1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_managed.h> 14 #include <drm/ttm/ttm_backup.h> 15 #include <drm/ttm/ttm_device.h> 16 #include <drm/ttm/ttm_placement.h> 17 #include <drm/ttm/ttm_tt.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include <kunit/static_stub.h> 21 22 #include <trace/events/gpu_mem.h> 23 24 #include "xe_device.h" 25 #include "xe_dma_buf.h" 26 #include "xe_drm_client.h" 27 #include "xe_ggtt.h" 28 #include "xe_gt.h" 29 #include "xe_map.h" 30 #include "xe_migrate.h" 31 #include "xe_pm.h" 32 #include "xe_preempt_fence.h" 33 #include "xe_pxp.h" 34 #include "xe_res_cursor.h" 35 #include "xe_shrinker.h" 36 #include "xe_sriov_vf_ccs.h" 37 #include "xe_trace_bo.h" 38 #include "xe_ttm_stolen_mgr.h" 39 #include "xe_vm.h" 40 #include "xe_vram_types.h" 41 42 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 43 [XE_PL_SYSTEM] = "system", 44 [XE_PL_TT] = "gtt", 45 [XE_PL_VRAM0] = "vram0", 46 [XE_PL_VRAM1] = "vram1", 47 [XE_PL_STOLEN] = "stolen" 48 }; 49 50 static const struct ttm_place sys_placement_flags = { 51 .fpfn = 0, 52 .lpfn = 0, 53 .mem_type = XE_PL_SYSTEM, 54 .flags = 0, 55 }; 56 57 static struct ttm_placement sys_placement = { 58 .num_placement = 1, 59 .placement = &sys_placement_flags, 60 }; 61 62 static struct ttm_placement purge_placement; 63 64 static const struct ttm_place tt_placement_flags[] = { 65 { 66 .fpfn = 0, 67 .lpfn = 0, 68 .mem_type = XE_PL_TT, 69 .flags = TTM_PL_FLAG_DESIRED, 70 }, 71 { 72 .fpfn = 0, 73 .lpfn = 0, 74 .mem_type = XE_PL_SYSTEM, 75 .flags = TTM_PL_FLAG_FALLBACK, 76 } 77 }; 78 79 static struct ttm_placement tt_placement = { 80 .num_placement = 2, 81 .placement = tt_placement_flags, 82 }; 83 84 bool mem_type_is_vram(u32 mem_type) 85 { 86 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 87 } 88 89 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 90 { 91 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 92 } 93 94 static bool resource_is_vram(struct ttm_resource *res) 95 { 96 return mem_type_is_vram(res->mem_type); 97 } 98 99 bool xe_bo_is_vram(struct xe_bo *bo) 100 { 101 return resource_is_vram(bo->ttm.resource) || 102 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 103 } 104 105 bool xe_bo_is_stolen(struct xe_bo *bo) 106 { 107 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 108 } 109 110 /** 111 * xe_bo_has_single_placement - check if BO is placed only in one memory location 112 * @bo: The BO 113 * 114 * This function checks whether a given BO is placed in only one memory location. 115 * 116 * Returns: true if the BO is placed in a single memory location, false otherwise. 117 * 118 */ 119 bool xe_bo_has_single_placement(struct xe_bo *bo) 120 { 121 return bo->placement.num_placement == 1; 122 } 123 124 /** 125 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 126 * @bo: The BO 127 * 128 * The stolen memory is accessed through the PCI BAR for both DGFX and some 129 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 130 * 131 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 132 */ 133 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 134 { 135 return xe_bo_is_stolen(bo) && 136 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 137 } 138 139 /** 140 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 141 * @bo: The BO 142 * 143 * Check if a given bo is bound through VM_BIND. This requires the 144 * reservation lock for the BO to be held. 145 * 146 * Returns: boolean 147 */ 148 bool xe_bo_is_vm_bound(struct xe_bo *bo) 149 { 150 xe_bo_assert_held(bo); 151 152 return !list_empty(&bo->ttm.base.gpuva.list); 153 } 154 155 static bool xe_bo_is_user(struct xe_bo *bo) 156 { 157 return bo->flags & XE_BO_FLAG_USER; 158 } 159 160 static struct xe_migrate * 161 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 162 { 163 struct xe_tile *tile; 164 165 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 166 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 167 return tile->migrate; 168 } 169 170 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 171 { 172 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 173 struct ttm_resource_manager *mgr; 174 struct xe_ttm_vram_mgr *vram_mgr; 175 176 xe_assert(xe, resource_is_vram(res)); 177 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 178 vram_mgr = to_xe_ttm_vram_mgr(mgr); 179 180 return container_of(vram_mgr, struct xe_vram_region, ttm); 181 } 182 183 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 184 u32 bo_flags, u32 *c) 185 { 186 if (bo_flags & XE_BO_FLAG_SYSTEM) { 187 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 188 189 bo->placements[*c] = (struct ttm_place) { 190 .mem_type = XE_PL_TT, 191 .flags = (bo_flags & XE_BO_FLAG_VRAM_MASK) ? 192 TTM_PL_FLAG_FALLBACK : 0, 193 }; 194 *c += 1; 195 } 196 } 197 198 static bool force_contiguous(u32 bo_flags) 199 { 200 if (bo_flags & XE_BO_FLAG_STOLEN) 201 return true; /* users expect this */ 202 else if (bo_flags & XE_BO_FLAG_PINNED && 203 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) 204 return true; /* needs vmap */ 205 else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR) 206 return true; 207 208 /* 209 * For eviction / restore on suspend / resume objects pinned in VRAM 210 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 211 */ 212 return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && 213 bo_flags & XE_BO_FLAG_PINNED; 214 } 215 216 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 217 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 218 { 219 struct ttm_place place = { .mem_type = mem_type }; 220 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 221 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 222 223 struct xe_vram_region *vram; 224 u64 io_size; 225 226 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 227 228 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 229 xe_assert(xe, vram && vram->usable_size); 230 io_size = vram->io_size; 231 232 if (force_contiguous(bo_flags)) 233 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 234 235 if (io_size < vram->usable_size) { 236 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 237 place.fpfn = 0; 238 place.lpfn = io_size >> PAGE_SHIFT; 239 } else { 240 place.flags |= TTM_PL_FLAG_TOPDOWN; 241 } 242 } 243 places[*c] = place; 244 *c += 1; 245 } 246 247 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 248 u32 bo_flags, u32 *c) 249 { 250 if (bo_flags & XE_BO_FLAG_VRAM0) 251 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 252 if (bo_flags & XE_BO_FLAG_VRAM1) 253 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 254 } 255 256 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 257 u32 bo_flags, u32 *c) 258 { 259 if (bo_flags & XE_BO_FLAG_STOLEN) { 260 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 261 262 bo->placements[*c] = (struct ttm_place) { 263 .mem_type = XE_PL_STOLEN, 264 .flags = force_contiguous(bo_flags) ? 265 TTM_PL_FLAG_CONTIGUOUS : 0, 266 }; 267 *c += 1; 268 } 269 } 270 271 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 272 u32 bo_flags) 273 { 274 u32 c = 0; 275 276 try_add_vram(xe, bo, bo_flags, &c); 277 try_add_system(xe, bo, bo_flags, &c); 278 try_add_stolen(xe, bo, bo_flags, &c); 279 280 if (!c) 281 return -EINVAL; 282 283 bo->placement = (struct ttm_placement) { 284 .num_placement = c, 285 .placement = bo->placements, 286 }; 287 288 return 0; 289 } 290 291 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 292 u32 bo_flags) 293 { 294 xe_bo_assert_held(bo); 295 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 296 } 297 298 static void xe_evict_flags(struct ttm_buffer_object *tbo, 299 struct ttm_placement *placement) 300 { 301 struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); 302 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 303 struct xe_bo *bo; 304 305 if (!xe_bo_is_xe_bo(tbo)) { 306 /* Don't handle scatter gather BOs */ 307 if (tbo->type == ttm_bo_type_sg) { 308 placement->num_placement = 0; 309 return; 310 } 311 312 *placement = device_unplugged ? purge_placement : sys_placement; 313 return; 314 } 315 316 bo = ttm_to_xe_bo(tbo); 317 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 318 *placement = sys_placement; 319 return; 320 } 321 322 if (device_unplugged && !tbo->base.dma_buf) { 323 *placement = purge_placement; 324 return; 325 } 326 327 /* 328 * For xe, sg bos that are evicted to system just triggers a 329 * rebind of the sg list upon subsequent validation to XE_PL_TT. 330 */ 331 switch (tbo->resource->mem_type) { 332 case XE_PL_VRAM0: 333 case XE_PL_VRAM1: 334 case XE_PL_STOLEN: 335 *placement = tt_placement; 336 break; 337 case XE_PL_TT: 338 default: 339 *placement = sys_placement; 340 break; 341 } 342 } 343 344 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 345 struct xe_ttm_tt { 346 struct ttm_tt ttm; 347 struct sg_table sgt; 348 struct sg_table *sg; 349 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 350 bool purgeable; 351 }; 352 353 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt) 354 { 355 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 356 unsigned long num_pages = tt->num_pages; 357 int ret; 358 359 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 360 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 361 362 if (xe_tt->sg) 363 return 0; 364 365 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 366 num_pages, 0, 367 (u64)num_pages << PAGE_SHIFT, 368 xe_sg_segment_size(xe->drm.dev), 369 GFP_KERNEL); 370 if (ret) 371 return ret; 372 373 xe_tt->sg = &xe_tt->sgt; 374 ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 375 DMA_ATTR_SKIP_CPU_SYNC); 376 if (ret) { 377 sg_free_table(xe_tt->sg); 378 xe_tt->sg = NULL; 379 return ret; 380 } 381 382 return 0; 383 } 384 385 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt) 386 { 387 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 388 389 if (xe_tt->sg) { 390 dma_unmap_sgtable(xe->drm.dev, xe_tt->sg, 391 DMA_BIDIRECTIONAL, 0); 392 sg_free_table(xe_tt->sg); 393 xe_tt->sg = NULL; 394 } 395 } 396 397 struct sg_table *xe_bo_sg(struct xe_bo *bo) 398 { 399 struct ttm_tt *tt = bo->ttm.ttm; 400 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 401 402 return xe_tt->sg; 403 } 404 405 /* 406 * Account ttm pages against the device shrinker's shrinkable and 407 * purgeable counts. 408 */ 409 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt) 410 { 411 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 412 413 if (xe_tt->purgeable) 414 xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages); 415 else 416 xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0); 417 } 418 419 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt) 420 { 421 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 422 423 if (xe_tt->purgeable) 424 xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages); 425 else 426 xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0); 427 } 428 429 static void update_global_total_pages(struct ttm_device *ttm_dev, 430 long num_pages) 431 { 432 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM) 433 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 434 u64 global_total_pages = 435 atomic64_add_return(num_pages, &xe->global_total_pages); 436 437 trace_gpu_mem_total(xe->drm.primary->index, 0, 438 global_total_pages << PAGE_SHIFT); 439 #endif 440 } 441 442 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 443 u32 page_flags) 444 { 445 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 446 struct xe_device *xe = xe_bo_device(bo); 447 struct xe_ttm_tt *xe_tt; 448 struct ttm_tt *tt; 449 unsigned long extra_pages; 450 enum ttm_caching caching = ttm_cached; 451 int err; 452 453 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 454 if (!xe_tt) 455 return NULL; 456 457 tt = &xe_tt->ttm; 458 459 extra_pages = 0; 460 if (xe_bo_needs_ccs_pages(bo)) 461 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)), 462 PAGE_SIZE); 463 464 /* 465 * DGFX system memory is always WB / ttm_cached, since 466 * other caching modes are only supported on x86. DGFX 467 * GPU system memory accesses are always coherent with the 468 * CPU. 469 */ 470 if (!IS_DGFX(xe)) { 471 switch (bo->cpu_caching) { 472 case DRM_XE_GEM_CPU_CACHING_WC: 473 caching = ttm_write_combined; 474 break; 475 default: 476 caching = ttm_cached; 477 break; 478 } 479 480 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 481 482 /* 483 * Display scanout is always non-coherent with the CPU cache. 484 * 485 * For Xe_LPG and beyond, PPGTT PTE lookups are also 486 * non-coherent and require a CPU:WC mapping. 487 */ 488 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 489 (xe->info.graphics_verx100 >= 1270 && 490 bo->flags & XE_BO_FLAG_PAGETABLE)) 491 caching = ttm_write_combined; 492 } 493 494 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 495 /* 496 * Valid only for internally-created buffers only, for 497 * which cpu_caching is never initialized. 498 */ 499 xe_assert(xe, bo->cpu_caching == 0); 500 caching = ttm_uncached; 501 } 502 503 if (ttm_bo->type != ttm_bo_type_sg) 504 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 505 506 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 507 if (err) { 508 kfree(xe_tt); 509 return NULL; 510 } 511 512 if (ttm_bo->type != ttm_bo_type_sg) { 513 err = ttm_tt_setup_backup(tt); 514 if (err) { 515 ttm_tt_fini(tt); 516 kfree(xe_tt); 517 return NULL; 518 } 519 } 520 521 return tt; 522 } 523 524 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 525 struct ttm_operation_ctx *ctx) 526 { 527 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 528 int err; 529 530 /* 531 * dma-bufs are not populated with pages, and the dma- 532 * addresses are set up when moved to XE_PL_TT. 533 */ 534 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 535 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 536 return 0; 537 538 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 539 err = ttm_tt_restore(ttm_dev, tt, ctx); 540 } else { 541 ttm_tt_clear_backed_up(tt); 542 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 543 } 544 if (err) 545 return err; 546 547 xe_tt->purgeable = false; 548 xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt); 549 update_global_total_pages(ttm_dev, tt->num_pages); 550 551 return 0; 552 } 553 554 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 555 { 556 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 557 558 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 559 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 560 return; 561 562 xe_tt_unmap_sg(xe, tt); 563 564 ttm_pool_free(&ttm_dev->pool, tt); 565 xe_ttm_tt_account_subtract(xe, tt); 566 update_global_total_pages(ttm_dev, -(long)tt->num_pages); 567 } 568 569 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 570 { 571 ttm_tt_fini(tt); 572 kfree(tt); 573 } 574 575 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 576 { 577 struct xe_ttm_vram_mgr_resource *vres = 578 to_xe_ttm_vram_mgr_resource(mem); 579 580 return vres->used_visible_size == mem->size; 581 } 582 583 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 584 struct ttm_resource *mem) 585 { 586 struct xe_device *xe = ttm_to_xe_device(bdev); 587 588 switch (mem->mem_type) { 589 case XE_PL_SYSTEM: 590 case XE_PL_TT: 591 return 0; 592 case XE_PL_VRAM0: 593 case XE_PL_VRAM1: { 594 struct xe_vram_region *vram = res_to_mem_region(mem); 595 596 if (!xe_ttm_resource_visible(mem)) 597 return -EINVAL; 598 599 mem->bus.offset = mem->start << PAGE_SHIFT; 600 601 if (vram->mapping && 602 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 603 mem->bus.addr = (u8 __force *)vram->mapping + 604 mem->bus.offset; 605 606 mem->bus.offset += vram->io_start; 607 mem->bus.is_iomem = true; 608 609 #if !IS_ENABLED(CONFIG_X86) 610 mem->bus.caching = ttm_write_combined; 611 #endif 612 return 0; 613 } case XE_PL_STOLEN: 614 return xe_ttm_stolen_io_mem_reserve(xe, mem); 615 default: 616 return -EINVAL; 617 } 618 } 619 620 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 621 const struct ttm_operation_ctx *ctx) 622 { 623 struct dma_resv_iter cursor; 624 struct dma_fence *fence; 625 struct drm_gem_object *obj = &bo->ttm.base; 626 struct drm_gpuvm_bo *vm_bo; 627 bool idle = false; 628 int ret = 0; 629 630 dma_resv_assert_held(bo->ttm.base.resv); 631 632 if (!list_empty(&bo->ttm.base.gpuva.list)) { 633 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 634 DMA_RESV_USAGE_BOOKKEEP); 635 dma_resv_for_each_fence_unlocked(&cursor, fence) 636 dma_fence_enable_sw_signaling(fence); 637 dma_resv_iter_end(&cursor); 638 } 639 640 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 641 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 642 struct drm_gpuva *gpuva; 643 644 if (!xe_vm_in_fault_mode(vm)) { 645 drm_gpuvm_bo_evict(vm_bo, true); 646 continue; 647 } 648 649 if (!idle) { 650 long timeout; 651 652 if (ctx->no_wait_gpu && 653 !dma_resv_test_signaled(bo->ttm.base.resv, 654 DMA_RESV_USAGE_BOOKKEEP)) 655 return -EBUSY; 656 657 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 658 DMA_RESV_USAGE_BOOKKEEP, 659 ctx->interruptible, 660 MAX_SCHEDULE_TIMEOUT); 661 if (!timeout) 662 return -ETIME; 663 if (timeout < 0) 664 return timeout; 665 666 idle = true; 667 } 668 669 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 670 struct xe_vma *vma = gpuva_to_vma(gpuva); 671 672 trace_xe_vma_evict(vma); 673 ret = xe_vm_invalidate_vma(vma); 674 if (XE_WARN_ON(ret)) 675 return ret; 676 } 677 } 678 679 return ret; 680 } 681 682 /* 683 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 684 * Note that unmapping the attachment is deferred to the next 685 * map_attachment time, or to bo destroy (after idling) whichever comes first. 686 * This is to avoid syncing before unmap_attachment(), assuming that the 687 * caller relies on idling the reservation object before moving the 688 * backing store out. Should that assumption not hold, then we will be able 689 * to unconditionally call unmap_attachment() when moving out to system. 690 */ 691 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 692 struct ttm_resource *new_res) 693 { 694 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 695 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 696 ttm); 697 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 698 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 699 struct sg_table *sg; 700 701 xe_assert(xe, attach); 702 xe_assert(xe, ttm_bo->ttm); 703 704 if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && 705 ttm_bo->sg) { 706 dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 707 false, MAX_SCHEDULE_TIMEOUT); 708 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 709 ttm_bo->sg = NULL; 710 } 711 712 if (new_res->mem_type == XE_PL_SYSTEM) 713 goto out; 714 715 if (ttm_bo->sg) { 716 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 717 ttm_bo->sg = NULL; 718 } 719 720 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 721 if (IS_ERR(sg)) 722 return PTR_ERR(sg); 723 724 ttm_bo->sg = sg; 725 xe_tt->sg = sg; 726 727 out: 728 ttm_bo_move_null(ttm_bo, new_res); 729 730 return 0; 731 } 732 733 /** 734 * xe_bo_move_notify - Notify subsystems of a pending move 735 * @bo: The buffer object 736 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 737 * 738 * This function notifies subsystems of an upcoming buffer move. 739 * Upon receiving such a notification, subsystems should schedule 740 * halting access to the underlying pages and optionally add a fence 741 * to the buffer object's dma_resv object, that signals when access is 742 * stopped. The caller will wait on all dma_resv fences before 743 * starting the move. 744 * 745 * A subsystem may commence access to the object after obtaining 746 * bindings to the new backing memory under the object lock. 747 * 748 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 749 * negative error code on error. 750 */ 751 static int xe_bo_move_notify(struct xe_bo *bo, 752 const struct ttm_operation_ctx *ctx) 753 { 754 struct ttm_buffer_object *ttm_bo = &bo->ttm; 755 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 756 struct ttm_resource *old_mem = ttm_bo->resource; 757 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 758 int ret; 759 760 /* 761 * If this starts to call into many components, consider 762 * using a notification chain here. 763 */ 764 765 if (xe_bo_is_pinned(bo)) 766 return -EINVAL; 767 768 xe_bo_vunmap(bo); 769 ret = xe_bo_trigger_rebind(xe, bo, ctx); 770 if (ret) 771 return ret; 772 773 /* Don't call move_notify() for imported dma-bufs. */ 774 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 775 dma_buf_move_notify(ttm_bo->base.dma_buf); 776 777 /* 778 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 779 * so if we moved from VRAM make sure to unlink this from the userfault 780 * tracking. 781 */ 782 if (mem_type_is_vram(old_mem_type)) { 783 mutex_lock(&xe->mem_access.vram_userfault.lock); 784 if (!list_empty(&bo->vram_userfault_link)) 785 list_del_init(&bo->vram_userfault_link); 786 mutex_unlock(&xe->mem_access.vram_userfault.lock); 787 } 788 789 return 0; 790 } 791 792 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 793 struct ttm_operation_ctx *ctx, 794 struct ttm_resource *new_mem, 795 struct ttm_place *hop) 796 { 797 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 798 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 799 struct ttm_resource *old_mem = ttm_bo->resource; 800 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 801 struct ttm_tt *ttm = ttm_bo->ttm; 802 struct xe_migrate *migrate = NULL; 803 struct dma_fence *fence; 804 bool move_lacks_source; 805 bool tt_has_data; 806 bool needs_clear; 807 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 808 ttm && ttm_tt_is_populated(ttm)) ? true : false; 809 int ret = 0; 810 811 /* Bo creation path, moving to system or TT. */ 812 if ((!old_mem && ttm) && !handle_system_ccs) { 813 if (new_mem->mem_type == XE_PL_TT) 814 ret = xe_tt_map_sg(xe, ttm); 815 if (!ret) 816 ttm_bo_move_null(ttm_bo, new_mem); 817 goto out; 818 } 819 820 if (ttm_bo->type == ttm_bo_type_sg) { 821 if (new_mem->mem_type == XE_PL_SYSTEM) 822 ret = xe_bo_move_notify(bo, ctx); 823 if (!ret) 824 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 825 return ret; 826 } 827 828 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm)); 829 830 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 831 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 832 833 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 834 (!ttm && ttm_bo->type == ttm_bo_type_device); 835 836 if (new_mem->mem_type == XE_PL_TT) { 837 ret = xe_tt_map_sg(xe, ttm); 838 if (ret) 839 goto out; 840 } 841 842 if ((move_lacks_source && !needs_clear)) { 843 ttm_bo_move_null(ttm_bo, new_mem); 844 goto out; 845 } 846 847 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 848 new_mem->mem_type == XE_PL_SYSTEM) { 849 ret = xe_svm_bo_evict(bo); 850 if (!ret) { 851 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 852 ttm_bo_move_null(ttm_bo, new_mem); 853 } else { 854 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 855 ERR_PTR(ret)); 856 } 857 858 goto out; 859 } 860 861 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 862 ttm_bo_move_null(ttm_bo, new_mem); 863 goto out; 864 } 865 866 /* 867 * Failed multi-hop where the old_mem is still marked as 868 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 869 */ 870 if (old_mem_type == XE_PL_TT && 871 new_mem->mem_type == XE_PL_TT) { 872 ttm_bo_move_null(ttm_bo, new_mem); 873 goto out; 874 } 875 876 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 877 ret = xe_bo_move_notify(bo, ctx); 878 if (ret) 879 goto out; 880 } 881 882 if (old_mem_type == XE_PL_TT && 883 new_mem->mem_type == XE_PL_SYSTEM) { 884 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 885 DMA_RESV_USAGE_BOOKKEEP, 886 false, 887 MAX_SCHEDULE_TIMEOUT); 888 if (timeout < 0) { 889 ret = timeout; 890 goto out; 891 } 892 893 if (!handle_system_ccs) { 894 ttm_bo_move_null(ttm_bo, new_mem); 895 goto out; 896 } 897 } 898 899 if (!move_lacks_source && 900 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 901 (mem_type_is_vram(old_mem_type) && 902 new_mem->mem_type == XE_PL_SYSTEM))) { 903 hop->fpfn = 0; 904 hop->lpfn = 0; 905 hop->mem_type = XE_PL_TT; 906 hop->flags = TTM_PL_FLAG_TEMPORARY; 907 ret = -EMULTIHOP; 908 goto out; 909 } 910 911 if (bo->tile) 912 migrate = bo->tile->migrate; 913 else if (resource_is_vram(new_mem)) 914 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 915 else if (mem_type_is_vram(old_mem_type)) 916 migrate = mem_type_to_migrate(xe, old_mem_type); 917 else 918 migrate = xe->tiles[0].migrate; 919 920 xe_assert(xe, migrate); 921 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 922 if (xe_rpm_reclaim_safe(xe)) { 923 /* 924 * We might be called through swapout in the validation path of 925 * another TTM device, so acquire rpm here. 926 */ 927 xe_pm_runtime_get(xe); 928 } else { 929 drm_WARN_ON(&xe->drm, handle_system_ccs); 930 xe_pm_runtime_get_noresume(xe); 931 } 932 933 if (move_lacks_source) { 934 u32 flags = 0; 935 936 if (mem_type_is_vram(new_mem->mem_type)) 937 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 938 else if (handle_system_ccs) 939 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 940 941 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 942 } else { 943 fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, 944 handle_system_ccs); 945 } 946 if (IS_ERR(fence)) { 947 ret = PTR_ERR(fence); 948 xe_pm_runtime_put(xe); 949 goto out; 950 } 951 if (!move_lacks_source) { 952 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, 953 new_mem); 954 if (ret) { 955 dma_fence_wait(fence, false); 956 ttm_bo_move_null(ttm_bo, new_mem); 957 ret = 0; 958 } 959 } else { 960 /* 961 * ttm_bo_move_accel_cleanup() may blow up if 962 * bo->resource == NULL, so just attach the 963 * fence and set the new resource. 964 */ 965 dma_resv_add_fence(ttm_bo->base.resv, fence, 966 DMA_RESV_USAGE_KERNEL); 967 ttm_bo_move_null(ttm_bo, new_mem); 968 } 969 970 dma_fence_put(fence); 971 xe_pm_runtime_put(xe); 972 973 /* 974 * CCS meta data is migrated from TT -> SMEM. So, let us detach the 975 * BBs from BO as it is no longer needed. 976 */ 977 if (IS_VF_CCS_BB_VALID(xe, bo) && old_mem_type == XE_PL_TT && 978 new_mem->mem_type == XE_PL_SYSTEM) 979 xe_sriov_vf_ccs_detach_bo(bo); 980 981 if (IS_SRIOV_VF(xe) && 982 ((move_lacks_source && new_mem->mem_type == XE_PL_TT) || 983 (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) && 984 handle_system_ccs) 985 ret = xe_sriov_vf_ccs_attach_bo(bo); 986 987 out: 988 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 989 ttm_bo->ttm) { 990 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 991 DMA_RESV_USAGE_KERNEL, 992 false, 993 MAX_SCHEDULE_TIMEOUT); 994 if (timeout < 0) 995 ret = timeout; 996 997 if (IS_VF_CCS_BB_VALID(xe, bo)) 998 xe_sriov_vf_ccs_detach_bo(bo); 999 1000 xe_tt_unmap_sg(xe, ttm_bo->ttm); 1001 } 1002 1003 return ret; 1004 } 1005 1006 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 1007 struct ttm_buffer_object *bo, 1008 unsigned long *scanned) 1009 { 1010 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1011 long lret; 1012 1013 /* Fake move to system, without copying data. */ 1014 if (bo->resource->mem_type != XE_PL_SYSTEM) { 1015 struct ttm_resource *new_resource; 1016 1017 lret = ttm_bo_wait_ctx(bo, ctx); 1018 if (lret) 1019 return lret; 1020 1021 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 1022 if (lret) 1023 return lret; 1024 1025 xe_tt_unmap_sg(xe, bo->ttm); 1026 ttm_bo_move_null(bo, new_resource); 1027 } 1028 1029 *scanned += bo->ttm->num_pages; 1030 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1031 {.purge = true, 1032 .writeback = false, 1033 .allow_move = false}); 1034 1035 if (lret > 0) 1036 xe_ttm_tt_account_subtract(xe, bo->ttm); 1037 1038 return lret; 1039 } 1040 1041 static bool 1042 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) 1043 { 1044 struct drm_gpuvm_bo *vm_bo; 1045 1046 if (!ttm_bo_eviction_valuable(bo, place)) 1047 return false; 1048 1049 if (!xe_bo_is_xe_bo(bo)) 1050 return true; 1051 1052 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { 1053 if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) 1054 return false; 1055 } 1056 1057 return true; 1058 } 1059 1060 /** 1061 * xe_bo_shrink() - Try to shrink an xe bo. 1062 * @ctx: The struct ttm_operation_ctx used for shrinking. 1063 * @bo: The TTM buffer object whose pages to shrink. 1064 * @flags: Flags governing the shrink behaviour. 1065 * @scanned: Pointer to a counter of the number of pages 1066 * attempted to shrink. 1067 * 1068 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1069 * Note that we need to be able to handle also non xe bos 1070 * (ghost bos), but only if the struct ttm_tt is embedded in 1071 * a struct xe_ttm_tt. When the function attempts to shrink 1072 * the pages of a buffer object, The value pointed to by @scanned 1073 * is updated. 1074 * 1075 * Return: The number of pages shrunken or purged, or negative error 1076 * code on failure. 1077 */ 1078 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1079 const struct xe_bo_shrink_flags flags, 1080 unsigned long *scanned) 1081 { 1082 struct ttm_tt *tt = bo->ttm; 1083 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1084 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1085 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1086 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1087 bool needs_rpm; 1088 long lret = 0L; 1089 1090 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1091 (flags.purge && !xe_tt->purgeable)) 1092 return -EBUSY; 1093 1094 if (!xe_bo_eviction_valuable(bo, &place)) 1095 return -EBUSY; 1096 1097 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1098 return xe_bo_shrink_purge(ctx, bo, scanned); 1099 1100 if (xe_tt->purgeable) { 1101 if (bo->resource->mem_type != XE_PL_SYSTEM) 1102 lret = xe_bo_move_notify(xe_bo, ctx); 1103 if (!lret) 1104 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1105 goto out_unref; 1106 } 1107 1108 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1109 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1110 xe_bo_needs_ccs_pages(xe_bo)); 1111 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1112 goto out_unref; 1113 1114 *scanned += tt->num_pages; 1115 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1116 {.purge = false, 1117 .writeback = flags.writeback, 1118 .allow_move = true}); 1119 if (needs_rpm) 1120 xe_pm_runtime_put(xe); 1121 1122 if (lret > 0) 1123 xe_ttm_tt_account_subtract(xe, tt); 1124 1125 out_unref: 1126 xe_bo_put(xe_bo); 1127 1128 return lret; 1129 } 1130 1131 /** 1132 * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed 1133 * up in system memory. 1134 * @bo: The buffer object to prepare. 1135 * 1136 * On successful completion, the object backup pages are allocated. Expectation 1137 * is that this is called from the PM notifier, prior to suspend/hibernation. 1138 * 1139 * Return: 0 on success. Negative error code on failure. 1140 */ 1141 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) 1142 { 1143 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1144 struct xe_bo *backup; 1145 int ret = 0; 1146 1147 xe_bo_lock(bo, false); 1148 1149 xe_assert(xe, !bo->backup_obj); 1150 1151 /* 1152 * Since this is called from the PM notifier we might have raced with 1153 * someone unpinning this after we dropped the pinned list lock and 1154 * grabbing the above bo lock. 1155 */ 1156 if (!xe_bo_is_pinned(bo)) 1157 goto out_unlock_bo; 1158 1159 if (!xe_bo_is_vram(bo)) 1160 goto out_unlock_bo; 1161 1162 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1163 goto out_unlock_bo; 1164 1165 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo), 1166 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1167 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1168 XE_BO_FLAG_PINNED); 1169 if (IS_ERR(backup)) { 1170 ret = PTR_ERR(backup); 1171 goto out_unlock_bo; 1172 } 1173 1174 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1175 ttm_bo_pin(&backup->ttm); 1176 bo->backup_obj = backup; 1177 1178 out_unlock_bo: 1179 xe_bo_unlock(bo); 1180 return ret; 1181 } 1182 1183 /** 1184 * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. 1185 * @bo: The buffer object to undo the prepare for. 1186 * 1187 * Always returns 0. The backup object is removed, if still present. Expectation 1188 * it that this called from the PM notifier when undoing the prepare step. 1189 * 1190 * Return: Always returns 0. 1191 */ 1192 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) 1193 { 1194 xe_bo_lock(bo, false); 1195 if (bo->backup_obj) { 1196 ttm_bo_unpin(&bo->backup_obj->ttm); 1197 xe_bo_put(bo->backup_obj); 1198 bo->backup_obj = NULL; 1199 } 1200 xe_bo_unlock(bo); 1201 1202 return 0; 1203 } 1204 1205 /** 1206 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1207 * @bo: The buffer object to move. 1208 * 1209 * On successful completion, the object memory will be moved to system memory. 1210 * 1211 * This is needed to for special handling of pinned VRAM object during 1212 * suspend-resume. 1213 * 1214 * Return: 0 on success. Negative error code on failure. 1215 */ 1216 int xe_bo_evict_pinned(struct xe_bo *bo) 1217 { 1218 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1219 struct xe_bo *backup = bo->backup_obj; 1220 bool backup_created = false; 1221 bool unmap = false; 1222 int ret = 0; 1223 1224 xe_bo_lock(bo, false); 1225 1226 if (WARN_ON(!bo->ttm.resource)) { 1227 ret = -EINVAL; 1228 goto out_unlock_bo; 1229 } 1230 1231 if (WARN_ON(!xe_bo_is_pinned(bo))) { 1232 ret = -EINVAL; 1233 goto out_unlock_bo; 1234 } 1235 1236 if (!xe_bo_is_vram(bo)) 1237 goto out_unlock_bo; 1238 1239 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1240 goto out_unlock_bo; 1241 1242 if (!backup) { 1243 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, 1244 NULL, xe_bo_size(bo), 1245 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1246 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1247 XE_BO_FLAG_PINNED); 1248 if (IS_ERR(backup)) { 1249 ret = PTR_ERR(backup); 1250 goto out_unlock_bo; 1251 } 1252 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1253 backup_created = true; 1254 } 1255 1256 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1257 struct xe_migrate *migrate; 1258 struct dma_fence *fence; 1259 1260 if (bo->tile) 1261 migrate = bo->tile->migrate; 1262 else 1263 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1264 1265 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1266 if (ret) 1267 goto out_backup; 1268 1269 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1270 if (ret) 1271 goto out_backup; 1272 1273 fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, 1274 backup->ttm.resource, false); 1275 if (IS_ERR(fence)) { 1276 ret = PTR_ERR(fence); 1277 goto out_backup; 1278 } 1279 1280 dma_resv_add_fence(bo->ttm.base.resv, fence, 1281 DMA_RESV_USAGE_KERNEL); 1282 dma_resv_add_fence(backup->ttm.base.resv, fence, 1283 DMA_RESV_USAGE_KERNEL); 1284 dma_fence_put(fence); 1285 } else { 1286 ret = xe_bo_vmap(backup); 1287 if (ret) 1288 goto out_backup; 1289 1290 if (iosys_map_is_null(&bo->vmap)) { 1291 ret = xe_bo_vmap(bo); 1292 if (ret) 1293 goto out_backup; 1294 unmap = true; 1295 } 1296 1297 xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, 1298 xe_bo_size(bo)); 1299 } 1300 1301 if (!bo->backup_obj) 1302 bo->backup_obj = backup; 1303 1304 out_backup: 1305 xe_bo_vunmap(backup); 1306 if (ret && backup_created) 1307 xe_bo_put(backup); 1308 out_unlock_bo: 1309 if (unmap) 1310 xe_bo_vunmap(bo); 1311 xe_bo_unlock(bo); 1312 return ret; 1313 } 1314 1315 /** 1316 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1317 * @bo: The buffer object to move. 1318 * 1319 * On successful completion, the object memory will be moved back to VRAM. 1320 * 1321 * This is needed to for special handling of pinned VRAM object during 1322 * suspend-resume. 1323 * 1324 * Return: 0 on success. Negative error code on failure. 1325 */ 1326 int xe_bo_restore_pinned(struct xe_bo *bo) 1327 { 1328 struct ttm_operation_ctx ctx = { 1329 .interruptible = false, 1330 .gfp_retry_mayfail = false, 1331 }; 1332 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1333 struct xe_bo *backup = bo->backup_obj; 1334 bool unmap = false; 1335 int ret; 1336 1337 if (!backup) 1338 return 0; 1339 1340 xe_bo_lock(bo, false); 1341 1342 if (!xe_bo_is_pinned(backup)) { 1343 ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); 1344 if (ret) 1345 goto out_unlock_bo; 1346 } 1347 1348 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1349 struct xe_migrate *migrate; 1350 struct dma_fence *fence; 1351 1352 if (bo->tile) 1353 migrate = bo->tile->migrate; 1354 else 1355 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1356 1357 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1358 if (ret) 1359 goto out_unlock_bo; 1360 1361 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1362 if (ret) 1363 goto out_unlock_bo; 1364 1365 fence = xe_migrate_copy(migrate, backup, bo, 1366 backup->ttm.resource, bo->ttm.resource, 1367 false); 1368 if (IS_ERR(fence)) { 1369 ret = PTR_ERR(fence); 1370 goto out_unlock_bo; 1371 } 1372 1373 dma_resv_add_fence(bo->ttm.base.resv, fence, 1374 DMA_RESV_USAGE_KERNEL); 1375 dma_resv_add_fence(backup->ttm.base.resv, fence, 1376 DMA_RESV_USAGE_KERNEL); 1377 dma_fence_put(fence); 1378 } else { 1379 ret = xe_bo_vmap(backup); 1380 if (ret) 1381 goto out_unlock_bo; 1382 1383 if (iosys_map_is_null(&bo->vmap)) { 1384 ret = xe_bo_vmap(bo); 1385 if (ret) 1386 goto out_backup; 1387 unmap = true; 1388 } 1389 1390 xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, 1391 xe_bo_size(bo)); 1392 } 1393 1394 bo->backup_obj = NULL; 1395 1396 out_backup: 1397 xe_bo_vunmap(backup); 1398 if (!bo->backup_obj) { 1399 if (xe_bo_is_pinned(backup)) 1400 ttm_bo_unpin(&backup->ttm); 1401 xe_bo_put(backup); 1402 } 1403 out_unlock_bo: 1404 if (unmap) 1405 xe_bo_vunmap(bo); 1406 xe_bo_unlock(bo); 1407 return ret; 1408 } 1409 1410 int xe_bo_dma_unmap_pinned(struct xe_bo *bo) 1411 { 1412 struct ttm_buffer_object *ttm_bo = &bo->ttm; 1413 struct ttm_tt *tt = ttm_bo->ttm; 1414 1415 if (tt) { 1416 struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); 1417 1418 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1419 dma_buf_unmap_attachment(ttm_bo->base.import_attach, 1420 ttm_bo->sg, 1421 DMA_BIDIRECTIONAL); 1422 ttm_bo->sg = NULL; 1423 xe_tt->sg = NULL; 1424 } else if (xe_tt->sg) { 1425 dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev, 1426 xe_tt->sg, 1427 DMA_BIDIRECTIONAL, 0); 1428 sg_free_table(xe_tt->sg); 1429 xe_tt->sg = NULL; 1430 } 1431 } 1432 1433 return 0; 1434 } 1435 1436 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1437 unsigned long page_offset) 1438 { 1439 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1440 struct xe_res_cursor cursor; 1441 struct xe_vram_region *vram; 1442 1443 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1444 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1445 1446 vram = res_to_mem_region(ttm_bo->resource); 1447 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1448 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1449 } 1450 1451 static void __xe_bo_vunmap(struct xe_bo *bo); 1452 1453 /* 1454 * TODO: Move this function to TTM so we don't rely on how TTM does its 1455 * locking, thereby abusing TTM internals. 1456 */ 1457 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1458 { 1459 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1460 bool locked; 1461 1462 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1463 1464 /* 1465 * We can typically only race with TTM trylocking under the 1466 * lru_lock, which will immediately be unlocked again since 1467 * the ttm_bo refcount is zero at this point. So trylocking *should* 1468 * always succeed here, as long as we hold the lru lock. 1469 */ 1470 spin_lock(&ttm_bo->bdev->lru_lock); 1471 locked = dma_resv_trylock(ttm_bo->base.resv); 1472 spin_unlock(&ttm_bo->bdev->lru_lock); 1473 xe_assert(xe, locked); 1474 1475 return locked; 1476 } 1477 1478 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1479 { 1480 struct dma_resv_iter cursor; 1481 struct dma_fence *fence; 1482 struct dma_fence *replacement = NULL; 1483 struct xe_bo *bo; 1484 1485 if (!xe_bo_is_xe_bo(ttm_bo)) 1486 return; 1487 1488 bo = ttm_to_xe_bo(ttm_bo); 1489 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1490 1491 /* 1492 * Corner case where TTM fails to allocate memory and this BOs resv 1493 * still points the VMs resv 1494 */ 1495 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1496 return; 1497 1498 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1499 return; 1500 1501 /* 1502 * Scrub the preempt fences if any. The unbind fence is already 1503 * attached to the resv. 1504 * TODO: Don't do this for external bos once we scrub them after 1505 * unbind. 1506 */ 1507 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1508 DMA_RESV_USAGE_BOOKKEEP, fence) { 1509 if (xe_fence_is_xe_preempt(fence) && 1510 !dma_fence_is_signaled(fence)) { 1511 if (!replacement) 1512 replacement = dma_fence_get_stub(); 1513 1514 dma_resv_replace_fences(ttm_bo->base.resv, 1515 fence->context, 1516 replacement, 1517 DMA_RESV_USAGE_BOOKKEEP); 1518 } 1519 } 1520 dma_fence_put(replacement); 1521 1522 dma_resv_unlock(ttm_bo->base.resv); 1523 } 1524 1525 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1526 { 1527 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1528 1529 if (!xe_bo_is_xe_bo(ttm_bo)) 1530 return; 1531 1532 if (IS_VF_CCS_BB_VALID(ttm_to_xe_device(ttm_bo->bdev), bo)) 1533 xe_sriov_vf_ccs_detach_bo(bo); 1534 1535 /* 1536 * Object is idle and about to be destroyed. Release the 1537 * dma-buf attachment. 1538 */ 1539 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1540 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1541 struct xe_ttm_tt, ttm); 1542 1543 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1544 DMA_BIDIRECTIONAL); 1545 ttm_bo->sg = NULL; 1546 xe_tt->sg = NULL; 1547 } 1548 } 1549 1550 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1551 { 1552 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1553 1554 if (ttm_bo->ttm) { 1555 struct ttm_placement place = {}; 1556 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1557 1558 drm_WARN_ON(&xe->drm, ret); 1559 } 1560 } 1561 1562 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1563 { 1564 struct ttm_operation_ctx ctx = { 1565 .interruptible = false, 1566 .gfp_retry_mayfail = false, 1567 }; 1568 1569 if (ttm_bo->ttm) { 1570 struct xe_ttm_tt *xe_tt = 1571 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1572 1573 if (xe_tt->purgeable) 1574 xe_ttm_bo_purge(ttm_bo, &ctx); 1575 } 1576 } 1577 1578 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1579 unsigned long offset, void *buf, int len, 1580 int write) 1581 { 1582 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1583 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1584 struct iosys_map vmap; 1585 struct xe_res_cursor cursor; 1586 struct xe_vram_region *vram; 1587 int bytes_left = len; 1588 int err = 0; 1589 1590 xe_bo_assert_held(bo); 1591 xe_device_assert_mem_access(xe); 1592 1593 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1594 return -EIO; 1595 1596 if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) { 1597 struct xe_migrate *migrate = 1598 mem_type_to_migrate(xe, ttm_bo->resource->mem_type); 1599 1600 err = xe_migrate_access_memory(migrate, bo, offset, buf, len, 1601 write); 1602 goto out; 1603 } 1604 1605 vram = res_to_mem_region(ttm_bo->resource); 1606 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1607 xe_bo_size(bo) - (offset & PAGE_MASK), &cursor); 1608 1609 do { 1610 unsigned long page_offset = (offset & ~PAGE_MASK); 1611 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1612 1613 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1614 cursor.start); 1615 if (write) 1616 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1617 else 1618 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1619 1620 buf += byte_count; 1621 offset += byte_count; 1622 bytes_left -= byte_count; 1623 if (bytes_left) 1624 xe_res_next(&cursor, PAGE_SIZE); 1625 } while (bytes_left); 1626 1627 out: 1628 return err ?: len; 1629 } 1630 1631 const struct ttm_device_funcs xe_ttm_funcs = { 1632 .ttm_tt_create = xe_ttm_tt_create, 1633 .ttm_tt_populate = xe_ttm_tt_populate, 1634 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1635 .ttm_tt_destroy = xe_ttm_tt_destroy, 1636 .evict_flags = xe_evict_flags, 1637 .move = xe_bo_move, 1638 .io_mem_reserve = xe_ttm_io_mem_reserve, 1639 .io_mem_pfn = xe_ttm_io_mem_pfn, 1640 .access_memory = xe_ttm_access_memory, 1641 .release_notify = xe_ttm_bo_release_notify, 1642 .eviction_valuable = xe_bo_eviction_valuable, 1643 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1644 .swap_notify = xe_ttm_bo_swap_notify, 1645 }; 1646 1647 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1648 { 1649 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1650 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1651 struct xe_tile *tile; 1652 u8 id; 1653 1654 if (bo->ttm.base.import_attach) 1655 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1656 drm_gem_object_release(&bo->ttm.base); 1657 1658 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1659 1660 for_each_tile(tile, xe, id) 1661 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1662 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1663 1664 #ifdef CONFIG_PROC_FS 1665 if (bo->client) 1666 xe_drm_client_remove_bo(bo); 1667 #endif 1668 1669 if (bo->vm && xe_bo_is_user(bo)) 1670 xe_vm_put(bo->vm); 1671 1672 if (bo->parent_obj) 1673 xe_bo_put(bo->parent_obj); 1674 1675 mutex_lock(&xe->mem_access.vram_userfault.lock); 1676 if (!list_empty(&bo->vram_userfault_link)) 1677 list_del(&bo->vram_userfault_link); 1678 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1679 1680 kfree(bo); 1681 } 1682 1683 static void xe_gem_object_free(struct drm_gem_object *obj) 1684 { 1685 /* Our BO reference counting scheme works as follows: 1686 * 1687 * The gem object kref is typically used throughout the driver, 1688 * and the gem object holds a ttm_buffer_object refcount, so 1689 * that when the last gem object reference is put, which is when 1690 * we end up in this function, we put also that ttm_buffer_object 1691 * refcount. Anything using gem interfaces is then no longer 1692 * allowed to access the object in a way that requires a gem 1693 * refcount, including locking the object. 1694 * 1695 * driver ttm callbacks is allowed to use the ttm_buffer_object 1696 * refcount directly if needed. 1697 */ 1698 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1699 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1700 } 1701 1702 static void xe_gem_object_close(struct drm_gem_object *obj, 1703 struct drm_file *file_priv) 1704 { 1705 struct xe_bo *bo = gem_to_xe_bo(obj); 1706 1707 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1708 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1709 1710 xe_bo_lock(bo, false); 1711 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1712 xe_bo_unlock(bo); 1713 } 1714 } 1715 1716 static bool should_migrate_to_smem(struct xe_bo *bo) 1717 { 1718 /* 1719 * NOTE: The following atomic checks are platform-specific. For example, 1720 * if a device supports CXL atomics, these may not be necessary or 1721 * may behave differently. 1722 */ 1723 1724 return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL || 1725 bo->attr.atomic_access == DRM_XE_ATOMIC_CPU; 1726 } 1727 1728 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1729 { 1730 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1731 struct drm_device *ddev = tbo->base.dev; 1732 struct xe_device *xe = to_xe_device(ddev); 1733 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1734 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1735 vm_fault_t ret; 1736 int idx, r = 0; 1737 1738 if (needs_rpm) 1739 xe_pm_runtime_get(xe); 1740 1741 ret = ttm_bo_vm_reserve(tbo, vmf); 1742 if (ret) 1743 goto out; 1744 1745 if (drm_dev_enter(ddev, &idx)) { 1746 trace_xe_bo_cpu_fault(bo); 1747 1748 if (should_migrate_to_smem(bo)) { 1749 xe_assert(xe, bo->flags & XE_BO_FLAG_SYSTEM); 1750 1751 r = xe_bo_migrate(bo, XE_PL_TT); 1752 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1753 ret = VM_FAULT_NOPAGE; 1754 else if (r) 1755 ret = VM_FAULT_SIGBUS; 1756 } 1757 if (!ret) 1758 ret = ttm_bo_vm_fault_reserved(vmf, 1759 vmf->vma->vm_page_prot, 1760 TTM_BO_VM_NUM_PREFAULT); 1761 drm_dev_exit(idx); 1762 1763 if (ret == VM_FAULT_RETRY && 1764 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1765 goto out; 1766 1767 /* 1768 * ttm_bo_vm_reserve() already has dma_resv_lock. 1769 */ 1770 if (ret == VM_FAULT_NOPAGE && 1771 mem_type_is_vram(tbo->resource->mem_type)) { 1772 mutex_lock(&xe->mem_access.vram_userfault.lock); 1773 if (list_empty(&bo->vram_userfault_link)) 1774 list_add(&bo->vram_userfault_link, 1775 &xe->mem_access.vram_userfault.list); 1776 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1777 } 1778 } else { 1779 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1780 } 1781 1782 dma_resv_unlock(tbo->base.resv); 1783 out: 1784 if (needs_rpm) 1785 xe_pm_runtime_put(xe); 1786 1787 return ret; 1788 } 1789 1790 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1791 void *buf, int len, int write) 1792 { 1793 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1794 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1795 struct xe_device *xe = xe_bo_device(bo); 1796 int ret; 1797 1798 xe_pm_runtime_get(xe); 1799 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1800 xe_pm_runtime_put(xe); 1801 1802 return ret; 1803 } 1804 1805 /** 1806 * xe_bo_read() - Read from an xe_bo 1807 * @bo: The buffer object to read from. 1808 * @offset: The byte offset to start reading from. 1809 * @dst: Location to store the read. 1810 * @size: Size in bytes for the read. 1811 * 1812 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1813 * 1814 * Return: Zero on success, or negative error. 1815 */ 1816 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1817 { 1818 int ret; 1819 1820 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1821 if (ret >= 0 && ret != size) 1822 ret = -EIO; 1823 else if (ret == size) 1824 ret = 0; 1825 1826 return ret; 1827 } 1828 1829 static const struct vm_operations_struct xe_gem_vm_ops = { 1830 .fault = xe_gem_fault, 1831 .open = ttm_bo_vm_open, 1832 .close = ttm_bo_vm_close, 1833 .access = xe_bo_vm_access, 1834 }; 1835 1836 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1837 .free = xe_gem_object_free, 1838 .close = xe_gem_object_close, 1839 .mmap = drm_gem_ttm_mmap, 1840 .export = xe_gem_prime_export, 1841 .vm_ops = &xe_gem_vm_ops, 1842 }; 1843 1844 /** 1845 * xe_bo_alloc - Allocate storage for a struct xe_bo 1846 * 1847 * This function is intended to allocate storage to be used for input 1848 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1849 * created is needed before the call to __xe_bo_create_locked(). 1850 * If __xe_bo_create_locked ends up never to be called, then the 1851 * storage allocated with this function needs to be freed using 1852 * xe_bo_free(). 1853 * 1854 * Return: A pointer to an uninitialized struct xe_bo on success, 1855 * ERR_PTR(-ENOMEM) on error. 1856 */ 1857 struct xe_bo *xe_bo_alloc(void) 1858 { 1859 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1860 1861 if (!bo) 1862 return ERR_PTR(-ENOMEM); 1863 1864 return bo; 1865 } 1866 1867 /** 1868 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1869 * @bo: The buffer object storage. 1870 * 1871 * Refer to xe_bo_alloc() documentation for valid use-cases. 1872 */ 1873 void xe_bo_free(struct xe_bo *bo) 1874 { 1875 kfree(bo); 1876 } 1877 1878 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1879 struct xe_tile *tile, struct dma_resv *resv, 1880 struct ttm_lru_bulk_move *bulk, size_t size, 1881 u16 cpu_caching, enum ttm_bo_type type, 1882 u32 flags) 1883 { 1884 struct ttm_operation_ctx ctx = { 1885 .interruptible = true, 1886 .no_wait_gpu = false, 1887 .gfp_retry_mayfail = true, 1888 }; 1889 struct ttm_placement *placement; 1890 uint32_t alignment; 1891 size_t aligned_size; 1892 int err; 1893 1894 /* Only kernel objects should set GT */ 1895 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1896 1897 if (XE_WARN_ON(!size)) { 1898 xe_bo_free(bo); 1899 return ERR_PTR(-EINVAL); 1900 } 1901 1902 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1903 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1904 return ERR_PTR(-EINVAL); 1905 1906 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1907 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1908 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1909 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1910 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1911 1912 aligned_size = ALIGN(size, align); 1913 if (type != ttm_bo_type_device) 1914 size = ALIGN(size, align); 1915 flags |= XE_BO_FLAG_INTERNAL_64K; 1916 alignment = align >> PAGE_SHIFT; 1917 } else { 1918 aligned_size = ALIGN(size, SZ_4K); 1919 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1920 alignment = SZ_4K >> PAGE_SHIFT; 1921 } 1922 1923 if (type == ttm_bo_type_device && aligned_size != size) 1924 return ERR_PTR(-EINVAL); 1925 1926 if (!bo) { 1927 bo = xe_bo_alloc(); 1928 if (IS_ERR(bo)) 1929 return bo; 1930 } 1931 1932 bo->ccs_cleared = false; 1933 bo->tile = tile; 1934 bo->flags = flags; 1935 bo->cpu_caching = cpu_caching; 1936 bo->ttm.base.funcs = &xe_gem_object_funcs; 1937 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1938 INIT_LIST_HEAD(&bo->pinned_link); 1939 #ifdef CONFIG_PROC_FS 1940 INIT_LIST_HEAD(&bo->client_link); 1941 #endif 1942 INIT_LIST_HEAD(&bo->vram_userfault_link); 1943 1944 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1945 1946 if (resv) { 1947 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1948 ctx.resv = resv; 1949 } 1950 1951 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1952 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1953 if (WARN_ON(err)) { 1954 xe_ttm_bo_destroy(&bo->ttm); 1955 return ERR_PTR(err); 1956 } 1957 } 1958 1959 /* Defer populating type_sg bos */ 1960 placement = (type == ttm_bo_type_sg || 1961 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1962 &bo->placement; 1963 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1964 placement, alignment, 1965 &ctx, NULL, resv, xe_ttm_bo_destroy); 1966 if (err) 1967 return ERR_PTR(err); 1968 1969 /* 1970 * The VRAM pages underneath are potentially still being accessed by the 1971 * GPU, as per async GPU clearing and async evictions. However TTM makes 1972 * sure to add any corresponding move/clear fences into the objects 1973 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1974 * 1975 * For KMD internal buffers we don't care about GPU clearing, however we 1976 * still need to handle async evictions, where the VRAM is still being 1977 * accessed by the GPU. Most internal callers are not expecting this, 1978 * since they are missing the required synchronisation before accessing 1979 * the memory. To keep things simple just sync wait any kernel fences 1980 * here, if the buffer is designated KMD internal. 1981 * 1982 * For normal userspace objects we should already have the required 1983 * pipelining or sync waiting elsewhere, since we already have to deal 1984 * with things like async GPU clearing. 1985 */ 1986 if (type == ttm_bo_type_kernel) { 1987 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1988 DMA_RESV_USAGE_KERNEL, 1989 ctx.interruptible, 1990 MAX_SCHEDULE_TIMEOUT); 1991 1992 if (timeout < 0) { 1993 if (!resv) 1994 dma_resv_unlock(bo->ttm.base.resv); 1995 xe_bo_put(bo); 1996 return ERR_PTR(timeout); 1997 } 1998 } 1999 2000 bo->created = true; 2001 if (bulk) 2002 ttm_bo_set_bulk_move(&bo->ttm, bulk); 2003 else 2004 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2005 2006 return bo; 2007 } 2008 2009 static int __xe_bo_fixed_placement(struct xe_device *xe, 2010 struct xe_bo *bo, 2011 u32 flags, 2012 u64 start, u64 end, u64 size) 2013 { 2014 struct ttm_place *place = bo->placements; 2015 2016 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 2017 return -EINVAL; 2018 2019 place->flags = TTM_PL_FLAG_CONTIGUOUS; 2020 place->fpfn = start >> PAGE_SHIFT; 2021 place->lpfn = end >> PAGE_SHIFT; 2022 2023 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 2024 case XE_BO_FLAG_VRAM0: 2025 place->mem_type = XE_PL_VRAM0; 2026 break; 2027 case XE_BO_FLAG_VRAM1: 2028 place->mem_type = XE_PL_VRAM1; 2029 break; 2030 case XE_BO_FLAG_STOLEN: 2031 place->mem_type = XE_PL_STOLEN; 2032 break; 2033 2034 default: 2035 /* 0 or multiple of the above set */ 2036 return -EINVAL; 2037 } 2038 2039 bo->placement = (struct ttm_placement) { 2040 .num_placement = 1, 2041 .placement = place, 2042 }; 2043 2044 return 0; 2045 } 2046 2047 static struct xe_bo * 2048 __xe_bo_create_locked(struct xe_device *xe, 2049 struct xe_tile *tile, struct xe_vm *vm, 2050 size_t size, u64 start, u64 end, 2051 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 2052 u64 alignment) 2053 { 2054 struct xe_bo *bo = NULL; 2055 int err; 2056 2057 if (vm) 2058 xe_vm_assert_held(vm); 2059 2060 if (start || end != ~0ULL) { 2061 bo = xe_bo_alloc(); 2062 if (IS_ERR(bo)) 2063 return bo; 2064 2065 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 2066 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 2067 if (err) { 2068 xe_bo_free(bo); 2069 return ERR_PTR(err); 2070 } 2071 } 2072 2073 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 2074 vm && !xe_vm_in_fault_mode(vm) && 2075 flags & XE_BO_FLAG_USER ? 2076 &vm->lru_bulk_move : NULL, size, 2077 cpu_caching, type, flags); 2078 if (IS_ERR(bo)) 2079 return bo; 2080 2081 bo->min_align = alignment; 2082 2083 /* 2084 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 2085 * to ensure the shared resv doesn't disappear under the bo, the bo 2086 * will keep a reference to the vm, and avoid circular references 2087 * by having all the vm's bo refereferences released at vm close 2088 * time. 2089 */ 2090 if (vm && xe_bo_is_user(bo)) 2091 xe_vm_get(vm); 2092 bo->vm = vm; 2093 2094 if (bo->flags & XE_BO_FLAG_GGTT) { 2095 struct xe_tile *t; 2096 u8 id; 2097 2098 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 2099 if (!tile && flags & XE_BO_FLAG_STOLEN) 2100 tile = xe_device_get_root_tile(xe); 2101 2102 xe_assert(xe, tile); 2103 } 2104 2105 for_each_tile(t, xe, id) { 2106 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 2107 continue; 2108 2109 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 2110 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 2111 start + xe_bo_size(bo), U64_MAX); 2112 } else { 2113 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 2114 } 2115 if (err) 2116 goto err_unlock_put_bo; 2117 } 2118 } 2119 2120 trace_xe_bo_create(bo); 2121 return bo; 2122 2123 err_unlock_put_bo: 2124 __xe_bo_unset_bulk_move(bo); 2125 xe_bo_unlock_vm_held(bo); 2126 xe_bo_put(bo); 2127 return ERR_PTR(err); 2128 } 2129 2130 struct xe_bo * 2131 xe_bo_create_locked_range(struct xe_device *xe, 2132 struct xe_tile *tile, struct xe_vm *vm, 2133 size_t size, u64 start, u64 end, 2134 enum ttm_bo_type type, u32 flags, u64 alignment) 2135 { 2136 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 2137 flags, alignment); 2138 } 2139 2140 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 2141 struct xe_vm *vm, size_t size, 2142 enum ttm_bo_type type, u32 flags) 2143 { 2144 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 2145 flags, 0); 2146 } 2147 2148 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 2149 struct xe_vm *vm, size_t size, 2150 u16 cpu_caching, 2151 u32 flags) 2152 { 2153 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 2154 cpu_caching, ttm_bo_type_device, 2155 flags | XE_BO_FLAG_USER, 0); 2156 if (!IS_ERR(bo)) 2157 xe_bo_unlock_vm_held(bo); 2158 2159 return bo; 2160 } 2161 2162 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 2163 struct xe_vm *vm, size_t size, 2164 enum ttm_bo_type type, u32 flags) 2165 { 2166 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 2167 2168 if (!IS_ERR(bo)) 2169 xe_bo_unlock_vm_held(bo); 2170 2171 return bo; 2172 } 2173 2174 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 2175 struct xe_vm *vm, 2176 size_t size, u64 offset, 2177 enum ttm_bo_type type, u32 flags) 2178 { 2179 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 2180 type, flags, 0); 2181 } 2182 2183 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 2184 struct xe_tile *tile, 2185 struct xe_vm *vm, 2186 size_t size, u64 offset, 2187 enum ttm_bo_type type, u32 flags, 2188 u64 alignment) 2189 { 2190 struct xe_bo *bo; 2191 int err; 2192 u64 start = offset == ~0ull ? 0 : offset; 2193 u64 end = offset == ~0ull ? offset : start + size; 2194 2195 if (flags & XE_BO_FLAG_STOLEN && 2196 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 2197 flags |= XE_BO_FLAG_GGTT; 2198 2199 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 2200 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, 2201 alignment); 2202 if (IS_ERR(bo)) 2203 return bo; 2204 2205 err = xe_bo_pin(bo); 2206 if (err) 2207 goto err_put; 2208 2209 err = xe_bo_vmap(bo); 2210 if (err) 2211 goto err_unpin; 2212 2213 xe_bo_unlock_vm_held(bo); 2214 2215 return bo; 2216 2217 err_unpin: 2218 xe_bo_unpin(bo); 2219 err_put: 2220 xe_bo_unlock_vm_held(bo); 2221 xe_bo_put(bo); 2222 return ERR_PTR(err); 2223 } 2224 2225 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2226 struct xe_vm *vm, size_t size, 2227 enum ttm_bo_type type, u32 flags) 2228 { 2229 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 2230 } 2231 2232 static void __xe_bo_unpin_map_no_vm(void *arg) 2233 { 2234 xe_bo_unpin_map_no_vm(arg); 2235 } 2236 2237 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2238 size_t size, u32 flags) 2239 { 2240 struct xe_bo *bo; 2241 int ret; 2242 2243 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2244 2245 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2246 if (IS_ERR(bo)) 2247 return bo; 2248 2249 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2250 if (ret) 2251 return ERR_PTR(ret); 2252 2253 return bo; 2254 } 2255 2256 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2257 const void *data, size_t size, u32 flags) 2258 { 2259 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2260 2261 if (IS_ERR(bo)) 2262 return bo; 2263 2264 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2265 2266 return bo; 2267 } 2268 2269 /** 2270 * xe_managed_bo_reinit_in_vram 2271 * @xe: xe device 2272 * @tile: Tile where the new buffer will be created 2273 * @src: Managed buffer object allocated in system memory 2274 * 2275 * Replace a managed src buffer object allocated in system memory with a new 2276 * one allocated in vram, copying the data between them. 2277 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2278 * is responsible for making sure that any old references to it are updated. 2279 * 2280 * Returns 0 for success, negative error code otherwise. 2281 */ 2282 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2283 { 2284 struct xe_bo *bo; 2285 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2286 2287 dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | 2288 XE_BO_FLAG_PINNED_NORESTORE); 2289 2290 xe_assert(xe, IS_DGFX(xe)); 2291 xe_assert(xe, !(*src)->vmap.is_iomem); 2292 2293 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2294 xe_bo_size(*src), dst_flags); 2295 if (IS_ERR(bo)) 2296 return PTR_ERR(bo); 2297 2298 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2299 *src = bo; 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * XXX: This is in the VM bind data path, likely should calculate this once and 2306 * store, with a recalculation if the BO is moved. 2307 */ 2308 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2309 { 2310 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2311 2312 switch (res->mem_type) { 2313 case XE_PL_STOLEN: 2314 return xe_ttm_stolen_gpu_offset(xe); 2315 case XE_PL_TT: 2316 case XE_PL_SYSTEM: 2317 return 0; 2318 default: 2319 return res_to_mem_region(res)->dpa_base; 2320 } 2321 return 0; 2322 } 2323 2324 /** 2325 * xe_bo_pin_external - pin an external BO 2326 * @bo: buffer object to be pinned 2327 * @in_place: Pin in current placement, don't attempt to migrate. 2328 * 2329 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2330 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2331 * asserts and code to ensure evict / restore on suspend / resume. 2332 * 2333 * Returns 0 for success, negative error code otherwise. 2334 */ 2335 int xe_bo_pin_external(struct xe_bo *bo, bool in_place) 2336 { 2337 struct xe_device *xe = xe_bo_device(bo); 2338 int err; 2339 2340 xe_assert(xe, !bo->vm); 2341 xe_assert(xe, xe_bo_is_user(bo)); 2342 2343 if (!xe_bo_is_pinned(bo)) { 2344 if (!in_place) { 2345 err = xe_bo_validate(bo, NULL, false); 2346 if (err) 2347 return err; 2348 } 2349 2350 spin_lock(&xe->pinned.lock); 2351 list_add_tail(&bo->pinned_link, &xe->pinned.late.external); 2352 spin_unlock(&xe->pinned.lock); 2353 } 2354 2355 ttm_bo_pin(&bo->ttm); 2356 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2357 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2358 2359 /* 2360 * FIXME: If we always use the reserve / unreserve functions for locking 2361 * we do not need this. 2362 */ 2363 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2364 2365 return 0; 2366 } 2367 2368 int xe_bo_pin(struct xe_bo *bo) 2369 { 2370 struct ttm_place *place = &bo->placements[0]; 2371 struct xe_device *xe = xe_bo_device(bo); 2372 int err; 2373 2374 /* We currently don't expect user BO to be pinned */ 2375 xe_assert(xe, !xe_bo_is_user(bo)); 2376 2377 /* Pinned object must be in GGTT or have pinned flag */ 2378 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2379 XE_BO_FLAG_GGTT)); 2380 2381 /* 2382 * No reason we can't support pinning imported dma-bufs we just don't 2383 * expect to pin an imported dma-buf. 2384 */ 2385 xe_assert(xe, !bo->ttm.base.import_attach); 2386 2387 /* We only expect at most 1 pin */ 2388 xe_assert(xe, !xe_bo_is_pinned(bo)); 2389 2390 err = xe_bo_validate(bo, NULL, false); 2391 if (err) 2392 return err; 2393 2394 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2395 spin_lock(&xe->pinned.lock); 2396 if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) 2397 list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); 2398 else 2399 list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); 2400 spin_unlock(&xe->pinned.lock); 2401 } 2402 2403 ttm_bo_pin(&bo->ttm); 2404 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2405 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2406 2407 /* 2408 * FIXME: If we always use the reserve / unreserve functions for locking 2409 * we do not need this. 2410 */ 2411 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2412 2413 return 0; 2414 } 2415 2416 /** 2417 * xe_bo_unpin_external - unpin an external BO 2418 * @bo: buffer object to be unpinned 2419 * 2420 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2421 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2422 * asserts and code to ensure evict / restore on suspend / resume. 2423 * 2424 * Returns 0 for success, negative error code otherwise. 2425 */ 2426 void xe_bo_unpin_external(struct xe_bo *bo) 2427 { 2428 struct xe_device *xe = xe_bo_device(bo); 2429 2430 xe_assert(xe, !bo->vm); 2431 xe_assert(xe, xe_bo_is_pinned(bo)); 2432 xe_assert(xe, xe_bo_is_user(bo)); 2433 2434 spin_lock(&xe->pinned.lock); 2435 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2436 list_del_init(&bo->pinned_link); 2437 spin_unlock(&xe->pinned.lock); 2438 2439 ttm_bo_unpin(&bo->ttm); 2440 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2441 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2442 2443 /* 2444 * FIXME: If we always use the reserve / unreserve functions for locking 2445 * we do not need this. 2446 */ 2447 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2448 } 2449 2450 void xe_bo_unpin(struct xe_bo *bo) 2451 { 2452 struct ttm_place *place = &bo->placements[0]; 2453 struct xe_device *xe = xe_bo_device(bo); 2454 2455 xe_assert(xe, !bo->ttm.base.import_attach); 2456 xe_assert(xe, xe_bo_is_pinned(bo)); 2457 2458 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2459 spin_lock(&xe->pinned.lock); 2460 xe_assert(xe, !list_empty(&bo->pinned_link)); 2461 list_del_init(&bo->pinned_link); 2462 spin_unlock(&xe->pinned.lock); 2463 2464 if (bo->backup_obj) { 2465 if (xe_bo_is_pinned(bo->backup_obj)) 2466 ttm_bo_unpin(&bo->backup_obj->ttm); 2467 xe_bo_put(bo->backup_obj); 2468 bo->backup_obj = NULL; 2469 } 2470 } 2471 ttm_bo_unpin(&bo->ttm); 2472 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2473 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2474 } 2475 2476 /** 2477 * xe_bo_validate() - Make sure the bo is in an allowed placement 2478 * @bo: The bo, 2479 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2480 * NULL. Used together with @allow_res_evict. 2481 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2482 * reservation object. 2483 * 2484 * Make sure the bo is in allowed placement, migrating it if necessary. If 2485 * needed, other bos will be evicted. If bos selected for eviction shares 2486 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2487 * set to true, otherwise they will be bypassed. 2488 * 2489 * Return: 0 on success, negative error code on failure. May return 2490 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2491 */ 2492 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2493 { 2494 struct ttm_operation_ctx ctx = { 2495 .interruptible = true, 2496 .no_wait_gpu = false, 2497 .gfp_retry_mayfail = true, 2498 }; 2499 int ret; 2500 2501 if (xe_bo_is_pinned(bo)) 2502 return 0; 2503 2504 if (vm) { 2505 lockdep_assert_held(&vm->lock); 2506 xe_vm_assert_held(vm); 2507 2508 ctx.allow_res_evict = allow_res_evict; 2509 ctx.resv = xe_vm_resv(vm); 2510 } 2511 2512 xe_vm_set_validating(vm, allow_res_evict); 2513 trace_xe_bo_validate(bo); 2514 ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2515 xe_vm_clear_validating(vm, allow_res_evict); 2516 2517 return ret; 2518 } 2519 2520 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2521 { 2522 if (bo->destroy == &xe_ttm_bo_destroy) 2523 return true; 2524 2525 return false; 2526 } 2527 2528 /* 2529 * Resolve a BO address. There is no assert to check if the proper lock is held 2530 * so it should only be used in cases where it is not fatal to get the wrong 2531 * address, such as printing debug information, but not in cases where memory is 2532 * written based on this result. 2533 */ 2534 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2535 { 2536 struct xe_device *xe = xe_bo_device(bo); 2537 struct xe_res_cursor cur; 2538 u64 page; 2539 2540 xe_assert(xe, page_size <= PAGE_SIZE); 2541 page = offset >> PAGE_SHIFT; 2542 offset &= (PAGE_SIZE - 1); 2543 2544 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2545 xe_assert(xe, bo->ttm.ttm); 2546 2547 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2548 page_size, &cur); 2549 return xe_res_dma(&cur) + offset; 2550 } else { 2551 struct xe_res_cursor cur; 2552 2553 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2554 page_size, &cur); 2555 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2556 } 2557 } 2558 2559 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2560 { 2561 if (!READ_ONCE(bo->ttm.pin_count)) 2562 xe_bo_assert_held(bo); 2563 return __xe_bo_addr(bo, offset, page_size); 2564 } 2565 2566 int xe_bo_vmap(struct xe_bo *bo) 2567 { 2568 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2569 void *virtual; 2570 bool is_iomem; 2571 int ret; 2572 2573 xe_bo_assert_held(bo); 2574 2575 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2576 !force_contiguous(bo->flags))) 2577 return -EINVAL; 2578 2579 if (!iosys_map_is_null(&bo->vmap)) 2580 return 0; 2581 2582 /* 2583 * We use this more or less deprecated interface for now since 2584 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2585 * single page bos, which is done here. 2586 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2587 * to use struct iosys_map. 2588 */ 2589 ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap); 2590 if (ret) 2591 return ret; 2592 2593 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2594 if (is_iomem) 2595 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2596 else 2597 iosys_map_set_vaddr(&bo->vmap, virtual); 2598 2599 return 0; 2600 } 2601 2602 static void __xe_bo_vunmap(struct xe_bo *bo) 2603 { 2604 if (!iosys_map_is_null(&bo->vmap)) { 2605 iosys_map_clear(&bo->vmap); 2606 ttm_bo_kunmap(&bo->kmap); 2607 } 2608 } 2609 2610 void xe_bo_vunmap(struct xe_bo *bo) 2611 { 2612 xe_bo_assert_held(bo); 2613 __xe_bo_vunmap(bo); 2614 } 2615 2616 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2617 { 2618 if (value == DRM_XE_PXP_TYPE_NONE) 2619 return 0; 2620 2621 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2622 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2623 return -EINVAL; 2624 2625 return xe_pxp_key_assign(xe->pxp, bo); 2626 } 2627 2628 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2629 struct xe_bo *bo, 2630 u64 value); 2631 2632 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2633 [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, 2634 }; 2635 2636 static int gem_create_user_ext_set_property(struct xe_device *xe, 2637 struct xe_bo *bo, 2638 u64 extension) 2639 { 2640 u64 __user *address = u64_to_user_ptr(extension); 2641 struct drm_xe_ext_set_property ext; 2642 int err; 2643 u32 idx; 2644 2645 err = copy_from_user(&ext, address, sizeof(ext)); 2646 if (XE_IOCTL_DBG(xe, err)) 2647 return -EFAULT; 2648 2649 if (XE_IOCTL_DBG(xe, ext.property >= 2650 ARRAY_SIZE(gem_create_set_property_funcs)) || 2651 XE_IOCTL_DBG(xe, ext.pad) || 2652 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2653 return -EINVAL; 2654 2655 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2656 if (!gem_create_set_property_funcs[idx]) 2657 return -EINVAL; 2658 2659 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2660 } 2661 2662 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2663 struct xe_bo *bo, 2664 u64 extension); 2665 2666 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2667 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2668 }; 2669 2670 #define MAX_USER_EXTENSIONS 16 2671 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2672 u64 extensions, int ext_number) 2673 { 2674 u64 __user *address = u64_to_user_ptr(extensions); 2675 struct drm_xe_user_extension ext; 2676 int err; 2677 u32 idx; 2678 2679 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2680 return -E2BIG; 2681 2682 err = copy_from_user(&ext, address, sizeof(ext)); 2683 if (XE_IOCTL_DBG(xe, err)) 2684 return -EFAULT; 2685 2686 if (XE_IOCTL_DBG(xe, ext.pad) || 2687 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2688 return -EINVAL; 2689 2690 idx = array_index_nospec(ext.name, 2691 ARRAY_SIZE(gem_create_user_extension_funcs)); 2692 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2693 if (XE_IOCTL_DBG(xe, err)) 2694 return err; 2695 2696 if (ext.next_extension) 2697 return gem_create_user_extensions(xe, bo, ext.next_extension, 2698 ++ext_number); 2699 2700 return 0; 2701 } 2702 2703 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2704 struct drm_file *file) 2705 { 2706 struct xe_device *xe = to_xe_device(dev); 2707 struct xe_file *xef = to_xe_file(file); 2708 struct drm_xe_gem_create *args = data; 2709 struct xe_vm *vm = NULL; 2710 ktime_t end = 0; 2711 struct xe_bo *bo; 2712 unsigned int bo_flags; 2713 u32 handle; 2714 int err; 2715 2716 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2717 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2718 return -EINVAL; 2719 2720 /* at least one valid memory placement must be specified */ 2721 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2722 !args->placement)) 2723 return -EINVAL; 2724 2725 if (XE_IOCTL_DBG(xe, args->flags & 2726 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2727 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2728 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2729 return -EINVAL; 2730 2731 if (XE_IOCTL_DBG(xe, args->handle)) 2732 return -EINVAL; 2733 2734 if (XE_IOCTL_DBG(xe, !args->size)) 2735 return -EINVAL; 2736 2737 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2738 return -EINVAL; 2739 2740 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2741 return -EINVAL; 2742 2743 bo_flags = 0; 2744 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2745 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2746 2747 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2748 bo_flags |= XE_BO_FLAG_SCANOUT; 2749 2750 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2751 2752 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2753 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2754 (bo_flags & XE_BO_FLAG_SCANOUT) && 2755 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2756 IS_ALIGNED(args->size, SZ_64K)) 2757 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2758 2759 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2760 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2761 return -EINVAL; 2762 2763 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2764 } 2765 2766 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2767 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2768 return -EINVAL; 2769 2770 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2771 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2772 return -EINVAL; 2773 2774 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2775 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2776 return -EINVAL; 2777 2778 if (args->vm_id) { 2779 vm = xe_vm_lookup(xef, args->vm_id); 2780 if (XE_IOCTL_DBG(xe, !vm)) 2781 return -ENOENT; 2782 } 2783 2784 retry: 2785 if (vm) { 2786 err = xe_vm_lock(vm, true); 2787 if (err) 2788 goto out_vm; 2789 } 2790 2791 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2792 bo_flags); 2793 2794 if (vm) 2795 xe_vm_unlock(vm); 2796 2797 if (IS_ERR(bo)) { 2798 err = PTR_ERR(bo); 2799 if (xe_vm_validate_should_retry(NULL, err, &end)) 2800 goto retry; 2801 goto out_vm; 2802 } 2803 2804 if (args->extensions) { 2805 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2806 if (err) 2807 goto out_bulk; 2808 } 2809 2810 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2811 if (err) 2812 goto out_bulk; 2813 2814 args->handle = handle; 2815 goto out_put; 2816 2817 out_bulk: 2818 if (vm && !xe_vm_in_fault_mode(vm)) { 2819 xe_vm_lock(vm, false); 2820 __xe_bo_unset_bulk_move(bo); 2821 xe_vm_unlock(vm); 2822 } 2823 out_put: 2824 xe_bo_put(bo); 2825 out_vm: 2826 if (vm) 2827 xe_vm_put(vm); 2828 2829 return err; 2830 } 2831 2832 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2833 struct drm_file *file) 2834 { 2835 struct xe_device *xe = to_xe_device(dev); 2836 struct drm_xe_gem_mmap_offset *args = data; 2837 struct drm_gem_object *gem_obj; 2838 2839 if (XE_IOCTL_DBG(xe, args->extensions) || 2840 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2841 return -EINVAL; 2842 2843 if (XE_IOCTL_DBG(xe, args->flags & 2844 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2845 return -EINVAL; 2846 2847 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2848 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2849 return -EINVAL; 2850 2851 if (XE_IOCTL_DBG(xe, args->handle)) 2852 return -EINVAL; 2853 2854 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2855 return -EINVAL; 2856 2857 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2858 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2859 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2860 return 0; 2861 } 2862 2863 gem_obj = drm_gem_object_lookup(file, args->handle); 2864 if (XE_IOCTL_DBG(xe, !gem_obj)) 2865 return -ENOENT; 2866 2867 /* The mmap offset was set up at BO allocation time. */ 2868 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2869 2870 xe_bo_put(gem_to_xe_bo(gem_obj)); 2871 return 0; 2872 } 2873 2874 /** 2875 * xe_bo_lock() - Lock the buffer object's dma_resv object 2876 * @bo: The struct xe_bo whose lock is to be taken 2877 * @intr: Whether to perform any wait interruptible 2878 * 2879 * Locks the buffer object's dma_resv object. If the buffer object is 2880 * pointing to a shared dma_resv object, that shared lock is locked. 2881 * 2882 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2883 * contended lock was interrupted. If @intr is set to false, the 2884 * function always returns 0. 2885 */ 2886 int xe_bo_lock(struct xe_bo *bo, bool intr) 2887 { 2888 if (intr) 2889 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2890 2891 dma_resv_lock(bo->ttm.base.resv, NULL); 2892 2893 return 0; 2894 } 2895 2896 /** 2897 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2898 * @bo: The struct xe_bo whose lock is to be released. 2899 * 2900 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2901 */ 2902 void xe_bo_unlock(struct xe_bo *bo) 2903 { 2904 dma_resv_unlock(bo->ttm.base.resv); 2905 } 2906 2907 /** 2908 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2909 * @bo: The buffer object to migrate 2910 * @mem_type: The TTM memory type intended to migrate to 2911 * 2912 * Check whether the buffer object supports migration to the 2913 * given memory type. Note that pinning may affect the ability to migrate as 2914 * returned by this function. 2915 * 2916 * This function is primarily intended as a helper for checking the 2917 * possibility to migrate buffer objects and can be called without 2918 * the object lock held. 2919 * 2920 * Return: true if migration is possible, false otherwise. 2921 */ 2922 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2923 { 2924 unsigned int cur_place; 2925 2926 if (bo->ttm.type == ttm_bo_type_kernel) 2927 return true; 2928 2929 if (bo->ttm.type == ttm_bo_type_sg) 2930 return false; 2931 2932 for (cur_place = 0; cur_place < bo->placement.num_placement; 2933 cur_place++) { 2934 if (bo->placements[cur_place].mem_type == mem_type) 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2942 { 2943 memset(place, 0, sizeof(*place)); 2944 place->mem_type = mem_type; 2945 } 2946 2947 /** 2948 * xe_bo_migrate - Migrate an object to the desired region id 2949 * @bo: The buffer object to migrate. 2950 * @mem_type: The TTM region type to migrate to. 2951 * 2952 * Attempt to migrate the buffer object to the desired memory region. The 2953 * buffer object may not be pinned, and must be locked. 2954 * On successful completion, the object memory type will be updated, 2955 * but an async migration task may not have completed yet, and to 2956 * accomplish that, the object's kernel fences must be signaled with 2957 * the object lock held. 2958 * 2959 * Return: 0 on success. Negative error code on failure. In particular may 2960 * return -EINTR or -ERESTARTSYS if signal pending. 2961 */ 2962 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2963 { 2964 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2965 struct ttm_operation_ctx ctx = { 2966 .interruptible = true, 2967 .no_wait_gpu = false, 2968 .gfp_retry_mayfail = true, 2969 }; 2970 struct ttm_placement placement; 2971 struct ttm_place requested; 2972 2973 xe_bo_assert_held(bo); 2974 2975 if (bo->ttm.resource->mem_type == mem_type) 2976 return 0; 2977 2978 if (xe_bo_is_pinned(bo)) 2979 return -EBUSY; 2980 2981 if (!xe_bo_can_migrate(bo, mem_type)) 2982 return -EINVAL; 2983 2984 xe_place_from_ttm_type(mem_type, &requested); 2985 placement.num_placement = 1; 2986 placement.placement = &requested; 2987 2988 /* 2989 * Stolen needs to be handled like below VRAM handling if we ever need 2990 * to support it. 2991 */ 2992 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2993 2994 if (mem_type_is_vram(mem_type)) { 2995 u32 c = 0; 2996 2997 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2998 } 2999 3000 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 3001 } 3002 3003 /** 3004 * xe_bo_evict - Evict an object to evict placement 3005 * @bo: The buffer object to migrate. 3006 * 3007 * On successful completion, the object memory will be moved to evict 3008 * placement. This function blocks until the object has been fully moved. 3009 * 3010 * Return: 0 on success. Negative error code on failure. 3011 */ 3012 int xe_bo_evict(struct xe_bo *bo) 3013 { 3014 struct ttm_operation_ctx ctx = { 3015 .interruptible = false, 3016 .no_wait_gpu = false, 3017 .gfp_retry_mayfail = true, 3018 }; 3019 struct ttm_placement placement; 3020 int ret; 3021 3022 xe_evict_flags(&bo->ttm, &placement); 3023 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 3024 if (ret) 3025 return ret; 3026 3027 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 3028 false, MAX_SCHEDULE_TIMEOUT); 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 3035 * placed in system memory. 3036 * @bo: The xe_bo 3037 * 3038 * Return: true if extra pages need to be allocated, false otherwise. 3039 */ 3040 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 3041 { 3042 struct xe_device *xe = xe_bo_device(bo); 3043 3044 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 3045 return false; 3046 3047 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 3048 return false; 3049 3050 /* On discrete GPUs, if the GPU can access this buffer from 3051 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 3052 * can't be used since there's no CCS storage associated with 3053 * non-VRAM addresses. 3054 */ 3055 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 3056 return false; 3057 3058 /* 3059 * Compression implies coh_none, therefore we know for sure that WB 3060 * memory can't currently use compression, which is likely one of the 3061 * common cases. 3062 */ 3063 if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB) 3064 return false; 3065 3066 return true; 3067 } 3068 3069 /** 3070 * __xe_bo_release_dummy() - Dummy kref release function 3071 * @kref: The embedded struct kref. 3072 * 3073 * Dummy release function for xe_bo_put_deferred(). Keep off. 3074 */ 3075 void __xe_bo_release_dummy(struct kref *kref) 3076 { 3077 } 3078 3079 /** 3080 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 3081 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 3082 * 3083 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 3084 * The @deferred list can be either an onstack local list or a global 3085 * shared list used by a workqueue. 3086 */ 3087 void xe_bo_put_commit(struct llist_head *deferred) 3088 { 3089 struct llist_node *freed; 3090 struct xe_bo *bo, *next; 3091 3092 if (!deferred) 3093 return; 3094 3095 freed = llist_del_all(deferred); 3096 if (!freed) 3097 return; 3098 3099 llist_for_each_entry_safe(bo, next, freed, freed) 3100 drm_gem_object_free(&bo->ttm.base.refcount); 3101 } 3102 3103 static void xe_bo_dev_work_func(struct work_struct *work) 3104 { 3105 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 3106 3107 xe_bo_put_commit(&bo_dev->async_list); 3108 } 3109 3110 /** 3111 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 3112 * @bo_dev: The BO dev structure 3113 */ 3114 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 3115 { 3116 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 3117 } 3118 3119 /** 3120 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 3121 * @bo_dev: The BO dev structure 3122 */ 3123 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 3124 { 3125 flush_work(&bo_dev->async_free); 3126 } 3127 3128 void xe_bo_put(struct xe_bo *bo) 3129 { 3130 struct xe_tile *tile; 3131 u8 id; 3132 3133 might_sleep(); 3134 if (bo) { 3135 #ifdef CONFIG_PROC_FS 3136 if (bo->client) 3137 might_lock(&bo->client->bos_lock); 3138 #endif 3139 for_each_tile(tile, xe_bo_device(bo), id) 3140 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 3141 xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt); 3142 drm_gem_object_put(&bo->ttm.base); 3143 } 3144 } 3145 3146 /** 3147 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 3148 * @file_priv: ... 3149 * @dev: ... 3150 * @args: ... 3151 * 3152 * See dumb_create() hook in include/drm/drm_drv.h 3153 * 3154 * Return: ... 3155 */ 3156 int xe_bo_dumb_create(struct drm_file *file_priv, 3157 struct drm_device *dev, 3158 struct drm_mode_create_dumb *args) 3159 { 3160 struct xe_device *xe = to_xe_device(dev); 3161 struct xe_bo *bo; 3162 uint32_t handle; 3163 int cpp = DIV_ROUND_UP(args->bpp, 8); 3164 int err; 3165 u32 page_size = max_t(u32, PAGE_SIZE, 3166 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 3167 3168 args->pitch = ALIGN(args->width * cpp, 64); 3169 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 3170 page_size); 3171 3172 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 3173 DRM_XE_GEM_CPU_CACHING_WC, 3174 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 3175 XE_BO_FLAG_SCANOUT | 3176 XE_BO_FLAG_NEEDS_CPU_ACCESS); 3177 if (IS_ERR(bo)) 3178 return PTR_ERR(bo); 3179 3180 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 3181 /* drop reference from allocate - handle holds it now */ 3182 drm_gem_object_put(&bo->ttm.base); 3183 if (!err) 3184 args->handle = handle; 3185 return err; 3186 } 3187 3188 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 3189 { 3190 struct ttm_buffer_object *tbo = &bo->ttm; 3191 struct ttm_device *bdev = tbo->bdev; 3192 3193 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 3194 3195 list_del_init(&bo->vram_userfault_link); 3196 } 3197 3198 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 3199 #include "tests/xe_bo.c" 3200 #endif 3201