235 try_add_system(xe, bo, bo_flags, &c); 236 } 237 try_add_stolen(xe, bo, bo_flags, &c); 238 239 if (!c) 240 return -EINVAL; 241 242 bo->placement = (struct ttm_placement) { 243 .num_placement = c, 244 .placement = bo->placements, 245 }; 246 247 return 0; 248 } 249 250 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 251 u32 bo_flags) 252 { 253 xe_bo_assert_held(bo); 254 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 255 } 256 257 static void xe_evict_flags(struct ttm_buffer_object *tbo, 258 struct ttm_placement *placement) 259 { 260 if (!xe_bo_is_xe_bo(tbo)) { 261 /* Don't handle scatter gather BOs */ 262 if (tbo->type == ttm_bo_type_sg) { 263 placement->num_placement = 0; 264 return; 265 } 266 267 *placement = sys_placement; 268 return; 269 } 270 271 /* 272 * For xe, sg bos that are evicted to system just triggers a 273 * rebind of the sg list upon subsequent validation to XE_PL_TT. 274 */ 275 switch (tbo->resource->mem_type) { 276 case XE_PL_VRAM0: 277 case XE_PL_VRAM1: 278 case XE_PL_STOLEN: 279 *placement = tt_placement; 280 break; 281 case XE_PL_TT: 282 default: 283 *placement = sys_placement; 284 break; 285 } 286 } 287 288 struct xe_ttm_tt { 289 struct ttm_tt ttm; 290 struct device *dev; 291 struct sg_table sgt; 292 struct sg_table *sg; 293 }; 294 295 static int xe_tt_map_sg(struct ttm_tt *tt) 296 { 297 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 298 unsigned long num_pages = tt->num_pages; 299 int ret; 300 301 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 302 303 if (xe_tt->sg) 304 return 0; 305 306 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 307 num_pages, 0, 308 (u64)num_pages << PAGE_SHIFT, 309 xe_sg_segment_size(xe_tt->dev), 310 GFP_KERNEL); 311 if (ret) 312 return ret; 313 314 xe_tt->sg = &xe_tt->sgt; 315 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 316 DMA_ATTR_SKIP_CPU_SYNC); 317 if (ret) { 318 sg_free_table(xe_tt->sg); 319 xe_tt->sg = NULL; 320 return ret; 321 } 322 323 return 0; 324 } 325 326 struct sg_table *xe_bo_sg(struct xe_bo *bo) 327 { 328 struct ttm_tt *tt = bo->ttm.ttm; 329 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 330 331 return xe_tt->sg; 332 } 333 334 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 335 u32 page_flags) 336 { 337 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 338 struct xe_device *xe = xe_bo_device(bo); 339 struct xe_ttm_tt *tt; 340 unsigned long extra_pages; 341 enum ttm_caching caching; 342 int err; 343 344 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 345 if (!tt) 346 return NULL; 347 348 tt->dev = xe->drm.dev; 349 350 extra_pages = 0; 351 if (xe_bo_needs_ccs_pages(bo)) 352 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 353 PAGE_SIZE); 354 355 switch (bo->cpu_caching) { 356 case DRM_XE_GEM_CPU_CACHING_WC: 357 caching = ttm_write_combined; 358 break; 359 default: 360 caching = ttm_cached; 361 break; 362 } 363 364 WARN_ON((bo->flags & XE_BO_CREATE_USER_BIT) && !bo->cpu_caching); 365 366 /* 367 * Display scanout is always non-coherent with the CPU cache. 368 * 369 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 370 * require a CPU:WC mapping. 371 */ 372 if ((!bo->cpu_caching && bo->flags & XE_BO_SCANOUT_BIT) || 373 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_PAGETABLE)) 374 caching = ttm_write_combined; 375 376 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 377 if (err) { 378 kfree(tt); 379 return NULL; 380 } 381 382 return &tt->ttm; 383 } 384 385 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 386 struct ttm_operation_ctx *ctx) 387 { 388 int err; 389 390 /* 391 * dma-bufs are not populated with pages, and the dma- 392 * addresses are set up when moved to XE_PL_TT. 393 */ 394 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 395 return 0; 396 397 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 398 if (err) 399 return err; 400 401 /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ 402 err = xe_tt_map_sg(tt); 403 if (err) 404 ttm_pool_free(&ttm_dev->pool, tt); 405 406 return err; 407 } 408 409 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 410 { 411 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 412 413 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 414 return; 415 416 if (xe_tt->sg) { 417 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 418 DMA_BIDIRECTIONAL, 0); 419 sg_free_table(xe_tt->sg); 420 xe_tt->sg = NULL; 421 } 422 423 return ttm_pool_free(&ttm_dev->pool, tt); 424 } 425 426 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 427 { 428 ttm_tt_fini(tt); 429 kfree(tt); 430 } 431 432 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 433 struct ttm_resource *mem) 434 { 435 struct xe_device *xe = ttm_to_xe_device(bdev); 436 437 switch (mem->mem_type) { 438 case XE_PL_SYSTEM: 439 case XE_PL_TT: 440 return 0; 441 case XE_PL_VRAM0: 442 case XE_PL_VRAM1: { 443 struct xe_ttm_vram_mgr_resource *vres = 444 to_xe_ttm_vram_mgr_resource(mem); 445 struct xe_mem_region *vram = res_to_mem_region(mem); 446 447 if (vres->used_visible_size < mem->size) 448 return -EINVAL; 449 450 mem->bus.offset = mem->start << PAGE_SHIFT; 451 452 if (vram->mapping && 453 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 454 mem->bus.addr = (u8 __force *)vram->mapping + 455 mem->bus.offset; 456 457 mem->bus.offset += vram->io_start; 458 mem->bus.is_iomem = true; 459 460 #if !defined(CONFIG_X86) 461 mem->bus.caching = ttm_write_combined; 462 #endif 463 return 0; 464 } case XE_PL_STOLEN: 465 return xe_ttm_stolen_io_mem_reserve(xe, mem); 466 default: 467 return -EINVAL; 468 } 469 } 470 471 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 472 const struct ttm_operation_ctx *ctx) 473 { 474 struct dma_resv_iter cursor; 475 struct dma_fence *fence; 476 struct drm_gem_object *obj = &bo->ttm.base; 477 struct drm_gpuvm_bo *vm_bo; 478 bool idle = false; 479 int ret = 0; 480 481 dma_resv_assert_held(bo->ttm.base.resv); 482 483 if (!list_empty(&bo->ttm.base.gpuva.list)) { 484 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 485 DMA_RESV_USAGE_BOOKKEEP); 486 dma_resv_for_each_fence_unlocked(&cursor, fence) 487 dma_fence_enable_sw_signaling(fence); 488 dma_resv_iter_end(&cursor); 489 } 490 491 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 492 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 493 struct drm_gpuva *gpuva; 494 495 if (!xe_vm_in_fault_mode(vm)) { 496 drm_gpuvm_bo_evict(vm_bo, true); 497 continue; 498 } 499 500 if (!idle) { 501 long timeout; 502 503 if (ctx->no_wait_gpu && 504 !dma_resv_test_signaled(bo->ttm.base.resv, 505 DMA_RESV_USAGE_BOOKKEEP)) 506 return -EBUSY; 507 508 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 509 DMA_RESV_USAGE_BOOKKEEP, 510 ctx->interruptible, 511 MAX_SCHEDULE_TIMEOUT); 512 if (!timeout) 513 return -ETIME; 514 if (timeout < 0) 515 return timeout; 516 517 idle = true; 518 } 519 520 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 521 struct xe_vma *vma = gpuva_to_vma(gpuva); 522 523 trace_xe_vma_evict(vma); 524 ret = xe_vm_invalidate_vma(vma); 525 if (XE_WARN_ON(ret)) 526 return ret; 527 } 528 } 529 530 return ret; 531 } 532 533 /* 534 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 535 * Note that unmapping the attachment is deferred to the next 536 * map_attachment time, or to bo destroy (after idling) whichever comes first. 537 * This is to avoid syncing before unmap_attachment(), assuming that the 538 * caller relies on idling the reservation object before moving the 539 * backing store out. Should that assumption not hold, then we will be able 540 * to unconditionally call unmap_attachment() when moving out to system. 541 */ 542 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 543 struct ttm_resource *new_res) 544 { 545 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 546 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 547 ttm); 548 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 549 struct sg_table *sg; 550 551 xe_assert(xe, attach); 552 xe_assert(xe, ttm_bo->ttm); 553 554 if (new_res->mem_type == XE_PL_SYSTEM) 555 goto out; 556 557 if (ttm_bo->sg) { 558 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 559 ttm_bo->sg = NULL; 560 } 561 562 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 563 if (IS_ERR(sg)) 564 return PTR_ERR(sg); 565 566 ttm_bo->sg = sg; 567 xe_tt->sg = sg; 568 569 out: 570 ttm_bo_move_null(ttm_bo, new_res); 571 572 return 0; 573 } 574 575 /** 576 * xe_bo_move_notify - Notify subsystems of a pending move 577 * @bo: The buffer object 578 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 579 * 580 * This function notifies subsystems of an upcoming buffer move. 581 * Upon receiving such a notification, subsystems should schedule 582 * halting access to the underlying pages and optionally add a fence 583 * to the buffer object's dma_resv object, that signals when access is 584 * stopped. The caller will wait on all dma_resv fences before 585 * starting the move. 586 * 587 * A subsystem may commence access to the object after obtaining 588 * bindings to the new backing memory under the object lock. 589 * 590 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 591 * negative error code on error. 592 */ 593 static int xe_bo_move_notify(struct xe_bo *bo, 594 const struct ttm_operation_ctx *ctx) 595 { 596 struct ttm_buffer_object *ttm_bo = &bo->ttm; 597 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 598 struct ttm_resource *old_mem = ttm_bo->resource; 599 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 600 int ret; 601 602 /* 603 * If this starts to call into many components, consider 604 * using a notification chain here. 605 */ 606 607 if (xe_bo_is_pinned(bo)) 608 return -EINVAL; 609 610 xe_bo_vunmap(bo); 611 ret = xe_bo_trigger_rebind(xe, bo, ctx); 612 if (ret) 613 return ret; 614 615 /* Don't call move_notify() for imported dma-bufs. */ 616 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 617 dma_buf_move_notify(ttm_bo->base.dma_buf); 618 619 /* 620 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 621 * so if we moved from VRAM make sure to unlink this from the userfault 622 * tracking. 623 */ 624 if (mem_type_is_vram(old_mem_type)) { 625 mutex_lock(&xe->mem_access.vram_userfault.lock); 626 if (!list_empty(&bo->vram_userfault_link)) 627 list_del_init(&bo->vram_userfault_link); 628 mutex_unlock(&xe->mem_access.vram_userfault.lock); 629 } 630 631 return 0; 632 } 633 634 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 635 struct ttm_operation_ctx *ctx, 636 struct ttm_resource *new_mem, 637 struct ttm_place *hop) 638 { 639 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 640 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 641 struct ttm_resource *old_mem = ttm_bo->resource; 642 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 643 struct ttm_tt *ttm = ttm_bo->ttm; 644 struct xe_migrate *migrate = NULL; 645 struct dma_fence *fence; 646 bool move_lacks_source; 647 bool tt_has_data; 648 bool needs_clear; 649 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 650 ttm && ttm_tt_is_populated(ttm)) ? true : false; 651 int ret = 0; 652 /* Bo creation path, moving to system or TT. */ 653 if ((!old_mem && ttm) && !handle_system_ccs) { 654 ttm_bo_move_null(ttm_bo, new_mem); 655 return 0; 656 } 657 658 if (ttm_bo->type == ttm_bo_type_sg) { 659 ret = xe_bo_move_notify(bo, ctx); 660 if (!ret) 661 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 662 goto out; 663 } 664 665 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 666 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 667 668 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 669 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 670 671 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 672 (!ttm && ttm_bo->type == ttm_bo_type_device); 673 674 if ((move_lacks_source && !needs_clear)) { 675 ttm_bo_move_null(ttm_bo, new_mem); 676 goto out; 677 } 678 679 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 680 ttm_bo_move_null(ttm_bo, new_mem); 681 goto out; 682 } 683 684 /* 685 * Failed multi-hop where the old_mem is still marked as 686 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 687 */ 688 if (old_mem_type == XE_PL_TT && 689 new_mem->mem_type == XE_PL_TT) { 690 ttm_bo_move_null(ttm_bo, new_mem); 691 goto out; 692 } 693 694 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 695 ret = xe_bo_move_notify(bo, ctx); 696 if (ret) 697 goto out; 698 } 699 700 if (old_mem_type == XE_PL_TT && 701 new_mem->mem_type == XE_PL_SYSTEM) { 702 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 703 DMA_RESV_USAGE_BOOKKEEP, 704 true, 705 MAX_SCHEDULE_TIMEOUT); 706 if (timeout < 0) { 707 ret = timeout; 708 goto out; 709 } 710 711 if (!handle_system_ccs) { 712 ttm_bo_move_null(ttm_bo, new_mem); 713 goto out; 714 } 715 } 716 717 if (!move_lacks_source && 718 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 719 (mem_type_is_vram(old_mem_type) && 720 new_mem->mem_type == XE_PL_SYSTEM))) { 721 hop->fpfn = 0; 722 hop->lpfn = 0; 723 hop->mem_type = XE_PL_TT; 724 hop->flags = TTM_PL_FLAG_TEMPORARY; 725 ret = -EMULTIHOP; 726 goto out; 727 } 728 729 if (bo->tile) 730 migrate = bo->tile->migrate; 731 else if (resource_is_vram(new_mem)) 732 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 733 else if (mem_type_is_vram(old_mem_type)) 734 migrate = mem_type_to_migrate(xe, old_mem_type); 735 else 736 migrate = xe->tiles[0].migrate; 737 738 xe_assert(xe, migrate); 739 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 740 xe_device_mem_access_get(xe); 741 742 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 743 /* 744 * Kernel memory that is pinned should only be moved on suspend 745 * / resume, some of the pinned memory is required for the 746 * device to resume / use the GPU to move other evicted memory 747 * (user memory) around. This likely could be optimized a bit 748 * futher where we find the minimum set of pinned memory 749 * required for resume but for simplity doing a memcpy for all 750 * pinned memory. 751 */ 752 ret = xe_bo_vmap(bo); 753 if (!ret) { 754 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 755 756 /* Create a new VMAP once kernel BO back in VRAM */ 757 if (!ret && resource_is_vram(new_mem)) { 758 struct xe_mem_region *vram = res_to_mem_region(new_mem); 759 void __iomem *new_addr = vram->mapping + 760 (new_mem->start << PAGE_SHIFT); 761 762 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 763 ret = -EINVAL; 764 xe_device_mem_access_put(xe); 765 goto out; 766 } 767 768 xe_assert(xe, new_mem->start == 769 bo->placements->fpfn); 770 771 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 772 } 773 } 774 } else { 775 if (move_lacks_source) 776 fence = xe_migrate_clear(migrate, bo, new_mem); 777 else 778 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 779 new_mem, handle_system_ccs); 780 if (IS_ERR(fence)) { 781 ret = PTR_ERR(fence); 782 xe_device_mem_access_put(xe); 783 goto out; 784 } 785 if (!move_lacks_source) { 786 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 787 true, new_mem); 788 if (ret) { 789 dma_fence_wait(fence, false); 790 ttm_bo_move_null(ttm_bo, new_mem); 791 ret = 0; 792 } 793 } else { 794 /* 795 * ttm_bo_move_accel_cleanup() may blow up if 796 * bo->resource == NULL, so just attach the 797 * fence and set the new resource. 798 */ 799 dma_resv_add_fence(ttm_bo->base.resv, fence, 800 DMA_RESV_USAGE_KERNEL); 801 ttm_bo_move_null(ttm_bo, new_mem); 802 } 803 804 dma_fence_put(fence); 805 } 806 807 xe_device_mem_access_put(xe); 808 809 out: 810 return ret; 811 812 } 813 814 /** 815 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 816 * @bo: The buffer object to move. 817 * 818 * On successful completion, the object memory will be moved to sytem memory. 819 * This function blocks until the object has been fully moved. 820 * 821 * This is needed to for special handling of pinned VRAM object during 822 * suspend-resume. 823 * 824 * Return: 0 on success. Negative error code on failure. 825 */ 826 int xe_bo_evict_pinned(struct xe_bo *bo) 827 { 828 struct ttm_place place = { 829 .mem_type = XE_PL_TT, 830 }; 831 struct ttm_placement placement = { 832 .placement = &place, 833 .num_placement = 1, 834 }; 835 struct ttm_operation_ctx ctx = { 836 .interruptible = false, 837 }; 838 struct ttm_resource *new_mem; 839 int ret; 840 841 xe_bo_assert_held(bo); 842 843 if (WARN_ON(!bo->ttm.resource)) 844 return -EINVAL; 845 846 if (WARN_ON(!xe_bo_is_pinned(bo))) 847 return -EINVAL; 848 849 if (WARN_ON(!xe_bo_is_vram(bo))) 850 return -EINVAL; 851 852 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 853 if (ret) 854 return ret; 855 856 if (!bo->ttm.ttm) { 857 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 858 if (!bo->ttm.ttm) { 859 ret = -ENOMEM; 860 goto err_res_free; 861 } 862 } 863 864 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 865 if (ret) 866 goto err_res_free; 867 868 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 869 if (ret) 870 goto err_res_free; 871 872 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 873 if (ret) 874 goto err_res_free; 875 876 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 877 false, MAX_SCHEDULE_TIMEOUT); 878 879 return 0; 880 881 err_res_free: 882 ttm_resource_free(&bo->ttm, &new_mem); 883 return ret; 884 } 885 886 /** 887 * xe_bo_restore_pinned() - Restore a pinned VRAM object 888 * @bo: The buffer object to move. 889 * 890 * On successful completion, the object memory will be moved back to VRAM. 891 * This function blocks until the object has been fully moved. 892 * 893 * This is needed to for special handling of pinned VRAM object during 894 * suspend-resume. 895 * 896 * Return: 0 on success. Negative error code on failure. 897 */ 898 int xe_bo_restore_pinned(struct xe_bo *bo) 899 { 900 struct ttm_operation_ctx ctx = { 901 .interruptible = false, 902 }; 903 struct ttm_resource *new_mem; 904 int ret; 905 906 xe_bo_assert_held(bo); 907 908 if (WARN_ON(!bo->ttm.resource)) 909 return -EINVAL; 910 911 if (WARN_ON(!xe_bo_is_pinned(bo))) 912 return -EINVAL; 913 914 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 915 return -EINVAL; 916 917 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 918 if (ret) 919 return ret; 920 921 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 922 if (ret) 923 goto err_res_free; 924 925 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 926 if (ret) 927 goto err_res_free; 928 929 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 930 if (ret) 931 goto err_res_free; 932 933 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 934 false, MAX_SCHEDULE_TIMEOUT); 935 936 return 0; 937 938 err_res_free: 939 ttm_resource_free(&bo->ttm, &new_mem); 940 return ret; 941 } 942 943 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 944 unsigned long page_offset) 945 { 946 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 947 struct xe_res_cursor cursor; 948 struct xe_mem_region *vram; 949 950 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 951 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 952 953 vram = res_to_mem_region(ttm_bo->resource); 954 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 955 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 956 } 957 958 static void __xe_bo_vunmap(struct xe_bo *bo); 959 960 /* 961 * TODO: Move this function to TTM so we don't rely on how TTM does its 962 * locking, thereby abusing TTM internals. 963 */ 964 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 965 { 966 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 967 bool locked; 968 969 xe_assert(xe, !kref_read(&ttm_bo->kref)); 970 971 /* 972 * We can typically only race with TTM trylocking under the 973 * lru_lock, which will immediately be unlocked again since 974 * the ttm_bo refcount is zero at this point. So trylocking *should* 975 * always succeed here, as long as we hold the lru lock. 976 */ 977 spin_lock(&ttm_bo->bdev->lru_lock); 978 locked = dma_resv_trylock(ttm_bo->base.resv); 979 spin_unlock(&ttm_bo->bdev->lru_lock); 980 xe_assert(xe, locked); 981 982 return locked; 983 } 984 985 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 986 { 987 struct dma_resv_iter cursor; 988 struct dma_fence *fence; 989 struct dma_fence *replacement = NULL; 990 struct xe_bo *bo; 991 992 if (!xe_bo_is_xe_bo(ttm_bo)) 993 return; 994 995 bo = ttm_to_xe_bo(ttm_bo); 996 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 997 998 /* 999 * Corner case where TTM fails to allocate memory and this BOs resv 1000 * still points the VMs resv 1001 */ 1002 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1003 return; 1004 1005 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1006 return; 1007 1008 /* 1009 * Scrub the preempt fences if any. The unbind fence is already 1010 * attached to the resv. 1011 * TODO: Don't do this for external bos once we scrub them after 1012 * unbind. 1013 */ 1014 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1015 DMA_RESV_USAGE_BOOKKEEP, fence) { 1016 if (xe_fence_is_xe_preempt(fence) && 1017 !dma_fence_is_signaled(fence)) { 1018 if (!replacement) 1019 replacement = dma_fence_get_stub(); 1020 1021 dma_resv_replace_fences(ttm_bo->base.resv, 1022 fence->context, 1023 replacement, 1024 DMA_RESV_USAGE_BOOKKEEP); 1025 } 1026 } 1027 dma_fence_put(replacement); 1028 1029 dma_resv_unlock(ttm_bo->base.resv); 1030 } 1031 1032 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1033 { 1034 if (!xe_bo_is_xe_bo(ttm_bo)) 1035 return; 1036 1037 /* 1038 * Object is idle and about to be destroyed. Release the 1039 * dma-buf attachment. 1040 */ 1041 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1042 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1043 struct xe_ttm_tt, ttm); 1044 1045 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1046 DMA_BIDIRECTIONAL); 1047 ttm_bo->sg = NULL; 1048 xe_tt->sg = NULL; 1049 } 1050 } 1051 1052 const struct ttm_device_funcs xe_ttm_funcs = { 1053 .ttm_tt_create = xe_ttm_tt_create, 1054 .ttm_tt_populate = xe_ttm_tt_populate, 1055 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1056 .ttm_tt_destroy = xe_ttm_tt_destroy, 1057 .evict_flags = xe_evict_flags, 1058 .move = xe_bo_move, 1059 .io_mem_reserve = xe_ttm_io_mem_reserve, 1060 .io_mem_pfn = xe_ttm_io_mem_pfn, 1061 .release_notify = xe_ttm_bo_release_notify, 1062 .eviction_valuable = ttm_bo_eviction_valuable, 1063 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1064 }; 1065 1066 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1067 { 1068 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1069 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1070 1071 if (bo->ttm.base.import_attach) 1072 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1073 drm_gem_object_release(&bo->ttm.base); 1074 1075 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1076 1077 if (bo->ggtt_node.size) 1078 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1079 1080 #ifdef CONFIG_PROC_FS 1081 if (bo->client) 1082 xe_drm_client_remove_bo(bo); 1083 #endif 1084 1085 if (bo->vm && xe_bo_is_user(bo)) 1086 xe_vm_put(bo->vm); 1087 1088 mutex_lock(&xe->mem_access.vram_userfault.lock); 1089 if (!list_empty(&bo->vram_userfault_link)) 1090 list_del(&bo->vram_userfault_link); 1091 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1092 1093 kfree(bo); 1094 } 1095 1096 static void xe_gem_object_free(struct drm_gem_object *obj) 1097 { 1098 /* Our BO reference counting scheme works as follows: 1099 * 1100 * The gem object kref is typically used throughout the driver, 1101 * and the gem object holds a ttm_buffer_object refcount, so 1102 * that when the last gem object reference is put, which is when 1103 * we end up in this function, we put also that ttm_buffer_object 1104 * refcount. Anything using gem interfaces is then no longer 1105 * allowed to access the object in a way that requires a gem 1106 * refcount, including locking the object. 1107 * 1108 * driver ttm callbacks is allowed to use the ttm_buffer_object 1109 * refcount directly if needed. 1110 */ 1111 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1112 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1113 } 1114 1115 static void xe_gem_object_close(struct drm_gem_object *obj, 1116 struct drm_file *file_priv) 1117 { 1118 struct xe_bo *bo = gem_to_xe_bo(obj); 1119 1120 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1121 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1122 1123 xe_bo_lock(bo, false); 1124 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1125 xe_bo_unlock(bo); 1126 } 1127 } 1128 1129 static bool should_migrate_to_system(struct xe_bo *bo) 1130 { 1131 struct xe_device *xe = xe_bo_device(bo); 1132 1133 return xe_device_in_fault_mode(xe) && bo->props.cpu_atomic; 1134 } 1135 1136 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1137 { 1138 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1139 struct drm_device *ddev = tbo->base.dev; 1140 struct xe_device *xe = to_xe_device(ddev); 1141 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1142 bool needs_rpm = bo->flags & XE_BO_CREATE_VRAM_MASK; 1143 vm_fault_t ret; 1144 int idx, r = 0; 1145 1146 if (needs_rpm) 1147 xe_device_mem_access_get(xe); 1148 1149 ret = ttm_bo_vm_reserve(tbo, vmf); 1150 if (ret) 1151 goto out; 1152 1153 if (drm_dev_enter(ddev, &idx)) { 1154 trace_xe_bo_cpu_fault(bo); 1155 1156 if (should_migrate_to_system(bo)) { 1157 r = xe_bo_migrate(bo, XE_PL_TT); 1158 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1159 ret = VM_FAULT_NOPAGE; 1160 else if (r) 1161 ret = VM_FAULT_SIGBUS; 1162 } 1163 if (!ret) 1164 ret = ttm_bo_vm_fault_reserved(vmf, 1165 vmf->vma->vm_page_prot, 1166 TTM_BO_VM_NUM_PREFAULT); 1167 drm_dev_exit(idx); 1168 } else { 1169 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1170 } 1171 1172 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1173 goto out; 1174 /* 1175 * ttm_bo_vm_reserve() already has dma_resv_lock. 1176 */ 1177 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1178 mutex_lock(&xe->mem_access.vram_userfault.lock); 1179 if (list_empty(&bo->vram_userfault_link)) 1180 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1181 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1182 } 1183 1184 dma_resv_unlock(tbo->base.resv); 1185 out: 1186 if (needs_rpm) 1187 xe_device_mem_access_put(xe); 1188 1189 return ret; 1190 } 1191 1192 static const struct vm_operations_struct xe_gem_vm_ops = { 1193 .fault = xe_gem_fault, 1194 .open = ttm_bo_vm_open, 1195 .close = ttm_bo_vm_close, 1196 .access = ttm_bo_vm_access 1197 }; 1198 1199 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1200 .free = xe_gem_object_free, 1201 .close = xe_gem_object_close, 1202 .mmap = drm_gem_ttm_mmap, 1203 .export = xe_gem_prime_export, 1204 .vm_ops = &xe_gem_vm_ops, 1205 }; 1206 1207 /** 1208 * xe_bo_alloc - Allocate storage for a struct xe_bo 1209 * 1210 * This funcition is intended to allocate storage to be used for input 1211 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1212 * created is needed before the call to __xe_bo_create_locked(). 1213 * If __xe_bo_create_locked ends up never to be called, then the 1214 * storage allocated with this function needs to be freed using 1215 * xe_bo_free(). 1216 * 1217 * Return: A pointer to an uninitialized struct xe_bo on success, 1218 * ERR_PTR(-ENOMEM) on error. 1219 */ 1220 struct xe_bo *xe_bo_alloc(void) 1221 { 1222 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1223 1224 if (!bo) 1225 return ERR_PTR(-ENOMEM); 1226 1227 return bo; 1228 } 1229 1230 /** 1231 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1232 * @bo: The buffer object storage. 1233 * 1234 * Refer to xe_bo_alloc() documentation for valid use-cases. 1235 */ 1236 void xe_bo_free(struct xe_bo *bo) 1237 { 1238 kfree(bo); 1239 } 1240 1241 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1242 struct xe_tile *tile, struct dma_resv *resv, 1243 struct ttm_lru_bulk_move *bulk, size_t size, 1244 u16 cpu_caching, enum ttm_bo_type type, 1245 u32 flags) 1246 { 1247 struct ttm_operation_ctx ctx = { 1248 .interruptible = true, 1249 .no_wait_gpu = false, 1250 }; 1251 struct ttm_placement *placement; 1252 uint32_t alignment; 1253 size_t aligned_size; 1254 int err; 1255 1256 /* Only kernel objects should set GT */ 1257 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1258 1259 if (XE_WARN_ON(!size)) { 1260 xe_bo_free(bo); 1261 return ERR_PTR(-EINVAL); 1262 } 1263 1264 if (flags & (XE_BO_CREATE_VRAM_MASK | XE_BO_CREATE_STOLEN_BIT) && 1265 !(flags & XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT) && 1266 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) { 1267 aligned_size = ALIGN(size, SZ_64K); 1268 if (type != ttm_bo_type_device) 1269 size = ALIGN(size, SZ_64K); 1270 flags |= XE_BO_INTERNAL_64K; 1271 alignment = SZ_64K >> PAGE_SHIFT; 1272 1273 } else { 1274 aligned_size = ALIGN(size, SZ_4K); 1275 flags &= ~XE_BO_INTERNAL_64K; 1276 alignment = SZ_4K >> PAGE_SHIFT; 1277 } 1278 1279 if (type == ttm_bo_type_device && aligned_size != size) 1280 return ERR_PTR(-EINVAL); 1281 1282 if (!bo) { 1283 bo = xe_bo_alloc(); 1284 if (IS_ERR(bo)) 1285 return bo; 1286 } 1287 1288 bo->ccs_cleared = false; 1289 bo->tile = tile; 1290 bo->size = size; 1291 bo->flags = flags; 1292 bo->cpu_caching = cpu_caching; 1293 bo->ttm.base.funcs = &xe_gem_object_funcs; 1294 bo->props.preferred_mem_class = XE_BO_PROPS_INVALID; 1295 bo->props.preferred_gt = XE_BO_PROPS_INVALID; 1296 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 1297 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1298 INIT_LIST_HEAD(&bo->pinned_link); 1299 #ifdef CONFIG_PROC_FS 1300 INIT_LIST_HEAD(&bo->client_link); 1301 #endif 1302 INIT_LIST_HEAD(&bo->vram_userfault_link); 1303 1304 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1305 1306 if (resv) { 1307 ctx.allow_res_evict = !(flags & XE_BO_CREATE_NO_RESV_EVICT); 1308 ctx.resv = resv; 1309 } 1310 1311 if (!(flags & XE_BO_FIXED_PLACEMENT_BIT)) { 1312 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1313 if (WARN_ON(err)) { 1314 xe_ttm_bo_destroy(&bo->ttm); 1315 return ERR_PTR(err); 1316 } 1317 } 1318 1319 /* Defer populating type_sg bos */ 1320 placement = (type == ttm_bo_type_sg || 1321 bo->flags & XE_BO_DEFER_BACKING) ? &sys_placement : 1322 &bo->placement; 1323 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1324 placement, alignment, 1325 &ctx, NULL, resv, xe_ttm_bo_destroy); 1326 if (err) 1327 return ERR_PTR(err); 1328 1329 /* 1330 * The VRAM pages underneath are potentially still being accessed by the 1331 * GPU, as per async GPU clearing and async evictions. However TTM makes 1332 * sure to add any corresponding move/clear fences into the objects 1333 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1334 * 1335 * For KMD internal buffers we don't care about GPU clearing, however we 1336 * still need to handle async evictions, where the VRAM is still being 1337 * accessed by the GPU. Most internal callers are not expecting this, 1338 * since they are missing the required synchronisation before accessing 1339 * the memory. To keep things simple just sync wait any kernel fences 1340 * here, if the buffer is designated KMD internal. 1341 * 1342 * For normal userspace objects we should already have the required 1343 * pipelining or sync waiting elsewhere, since we already have to deal 1344 * with things like async GPU clearing. 1345 */ 1346 if (type == ttm_bo_type_kernel) { 1347 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1348 DMA_RESV_USAGE_KERNEL, 1349 ctx.interruptible, 1350 MAX_SCHEDULE_TIMEOUT); 1351 1352 if (timeout < 0) { 1353 if (!resv) 1354 dma_resv_unlock(bo->ttm.base.resv); 1355 xe_bo_put(bo); 1356 return ERR_PTR(timeout); 1357 } 1358 } 1359 1360 bo->created = true; 1361 if (bulk) 1362 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1363 else 1364 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1365 1366 return bo; 1367 } 1368 1369 static int __xe_bo_fixed_placement(struct xe_device *xe, 1370 struct xe_bo *bo, 1371 u32 flags, 1372 u64 start, u64 end, u64 size) 1373 { 1374 struct ttm_place *place = bo->placements; 1375 1376 if (flags & (XE_BO_CREATE_USER_BIT|XE_BO_CREATE_SYSTEM_BIT)) 1377 return -EINVAL; 1378 1379 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1380 place->fpfn = start >> PAGE_SHIFT; 1381 place->lpfn = end >> PAGE_SHIFT; 1382 1383 switch (flags & (XE_BO_CREATE_STOLEN_BIT | XE_BO_CREATE_VRAM_MASK)) { 1384 case XE_BO_CREATE_VRAM0_BIT: 1385 place->mem_type = XE_PL_VRAM0; 1386 break; 1387 case XE_BO_CREATE_VRAM1_BIT: 1388 place->mem_type = XE_PL_VRAM1; 1389 break; 1390 case XE_BO_CREATE_STOLEN_BIT: 1391 place->mem_type = XE_PL_STOLEN; 1392 break; 1393 1394 default: 1395 /* 0 or multiple of the above set */ 1396 return -EINVAL; 1397 } 1398 1399 bo->placement = (struct ttm_placement) { 1400 .num_placement = 1, 1401 .placement = place, 1402 }; 1403 1404 return 0; 1405 } 1406 1407 static struct xe_bo * 1408 __xe_bo_create_locked(struct xe_device *xe, 1409 struct xe_tile *tile, struct xe_vm *vm, 1410 size_t size, u64 start, u64 end, 1411 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1412 { 1413 struct xe_bo *bo = NULL; 1414 int err; 1415 1416 if (vm) 1417 xe_vm_assert_held(vm); 1418 1419 if (start || end != ~0ULL) { 1420 bo = xe_bo_alloc(); 1421 if (IS_ERR(bo)) 1422 return bo; 1423 1424 flags |= XE_BO_FIXED_PLACEMENT_BIT; 1425 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1426 if (err) { 1427 xe_bo_free(bo); 1428 return ERR_PTR(err); 1429 } 1430 } 1431 1432 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1433 vm && !xe_vm_in_fault_mode(vm) && 1434 flags & XE_BO_CREATE_USER_BIT ? 1435 &vm->lru_bulk_move : NULL, size, 1436 cpu_caching, type, flags); 1437 if (IS_ERR(bo)) 1438 return bo; 1439 1440 /* 1441 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1442 * to ensure the shared resv doesn't disappear under the bo, the bo 1443 * will keep a reference to the vm, and avoid circular references 1444 * by having all the vm's bo refereferences released at vm close 1445 * time. 1446 */ 1447 if (vm && xe_bo_is_user(bo)) 1448 xe_vm_get(vm); 1449 bo->vm = vm; 1450 1451 if (bo->flags & XE_BO_CREATE_GGTT_BIT) { 1452 if (!tile && flags & XE_BO_CREATE_STOLEN_BIT) 1453 tile = xe_device_get_root_tile(xe); 1454 1455 xe_assert(xe, tile); 1456 1457 if (flags & XE_BO_FIXED_PLACEMENT_BIT) { 1458 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1459 start + bo->size, U64_MAX); 1460 } else { 1461 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1462 } 1463 if (err) 1464 goto err_unlock_put_bo; 1465 } 1466 1467 return bo; 1468 1469 err_unlock_put_bo: 1470 __xe_bo_unset_bulk_move(bo); 1471 xe_bo_unlock_vm_held(bo); 1472 xe_bo_put(bo); 1473 return ERR_PTR(err); 1474 } 1475 1476 struct xe_bo * 1477 xe_bo_create_locked_range(struct xe_device *xe, 1478 struct xe_tile *tile, struct xe_vm *vm, 1479 size_t size, u64 start, u64 end, 1480 enum ttm_bo_type type, u32 flags) 1481 { 1482 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1483 } 1484 1485 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1486 struct xe_vm *vm, size_t size, 1487 enum ttm_bo_type type, u32 flags) 1488 { 1489 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1490 } 1491 1492 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1493 struct xe_vm *vm, size_t size, 1494 u16 cpu_caching, 1495 enum ttm_bo_type type, 1496 u32 flags) 1497 { 1498 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1499 cpu_caching, type, 1500 flags | XE_BO_CREATE_USER_BIT); 1501 if (!IS_ERR(bo)) 1502 xe_bo_unlock_vm_held(bo); 1503 1504 return bo; 1505 } 1506 1507 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1508 struct xe_vm *vm, size_t size, 1509 enum ttm_bo_type type, u32 flags) 1510 { 1511 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1512 1513 if (!IS_ERR(bo)) 1514 xe_bo_unlock_vm_held(bo); 1515 1516 return bo; 1517 } 1518 1519 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1520 struct xe_vm *vm, 1521 size_t size, u64 offset, 1522 enum ttm_bo_type type, u32 flags) 1523 { 1524 struct xe_bo *bo; 1525 int err; 1526 u64 start = offset == ~0ull ? 0 : offset; 1527 u64 end = offset == ~0ull ? offset : start + size; 1528 1529 if (flags & XE_BO_CREATE_STOLEN_BIT && 1530 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1531 flags |= XE_BO_CREATE_GGTT_BIT; 1532 1533 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1534 flags | XE_BO_NEEDS_CPU_ACCESS); 1535 if (IS_ERR(bo)) 1536 return bo; 1537 1538 err = xe_bo_pin(bo); 1539 if (err) 1540 goto err_put; 1541 1542 err = xe_bo_vmap(bo); 1543 if (err) 1544 goto err_unpin; 1545 1546 xe_bo_unlock_vm_held(bo); 1547 1548 return bo; 1549 1550 err_unpin: 1551 xe_bo_unpin(bo); 1552 err_put: 1553 xe_bo_unlock_vm_held(bo); 1554 xe_bo_put(bo); 1555 return ERR_PTR(err); 1556 } 1557 1558 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1559 struct xe_vm *vm, size_t size, 1560 enum ttm_bo_type type, u32 flags) 1561 { 1562 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1563 } 1564 1565 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1566 const void *data, size_t size, 1567 enum ttm_bo_type type, u32 flags) 1568 { 1569 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1570 ALIGN(size, PAGE_SIZE), 1571 type, flags); 1572 if (IS_ERR(bo)) 1573 return bo; 1574 1575 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1576 1577 return bo; 1578 } 1579 1580 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1581 { 1582 xe_bo_unpin_map_no_vm(arg); 1583 } 1584 1585 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1586 size_t size, u32 flags) 1587 { 1588 struct xe_bo *bo; 1589 int ret; 1590 1591 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1592 if (IS_ERR(bo)) 1593 return bo; 1594 1595 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1596 if (ret) 1597 return ERR_PTR(ret); 1598 1599 return bo; 1600 } 1601 1602 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1603 const void *data, size_t size, u32 flags) 1604 { 1605 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1606 1607 if (IS_ERR(bo)) 1608 return bo; 1609 1610 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1611 1612 return bo; 1613 } 1614 1615 /** 1616 * xe_managed_bo_reinit_in_vram 1617 * @xe: xe device 1618 * @tile: Tile where the new buffer will be created 1619 * @src: Managed buffer object allocated in system memory 1620 * 1621 * Replace a managed src buffer object allocated in system memory with a new 1622 * one allocated in vram, copying the data between them. 1623 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1624 * is responsible for making sure that any old references to it are updated. 1625 * 1626 * Returns 0 for success, negative error code otherwise. 1627 */ 1628 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1629 { 1630 struct xe_bo *bo; 1631 1632 xe_assert(xe, IS_DGFX(xe)); 1633 xe_assert(xe, !(*src)->vmap.is_iomem); 1634 1635 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, (*src)->size, 1636 XE_BO_CREATE_VRAM_IF_DGFX(tile) | 1637 XE_BO_CREATE_GGTT_BIT); 1638 if (IS_ERR(bo)) 1639 return PTR_ERR(bo); 1640 1641 drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); 1642 *src = bo; 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * XXX: This is in the VM bind data path, likely should calculate this once and 1649 * store, with a recalculation if the BO is moved. 1650 */ 1651 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1652 { 1653 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1654 1655 if (res->mem_type == XE_PL_STOLEN) 1656 return xe_ttm_stolen_gpu_offset(xe); 1657 1658 return res_to_mem_region(res)->dpa_base; 1659 } 1660 1661 /** 1662 * xe_bo_pin_external - pin an external BO 1663 * @bo: buffer object to be pinned 1664 * 1665 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1666 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1667 * asserts and code to ensure evict / restore on suspend / resume. 1668 * 1669 * Returns 0 for success, negative error code otherwise. 1670 */ 1671 int xe_bo_pin_external(struct xe_bo *bo) 1672 { 1673 struct xe_device *xe = xe_bo_device(bo); 1674 int err; 1675 1676 xe_assert(xe, !bo->vm); 1677 xe_assert(xe, xe_bo_is_user(bo)); 1678 1679 if (!xe_bo_is_pinned(bo)) { 1680 err = xe_bo_validate(bo, NULL, false); 1681 if (err) 1682 return err; 1683 1684 if (xe_bo_is_vram(bo)) { 1685 spin_lock(&xe->pinned.lock); 1686 list_add_tail(&bo->pinned_link, 1687 &xe->pinned.external_vram); 1688 spin_unlock(&xe->pinned.lock); 1689 } 1690 } 1691 1692 ttm_bo_pin(&bo->ttm); 1693 1694 /* 1695 * FIXME: If we always use the reserve / unreserve functions for locking 1696 * we do not need this. 1697 */ 1698 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1699 1700 return 0; 1701 } 1702 1703 int xe_bo_pin(struct xe_bo *bo) 1704 { 1705 struct xe_device *xe = xe_bo_device(bo); 1706 int err; 1707 1708 /* We currently don't expect user BO to be pinned */ 1709 xe_assert(xe, !xe_bo_is_user(bo)); 1710 1711 /* Pinned object must be in GGTT or have pinned flag */ 1712 xe_assert(xe, bo->flags & (XE_BO_CREATE_PINNED_BIT | 1713 XE_BO_CREATE_GGTT_BIT)); 1714 1715 /* 1716 * No reason we can't support pinning imported dma-bufs we just don't 1717 * expect to pin an imported dma-buf. 1718 */ 1719 xe_assert(xe, !bo->ttm.base.import_attach); 1720 1721 /* We only expect at most 1 pin */ 1722 xe_assert(xe, !xe_bo_is_pinned(bo)); 1723 1724 err = xe_bo_validate(bo, NULL, false); 1725 if (err) 1726 return err; 1727 1728 /* 1729 * For pinned objects in on DGFX, which are also in vram, we expect 1730 * these to be in contiguous VRAM memory. Required eviction / restore 1731 * during suspend / resume (force restore to same physical address). 1732 */ 1733 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1734 bo->flags & XE_BO_INTERNAL_TEST)) { 1735 struct ttm_place *place = &(bo->placements[0]); 1736 1737 if (mem_type_is_vram(place->mem_type)) { 1738 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1739 1740 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1741 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1742 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1743 1744 spin_lock(&xe->pinned.lock); 1745 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1746 spin_unlock(&xe->pinned.lock); 1747 } 1748 } 1749 1750 ttm_bo_pin(&bo->ttm); 1751 1752 /* 1753 * FIXME: If we always use the reserve / unreserve functions for locking 1754 * we do not need this. 1755 */ 1756 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1757 1758 return 0; 1759 } 1760 1761 /** 1762 * xe_bo_unpin_external - unpin an external BO 1763 * @bo: buffer object to be unpinned 1764 * 1765 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1766 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1767 * asserts and code to ensure evict / restore on suspend / resume. 1768 * 1769 * Returns 0 for success, negative error code otherwise. 1770 */ 1771 void xe_bo_unpin_external(struct xe_bo *bo) 1772 { 1773 struct xe_device *xe = xe_bo_device(bo); 1774 1775 xe_assert(xe, !bo->vm); 1776 xe_assert(xe, xe_bo_is_pinned(bo)); 1777 xe_assert(xe, xe_bo_is_user(bo)); 1778 1779 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { 1780 spin_lock(&xe->pinned.lock); 1781 list_del_init(&bo->pinned_link); 1782 spin_unlock(&xe->pinned.lock); 1783 } 1784 1785 ttm_bo_unpin(&bo->ttm); 1786 1787 /* 1788 * FIXME: If we always use the reserve / unreserve functions for locking 1789 * we do not need this. 1790 */ 1791 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1792 } 1793 1794 void xe_bo_unpin(struct xe_bo *bo) 1795 { 1796 struct xe_device *xe = xe_bo_device(bo); 1797 1798 xe_assert(xe, !bo->ttm.base.import_attach); 1799 xe_assert(xe, xe_bo_is_pinned(bo)); 1800 1801 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1802 bo->flags & XE_BO_INTERNAL_TEST)) { 1803 struct ttm_place *place = &(bo->placements[0]); 1804 1805 if (mem_type_is_vram(place->mem_type)) { 1806 xe_assert(xe, !list_empty(&bo->pinned_link)); 1807 1808 spin_lock(&xe->pinned.lock); 1809 list_del_init(&bo->pinned_link); 1810 spin_unlock(&xe->pinned.lock); 1811 } 1812 } 1813 1814 ttm_bo_unpin(&bo->ttm); 1815 } 1816 1817 /** 1818 * xe_bo_validate() - Make sure the bo is in an allowed placement 1819 * @bo: The bo, 1820 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1821 * NULL. Used together with @allow_res_evict. 1822 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1823 * reservation object. 1824 * 1825 * Make sure the bo is in allowed placement, migrating it if necessary. If 1826 * needed, other bos will be evicted. If bos selected for eviction shares 1827 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1828 * set to true, otherwise they will be bypassed. 1829 * 1830 * Return: 0 on success, negative error code on failure. May return 1831 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1832 */ 1833 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1834 { 1835 struct ttm_operation_ctx ctx = { 1836 .interruptible = true, 1837 .no_wait_gpu = false, 1838 }; 1839 1840 if (vm) { 1841 lockdep_assert_held(&vm->lock); 1842 xe_vm_assert_held(vm); 1843 1844 ctx.allow_res_evict = allow_res_evict; 1845 ctx.resv = xe_vm_resv(vm); 1846 } 1847 1848 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1849 } 1850 1851 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1852 { 1853 if (bo->destroy == &xe_ttm_bo_destroy) 1854 return true; 1855 1856 return false; 1857 } 1858 1859 /* 1860 * Resolve a BO address. There is no assert to check if the proper lock is held 1861 * so it should only be used in cases where it is not fatal to get the wrong 1862 * address, such as printing debug information, but not in cases where memory is 1863 * written based on this result. 1864 */ 1865 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1866 { 1867 struct xe_device *xe = xe_bo_device(bo); 1868 struct xe_res_cursor cur; 1869 u64 page; 1870 1871 xe_assert(xe, page_size <= PAGE_SIZE); 1872 page = offset >> PAGE_SHIFT; 1873 offset &= (PAGE_SIZE - 1); 1874 1875 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1876 xe_assert(xe, bo->ttm.ttm); 1877 1878 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1879 page_size, &cur); 1880 return xe_res_dma(&cur) + offset; 1881 } else { 1882 struct xe_res_cursor cur; 1883 1884 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1885 page_size, &cur); 1886 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1887 } 1888 } 1889 1890 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1891 { 1892 if (!READ_ONCE(bo->ttm.pin_count)) 1893 xe_bo_assert_held(bo); 1894 return __xe_bo_addr(bo, offset, page_size); 1895 } 1896 1897 int xe_bo_vmap(struct xe_bo *bo) 1898 { 1899 void *virtual; 1900 bool is_iomem; 1901 int ret; 1902 1903 xe_bo_assert_held(bo); 1904 1905 if (!(bo->flags & XE_BO_NEEDS_CPU_ACCESS)) 1906 return -EINVAL; 1907 1908 if (!iosys_map_is_null(&bo->vmap)) 1909 return 0; 1910 1911 /* 1912 * We use this more or less deprecated interface for now since 1913 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1914 * single page bos, which is done here. 1915 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1916 * to use struct iosys_map. 1917 */ 1918 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1919 if (ret) 1920 return ret; 1921 1922 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1923 if (is_iomem) 1924 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1925 else 1926 iosys_map_set_vaddr(&bo->vmap, virtual); 1927 1928 return 0; 1929 } 1930 1931 static void __xe_bo_vunmap(struct xe_bo *bo) 1932 { 1933 if (!iosys_map_is_null(&bo->vmap)) { 1934 iosys_map_clear(&bo->vmap); 1935 ttm_bo_kunmap(&bo->kmap); 1936 } 1937 } 1938 1939 void xe_bo_vunmap(struct xe_bo *bo) 1940 { 1941 xe_bo_assert_held(bo); 1942 __xe_bo_vunmap(bo); 1943 } 1944 1945 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1946 struct drm_file *file) 1947 { 1948 struct xe_device *xe = to_xe_device(dev); 1949 struct xe_file *xef = to_xe_file(file); 1950 struct drm_xe_gem_create *args = data; 1951 struct xe_vm *vm = NULL; 1952 struct xe_bo *bo; 1953 unsigned int bo_flags; 1954 u32 handle; 1955 int err; 1956 1957 if (XE_IOCTL_DBG(xe, args->extensions) || 1958 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1959 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1960 return -EINVAL; 1961 1962 /* at least one valid memory placement must be specified */ 1963 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1964 !args->placement)) 1965 return -EINVAL; 1966 1967 if (XE_IOCTL_DBG(xe, args->flags & 1968 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1969 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1970 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1971 return -EINVAL; 1972 1973 if (XE_IOCTL_DBG(xe, args->handle)) 1974 return -EINVAL; 1975 1976 if (XE_IOCTL_DBG(xe, !args->size)) 1977 return -EINVAL; 1978 1979 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1980 return -EINVAL; 1981 1982 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1983 return -EINVAL; 1984 1985 bo_flags = 0; 1986 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1987 bo_flags |= XE_BO_DEFER_BACKING; 1988 1989 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1990 bo_flags |= XE_BO_SCANOUT_BIT; 1991 1992 bo_flags |= args->placement << (ffs(XE_BO_CREATE_SYSTEM_BIT) - 1); 1993 1994 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1995 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_CREATE_VRAM_MASK))) 1996 return -EINVAL; 1997 1998 bo_flags |= XE_BO_NEEDS_CPU_ACCESS; 1999 } 2000 2001 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2002 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2003 return -EINVAL; 2004 2005 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_CREATE_VRAM_MASK && 2006 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2007 return -EINVAL; 2008 2009 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_SCANOUT_BIT && 2010 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2011 return -EINVAL; 2012 2013 if (args->vm_id) { 2014 vm = xe_vm_lookup(xef, args->vm_id); 2015 if (XE_IOCTL_DBG(xe, !vm)) 2016 return -ENOENT; 2017 err = xe_vm_lock(vm, true); 2018 if (err) 2019 goto out_vm; 2020 } 2021 2022 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2023 ttm_bo_type_device, bo_flags); 2024 2025 if (vm) 2026 xe_vm_unlock(vm); 2027 2028 if (IS_ERR(bo)) { 2029 err = PTR_ERR(bo); 2030 goto out_vm; 2031 } 2032 2033 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2034 if (err) 2035 goto out_bulk; 2036 2037 args->handle = handle; 2038 goto out_put; 2039 2040 out_bulk: 2041 if (vm && !xe_vm_in_fault_mode(vm)) { 2042 xe_vm_lock(vm, false); 2043 __xe_bo_unset_bulk_move(bo); 2044 xe_vm_unlock(vm); 2045 } 2046 out_put: 2047 xe_bo_put(bo); 2048 out_vm: 2049 if (vm) 2050 xe_vm_put(vm); 2051 2052 return err; 2053 } 2054 2055 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2056 struct drm_file *file) 2057 { 2058 struct xe_device *xe = to_xe_device(dev); 2059 struct drm_xe_gem_mmap_offset *args = data; 2060 struct drm_gem_object *gem_obj; 2061 2062 if (XE_IOCTL_DBG(xe, args->extensions) || 2063 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2064 return -EINVAL; 2065 2066 if (XE_IOCTL_DBG(xe, args->flags)) 2067 return -EINVAL; 2068 2069 gem_obj = drm_gem_object_lookup(file, args->handle); 2070 if (XE_IOCTL_DBG(xe, !gem_obj)) 2071 return -ENOENT; 2072 2073 /* The mmap offset was set up at BO allocation time. */ 2074 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2075 2076 xe_bo_put(gem_to_xe_bo(gem_obj)); 2077 return 0; 2078 } 2079 2080 /** 2081 * xe_bo_lock() - Lock the buffer object's dma_resv object 2082 * @bo: The struct xe_bo whose lock is to be taken 2083 * @intr: Whether to perform any wait interruptible 2084 * 2085 * Locks the buffer object's dma_resv object. If the buffer object is 2086 * pointing to a shared dma_resv object, that shared lock is locked. 2087 * 2088 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2089 * contended lock was interrupted. If @intr is set to false, the 2090 * function always returns 0. 2091 */ 2092 int xe_bo_lock(struct xe_bo *bo, bool intr) 2093 { 2094 if (intr) 2095 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2096 2097 dma_resv_lock(bo->ttm.base.resv, NULL); 2098 2099 return 0; 2100 } 2101 2102 /** 2103 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2104 * @bo: The struct xe_bo whose lock is to be released. 2105 * 2106 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2107 */ 2108 void xe_bo_unlock(struct xe_bo *bo) 2109 { 2110 dma_resv_unlock(bo->ttm.base.resv); 2111 } 2112 2113 /** 2114 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2115 * @bo: The buffer object to migrate 2116 * @mem_type: The TTM memory type intended to migrate to 2117 * 2118 * Check whether the buffer object supports migration to the 2119 * given memory type. Note that pinning may affect the ability to migrate as 2120 * returned by this function. 2121 * 2122 * This function is primarily intended as a helper for checking the 2123 * possibility to migrate buffer objects and can be called without 2124 * the object lock held. 2125 * 2126 * Return: true if migration is possible, false otherwise. 2127 */ 2128 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2129 { 2130 unsigned int cur_place; 2131 2132 if (bo->ttm.type == ttm_bo_type_kernel) 2133 return true; 2134 2135 if (bo->ttm.type == ttm_bo_type_sg) 2136 return false; 2137 2138 for (cur_place = 0; cur_place < bo->placement.num_placement; 2139 cur_place++) { 2140 if (bo->placements[cur_place].mem_type == mem_type) 2141 return true; 2142 } 2143 2144 return false; 2145 } 2146 2147 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2148 { 2149 memset(place, 0, sizeof(*place)); 2150 place->mem_type = mem_type; 2151 } 2152 2153 /** 2154 * xe_bo_migrate - Migrate an object to the desired region id 2155 * @bo: The buffer object to migrate. 2156 * @mem_type: The TTM region type to migrate to. 2157 * 2158 * Attempt to migrate the buffer object to the desired memory region. The 2159 * buffer object may not be pinned, and must be locked. 2160 * On successful completion, the object memory type will be updated, 2161 * but an async migration task may not have completed yet, and to 2162 * accomplish that, the object's kernel fences must be signaled with 2163 * the object lock held. 2164 * 2165 * Return: 0 on success. Negative error code on failure. In particular may 2166 * return -EINTR or -ERESTARTSYS if signal pending. 2167 */ 2168 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2169 { 2170 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2171 struct ttm_operation_ctx ctx = { 2172 .interruptible = true, 2173 .no_wait_gpu = false, 2174 }; 2175 struct ttm_placement placement; 2176 struct ttm_place requested; 2177 2178 xe_bo_assert_held(bo); 2179 2180 if (bo->ttm.resource->mem_type == mem_type) 2181 return 0; 2182 2183 if (xe_bo_is_pinned(bo)) 2184 return -EBUSY; 2185 2186 if (!xe_bo_can_migrate(bo, mem_type)) 2187 return -EINVAL; 2188 2189 xe_place_from_ttm_type(mem_type, &requested); 2190 placement.num_placement = 1; 2191 placement.placement = &requested; 2192 2193 /* 2194 * Stolen needs to be handled like below VRAM handling if we ever need 2195 * to support it. 2196 */ 2197 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2198 2199 if (mem_type_is_vram(mem_type)) { 2200 u32 c = 0; 2201 2202 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2203 } 2204 2205 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2206 } 2207 2208 /** 2209 * xe_bo_evict - Evict an object to evict placement 2210 * @bo: The buffer object to migrate. 2211 * @force_alloc: Set force_alloc in ttm_operation_ctx 2212 * 2213 * On successful completion, the object memory will be moved to evict 2214 * placement. Ths function blocks until the object has been fully moved. 2215 * 2216 * Return: 0 on success. Negative error code on failure. 2217 */ 2218 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2219 { 2220 struct ttm_operation_ctx ctx = { 2221 .interruptible = false, 2222 .no_wait_gpu = false, 2223 .force_alloc = force_alloc, 2224 }; 2225 struct ttm_placement placement; 2226 int ret; 2227 2228 xe_evict_flags(&bo->ttm, &placement); 2229 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2230 if (ret) 2231 return ret; 2232 2233 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2234 false, MAX_SCHEDULE_TIMEOUT); 2235 2236 return 0; 2237 } 2238 2239 /** 2240 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2241 * placed in system memory. 2242 * @bo: The xe_bo 2243 * 2244 * Return: true if extra pages need to be allocated, false otherwise. 2245 */ 2246 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2247 { 2248 struct xe_device *xe = xe_bo_device(bo); 2249 2250 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2251 return false; 2252 2253 /* On discrete GPUs, if the GPU can access this buffer from 2254 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2255 * can't be used since there's no CCS storage associated with 2256 * non-VRAM addresses. 2257 */ 2258 if (IS_DGFX(xe) && (bo->flags & XE_BO_CREATE_SYSTEM_BIT)) 2259 return false; 2260 2261 return true; 2262 } 2263 2264 /** 2265 * __xe_bo_release_dummy() - Dummy kref release function 2266 * @kref: The embedded struct kref. 2267 * 2268 * Dummy release function for xe_bo_put_deferred(). Keep off. 2269 */ 2270 void __xe_bo_release_dummy(struct kref *kref) 2271 { 2272 } 2273 2274 /** 2275 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2276 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2277 * 2278 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2279 * The @deferred list can be either an onstack local list or a global 2280 * shared list used by a workqueue. 2281 */ 2282 void xe_bo_put_commit(struct llist_head *deferred) 2283 { 2284 struct llist_node *freed; 2285 struct xe_bo *bo, *next; 2286 2287 if (!deferred) 2288 return; 2289 2290 freed = llist_del_all(deferred); 2291 if (!freed) 2292 return; 2293 2294 llist_for_each_entry_safe(bo, next, freed, freed) 2295 drm_gem_object_free(&bo->ttm.base.refcount); 2296 } 2297 2298 /** 2299 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2300 * @file_priv: ... 2301 * @dev: ... 2302 * @args: ... 2303 * 2304 * See dumb_create() hook in include/drm/drm_drv.h 2305 * 2306 * Return: ... 2307 */ 2308 int xe_bo_dumb_create(struct drm_file *file_priv, 2309 struct drm_device *dev, 2310 struct drm_mode_create_dumb *args) 2311 { 2312 struct xe_device *xe = to_xe_device(dev); 2313 struct xe_bo *bo; 2314 uint32_t handle; 2315 int cpp = DIV_ROUND_UP(args->bpp, 8); 2316 int err; 2317 u32 page_size = max_t(u32, PAGE_SIZE, 2318 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2319 2320 args->pitch = ALIGN(args->width * cpp, 64); 2321 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2322 page_size); 2323 2324 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2325 DRM_XE_GEM_CPU_CACHING_WC, 2326 ttm_bo_type_device, 2327 XE_BO_CREATE_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2328 XE_BO_CREATE_USER_BIT | XE_BO_SCANOUT_BIT | 2329 XE_BO_NEEDS_CPU_ACCESS); 2330 if (IS_ERR(bo)) 2331 return PTR_ERR(bo); 2332 2333 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2334 /* drop reference from allocate - handle holds it now */ 2335 drm_gem_object_put(&bo->ttm.base); 2336 if (!err) 2337 args->handle = handle; 2338 return err; 2339 } 2340 2341 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2342 { 2343 struct ttm_buffer_object *tbo = &bo->ttm; 2344 struct ttm_device *bdev = tbo->bdev; 2345 2346 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2347 2348 list_del_init(&bo->vram_userfault_link); 2349 } 2350 2351 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2352 #include "tests/xe_bo.c" 2353 #endif 2354