1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_preempt_fence.h" 26 #include "xe_res_cursor.h" 27 #include "xe_trace.h" 28 #include "xe_ttm_stolen_mgr.h" 29 #include "xe_vm.h" 30 31 static const struct ttm_place sys_placement_flags = { 32 .fpfn = 0, 33 .lpfn = 0, 34 .mem_type = XE_PL_SYSTEM, 35 .flags = 0, 36 }; 37 38 static struct ttm_placement sys_placement = { 39 .num_placement = 1, 40 .placement = &sys_placement_flags, 41 .num_busy_placement = 1, 42 .busy_placement = &sys_placement_flags, 43 }; 44 45 static const struct ttm_place tt_placement_flags = { 46 .fpfn = 0, 47 .lpfn = 0, 48 .mem_type = XE_PL_TT, 49 .flags = 0, 50 }; 51 52 static struct ttm_placement tt_placement = { 53 .num_placement = 1, 54 .placement = &tt_placement_flags, 55 .num_busy_placement = 1, 56 .busy_placement = &sys_placement_flags, 57 }; 58 59 bool mem_type_is_vram(u32 mem_type) 60 { 61 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 62 } 63 64 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 65 { 66 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 67 } 68 69 static bool resource_is_vram(struct ttm_resource *res) 70 { 71 return mem_type_is_vram(res->mem_type); 72 } 73 74 bool xe_bo_is_vram(struct xe_bo *bo) 75 { 76 return resource_is_vram(bo->ttm.resource) || 77 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 78 } 79 80 bool xe_bo_is_stolen(struct xe_bo *bo) 81 { 82 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 83 } 84 85 /** 86 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 87 * @bo: The BO 88 * 89 * The stolen memory is accessed through the PCI BAR for both DGFX and some 90 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 91 * 92 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 93 */ 94 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 95 { 96 return xe_bo_is_stolen(bo) && 97 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 98 } 99 100 static bool xe_bo_is_user(struct xe_bo *bo) 101 { 102 return bo->flags & XE_BO_CREATE_USER_BIT; 103 } 104 105 static struct xe_migrate * 106 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 107 { 108 struct xe_tile *tile; 109 110 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 111 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 112 return tile->migrate; 113 } 114 115 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 116 { 117 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 118 struct ttm_resource_manager *mgr; 119 120 xe_assert(xe, resource_is_vram(res)); 121 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 122 return to_xe_ttm_vram_mgr(mgr)->vram; 123 } 124 125 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 126 u32 bo_flags, u32 *c) 127 { 128 if (bo_flags & XE_BO_CREATE_SYSTEM_BIT) { 129 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 130 131 bo->placements[*c] = (struct ttm_place) { 132 .mem_type = XE_PL_TT, 133 }; 134 *c += 1; 135 136 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 137 bo->props.preferred_mem_type = XE_PL_TT; 138 } 139 } 140 141 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 142 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 143 { 144 struct ttm_place place = { .mem_type = mem_type }; 145 struct xe_mem_region *vram; 146 u64 io_size; 147 148 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 149 150 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 151 xe_assert(xe, vram && vram->usable_size); 152 io_size = vram->io_size; 153 154 /* 155 * For eviction / restore on suspend / resume objects 156 * pinned in VRAM must be contiguous 157 */ 158 if (bo_flags & (XE_BO_CREATE_PINNED_BIT | 159 XE_BO_CREATE_GGTT_BIT)) 160 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 161 162 if (io_size < vram->usable_size) { 163 if (bo_flags & XE_BO_NEEDS_CPU_ACCESS) { 164 place.fpfn = 0; 165 place.lpfn = io_size >> PAGE_SHIFT; 166 } else { 167 place.flags |= TTM_PL_FLAG_TOPDOWN; 168 } 169 } 170 places[*c] = place; 171 *c += 1; 172 173 if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID) 174 bo->props.preferred_mem_type = mem_type; 175 } 176 177 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 178 u32 bo_flags, u32 *c) 179 { 180 if (bo->props.preferred_gt == XE_GT1) { 181 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 182 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 183 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 184 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 185 } else { 186 if (bo_flags & XE_BO_CREATE_VRAM0_BIT) 187 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 188 if (bo_flags & XE_BO_CREATE_VRAM1_BIT) 189 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 190 } 191 } 192 193 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 194 u32 bo_flags, u32 *c) 195 { 196 if (bo_flags & XE_BO_CREATE_STOLEN_BIT) { 197 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 198 199 bo->placements[*c] = (struct ttm_place) { 200 .mem_type = XE_PL_STOLEN, 201 .flags = bo_flags & (XE_BO_CREATE_PINNED_BIT | 202 XE_BO_CREATE_GGTT_BIT) ? 203 TTM_PL_FLAG_CONTIGUOUS : 0, 204 }; 205 *c += 1; 206 } 207 } 208 209 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 210 u32 bo_flags) 211 { 212 u32 c = 0; 213 214 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 215 216 /* The order of placements should indicate preferred location */ 217 218 if (bo->props.preferred_mem_class == DRM_XE_MEM_REGION_CLASS_SYSMEM) { 219 try_add_system(xe, bo, bo_flags, &c); 220 try_add_vram(xe, bo, bo_flags, &c); 221 } else { 222 try_add_vram(xe, bo, bo_flags, &c); 223 try_add_system(xe, bo, bo_flags, &c); 224 } 225 try_add_stolen(xe, bo, bo_flags, &c); 226 227 if (!c) 228 return -EINVAL; 229 230 bo->placement = (struct ttm_placement) { 231 .num_placement = c, 232 .placement = bo->placements, 233 .num_busy_placement = c, 234 .busy_placement = bo->placements, 235 }; 236 237 return 0; 238 } 239 240 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 241 u32 bo_flags) 242 { 243 xe_bo_assert_held(bo); 244 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 245 } 246 247 static void xe_evict_flags(struct ttm_buffer_object *tbo, 248 struct ttm_placement *placement) 249 { 250 if (!xe_bo_is_xe_bo(tbo)) { 251 /* Don't handle scatter gather BOs */ 252 if (tbo->type == ttm_bo_type_sg) { 253 placement->num_placement = 0; 254 placement->num_busy_placement = 0; 255 return; 256 } 257 258 *placement = sys_placement; 259 return; 260 } 261 262 /* 263 * For xe, sg bos that are evicted to system just triggers a 264 * rebind of the sg list upon subsequent validation to XE_PL_TT. 265 */ 266 switch (tbo->resource->mem_type) { 267 case XE_PL_VRAM0: 268 case XE_PL_VRAM1: 269 case XE_PL_STOLEN: 270 *placement = tt_placement; 271 break; 272 case XE_PL_TT: 273 default: 274 *placement = sys_placement; 275 break; 276 } 277 } 278 279 struct xe_ttm_tt { 280 struct ttm_tt ttm; 281 struct device *dev; 282 struct sg_table sgt; 283 struct sg_table *sg; 284 }; 285 286 static int xe_tt_map_sg(struct ttm_tt *tt) 287 { 288 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 289 unsigned long num_pages = tt->num_pages; 290 int ret; 291 292 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 293 294 if (xe_tt->sg) 295 return 0; 296 297 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 298 num_pages, 0, 299 (u64)num_pages << PAGE_SHIFT, 300 xe_sg_segment_size(xe_tt->dev), 301 GFP_KERNEL); 302 if (ret) 303 return ret; 304 305 xe_tt->sg = &xe_tt->sgt; 306 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 307 DMA_ATTR_SKIP_CPU_SYNC); 308 if (ret) { 309 sg_free_table(xe_tt->sg); 310 xe_tt->sg = NULL; 311 return ret; 312 } 313 314 return 0; 315 } 316 317 struct sg_table *xe_bo_sg(struct xe_bo *bo) 318 { 319 struct ttm_tt *tt = bo->ttm.ttm; 320 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 321 322 return xe_tt->sg; 323 } 324 325 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 326 u32 page_flags) 327 { 328 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 329 struct xe_device *xe = xe_bo_device(bo); 330 struct xe_ttm_tt *tt; 331 unsigned long extra_pages; 332 enum ttm_caching caching; 333 int err; 334 335 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 336 if (!tt) 337 return NULL; 338 339 tt->dev = xe->drm.dev; 340 341 extra_pages = 0; 342 if (xe_bo_needs_ccs_pages(bo)) 343 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 344 PAGE_SIZE); 345 346 switch (bo->cpu_caching) { 347 case DRM_XE_GEM_CPU_CACHING_WC: 348 caching = ttm_write_combined; 349 break; 350 default: 351 caching = ttm_cached; 352 break; 353 } 354 355 WARN_ON((bo->flags & XE_BO_CREATE_USER_BIT) && !bo->cpu_caching); 356 357 /* 358 * Display scanout is always non-coherent with the CPU cache. 359 * 360 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 361 * require a CPU:WC mapping. 362 */ 363 if ((!bo->cpu_caching && bo->flags & XE_BO_SCANOUT_BIT) || 364 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_PAGETABLE)) 365 caching = ttm_write_combined; 366 367 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 368 if (err) { 369 kfree(tt); 370 return NULL; 371 } 372 373 return &tt->ttm; 374 } 375 376 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 377 struct ttm_operation_ctx *ctx) 378 { 379 int err; 380 381 /* 382 * dma-bufs are not populated with pages, and the dma- 383 * addresses are set up when moved to XE_PL_TT. 384 */ 385 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 386 return 0; 387 388 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 389 if (err) 390 return err; 391 392 /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ 393 err = xe_tt_map_sg(tt); 394 if (err) 395 ttm_pool_free(&ttm_dev->pool, tt); 396 397 return err; 398 } 399 400 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 401 { 402 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 403 404 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 405 return; 406 407 if (xe_tt->sg) { 408 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 409 DMA_BIDIRECTIONAL, 0); 410 sg_free_table(xe_tt->sg); 411 xe_tt->sg = NULL; 412 } 413 414 return ttm_pool_free(&ttm_dev->pool, tt); 415 } 416 417 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 418 { 419 ttm_tt_fini(tt); 420 kfree(tt); 421 } 422 423 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 424 struct ttm_resource *mem) 425 { 426 struct xe_device *xe = ttm_to_xe_device(bdev); 427 428 switch (mem->mem_type) { 429 case XE_PL_SYSTEM: 430 case XE_PL_TT: 431 return 0; 432 case XE_PL_VRAM0: 433 case XE_PL_VRAM1: { 434 struct xe_ttm_vram_mgr_resource *vres = 435 to_xe_ttm_vram_mgr_resource(mem); 436 struct xe_mem_region *vram = res_to_mem_region(mem); 437 438 if (vres->used_visible_size < mem->size) 439 return -EINVAL; 440 441 mem->bus.offset = mem->start << PAGE_SHIFT; 442 443 if (vram->mapping && 444 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 445 mem->bus.addr = (u8 __force *)vram->mapping + 446 mem->bus.offset; 447 448 mem->bus.offset += vram->io_start; 449 mem->bus.is_iomem = true; 450 451 #if !defined(CONFIG_X86) 452 mem->bus.caching = ttm_write_combined; 453 #endif 454 return 0; 455 } case XE_PL_STOLEN: 456 return xe_ttm_stolen_io_mem_reserve(xe, mem); 457 default: 458 return -EINVAL; 459 } 460 } 461 462 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 463 const struct ttm_operation_ctx *ctx) 464 { 465 struct dma_resv_iter cursor; 466 struct dma_fence *fence; 467 struct drm_gem_object *obj = &bo->ttm.base; 468 struct drm_gpuvm_bo *vm_bo; 469 bool idle = false; 470 int ret = 0; 471 472 dma_resv_assert_held(bo->ttm.base.resv); 473 474 if (!list_empty(&bo->ttm.base.gpuva.list)) { 475 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 476 DMA_RESV_USAGE_BOOKKEEP); 477 dma_resv_for_each_fence_unlocked(&cursor, fence) 478 dma_fence_enable_sw_signaling(fence); 479 dma_resv_iter_end(&cursor); 480 } 481 482 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 483 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 484 struct drm_gpuva *gpuva; 485 486 if (!xe_vm_in_fault_mode(vm)) { 487 drm_gpuvm_bo_evict(vm_bo, true); 488 continue; 489 } 490 491 if (!idle) { 492 long timeout; 493 494 if (ctx->no_wait_gpu && 495 !dma_resv_test_signaled(bo->ttm.base.resv, 496 DMA_RESV_USAGE_BOOKKEEP)) 497 return -EBUSY; 498 499 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 500 DMA_RESV_USAGE_BOOKKEEP, 501 ctx->interruptible, 502 MAX_SCHEDULE_TIMEOUT); 503 if (!timeout) 504 return -ETIME; 505 if (timeout < 0) 506 return timeout; 507 508 idle = true; 509 } 510 511 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 512 struct xe_vma *vma = gpuva_to_vma(gpuva); 513 514 trace_xe_vma_evict(vma); 515 ret = xe_vm_invalidate_vma(vma); 516 if (XE_WARN_ON(ret)) 517 return ret; 518 } 519 } 520 521 return ret; 522 } 523 524 /* 525 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 526 * Note that unmapping the attachment is deferred to the next 527 * map_attachment time, or to bo destroy (after idling) whichever comes first. 528 * This is to avoid syncing before unmap_attachment(), assuming that the 529 * caller relies on idling the reservation object before moving the 530 * backing store out. Should that assumption not hold, then we will be able 531 * to unconditionally call unmap_attachment() when moving out to system. 532 */ 533 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 534 struct ttm_resource *new_res) 535 { 536 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 537 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 538 ttm); 539 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 540 struct sg_table *sg; 541 542 xe_assert(xe, attach); 543 xe_assert(xe, ttm_bo->ttm); 544 545 if (new_res->mem_type == XE_PL_SYSTEM) 546 goto out; 547 548 if (ttm_bo->sg) { 549 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 550 ttm_bo->sg = NULL; 551 } 552 553 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 554 if (IS_ERR(sg)) 555 return PTR_ERR(sg); 556 557 ttm_bo->sg = sg; 558 xe_tt->sg = sg; 559 560 out: 561 ttm_bo_move_null(ttm_bo, new_res); 562 563 return 0; 564 } 565 566 /** 567 * xe_bo_move_notify - Notify subsystems of a pending move 568 * @bo: The buffer object 569 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 570 * 571 * This function notifies subsystems of an upcoming buffer move. 572 * Upon receiving such a notification, subsystems should schedule 573 * halting access to the underlying pages and optionally add a fence 574 * to the buffer object's dma_resv object, that signals when access is 575 * stopped. The caller will wait on all dma_resv fences before 576 * starting the move. 577 * 578 * A subsystem may commence access to the object after obtaining 579 * bindings to the new backing memory under the object lock. 580 * 581 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 582 * negative error code on error. 583 */ 584 static int xe_bo_move_notify(struct xe_bo *bo, 585 const struct ttm_operation_ctx *ctx) 586 { 587 struct ttm_buffer_object *ttm_bo = &bo->ttm; 588 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 589 int ret; 590 591 /* 592 * If this starts to call into many components, consider 593 * using a notification chain here. 594 */ 595 596 if (xe_bo_is_pinned(bo)) 597 return -EINVAL; 598 599 xe_bo_vunmap(bo); 600 ret = xe_bo_trigger_rebind(xe, bo, ctx); 601 if (ret) 602 return ret; 603 604 /* Don't call move_notify() for imported dma-bufs. */ 605 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 606 dma_buf_move_notify(ttm_bo->base.dma_buf); 607 608 return 0; 609 } 610 611 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 612 struct ttm_operation_ctx *ctx, 613 struct ttm_resource *new_mem, 614 struct ttm_place *hop) 615 { 616 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 617 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 618 struct ttm_resource *old_mem = ttm_bo->resource; 619 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 620 struct ttm_tt *ttm = ttm_bo->ttm; 621 struct xe_migrate *migrate = NULL; 622 struct dma_fence *fence; 623 bool move_lacks_source; 624 bool tt_has_data; 625 bool needs_clear; 626 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 627 ttm && ttm_tt_is_populated(ttm)) ? true : false; 628 int ret = 0; 629 /* Bo creation path, moving to system or TT. */ 630 if ((!old_mem && ttm) && !handle_system_ccs) { 631 ttm_bo_move_null(ttm_bo, new_mem); 632 return 0; 633 } 634 635 if (ttm_bo->type == ttm_bo_type_sg) { 636 ret = xe_bo_move_notify(bo, ctx); 637 if (!ret) 638 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 639 goto out; 640 } 641 642 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 643 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 644 645 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 646 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 647 648 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 649 (!ttm && ttm_bo->type == ttm_bo_type_device); 650 651 if ((move_lacks_source && !needs_clear)) { 652 ttm_bo_move_null(ttm_bo, new_mem); 653 goto out; 654 } 655 656 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 657 ttm_bo_move_null(ttm_bo, new_mem); 658 goto out; 659 } 660 661 /* 662 * Failed multi-hop where the old_mem is still marked as 663 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 664 */ 665 if (old_mem_type == XE_PL_TT && 666 new_mem->mem_type == XE_PL_TT) { 667 ttm_bo_move_null(ttm_bo, new_mem); 668 goto out; 669 } 670 671 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 672 ret = xe_bo_move_notify(bo, ctx); 673 if (ret) 674 goto out; 675 } 676 677 if (old_mem_type == XE_PL_TT && 678 new_mem->mem_type == XE_PL_SYSTEM) { 679 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 680 DMA_RESV_USAGE_BOOKKEEP, 681 true, 682 MAX_SCHEDULE_TIMEOUT); 683 if (timeout < 0) { 684 ret = timeout; 685 goto out; 686 } 687 688 if (!handle_system_ccs) { 689 ttm_bo_move_null(ttm_bo, new_mem); 690 goto out; 691 } 692 } 693 694 if (!move_lacks_source && 695 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 696 (mem_type_is_vram(old_mem_type) && 697 new_mem->mem_type == XE_PL_SYSTEM))) { 698 hop->fpfn = 0; 699 hop->lpfn = 0; 700 hop->mem_type = XE_PL_TT; 701 hop->flags = TTM_PL_FLAG_TEMPORARY; 702 ret = -EMULTIHOP; 703 goto out; 704 } 705 706 if (bo->tile) 707 migrate = bo->tile->migrate; 708 else if (resource_is_vram(new_mem)) 709 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 710 else if (mem_type_is_vram(old_mem_type)) 711 migrate = mem_type_to_migrate(xe, old_mem_type); 712 else 713 migrate = xe->tiles[0].migrate; 714 715 xe_assert(xe, migrate); 716 717 trace_xe_bo_move(bo); 718 xe_device_mem_access_get(xe); 719 720 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 721 /* 722 * Kernel memory that is pinned should only be moved on suspend 723 * / resume, some of the pinned memory is required for the 724 * device to resume / use the GPU to move other evicted memory 725 * (user memory) around. This likely could be optimized a bit 726 * futher where we find the minimum set of pinned memory 727 * required for resume but for simplity doing a memcpy for all 728 * pinned memory. 729 */ 730 ret = xe_bo_vmap(bo); 731 if (!ret) { 732 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 733 734 /* Create a new VMAP once kernel BO back in VRAM */ 735 if (!ret && resource_is_vram(new_mem)) { 736 struct xe_mem_region *vram = res_to_mem_region(new_mem); 737 void __iomem *new_addr = vram->mapping + 738 (new_mem->start << PAGE_SHIFT); 739 740 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 741 ret = -EINVAL; 742 xe_device_mem_access_put(xe); 743 goto out; 744 } 745 746 xe_assert(xe, new_mem->start == 747 bo->placements->fpfn); 748 749 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 750 } 751 } 752 } else { 753 if (move_lacks_source) 754 fence = xe_migrate_clear(migrate, bo, new_mem); 755 else 756 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 757 new_mem, handle_system_ccs); 758 if (IS_ERR(fence)) { 759 ret = PTR_ERR(fence); 760 xe_device_mem_access_put(xe); 761 goto out; 762 } 763 if (!move_lacks_source) { 764 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 765 true, new_mem); 766 if (ret) { 767 dma_fence_wait(fence, false); 768 ttm_bo_move_null(ttm_bo, new_mem); 769 ret = 0; 770 } 771 } else { 772 /* 773 * ttm_bo_move_accel_cleanup() may blow up if 774 * bo->resource == NULL, so just attach the 775 * fence and set the new resource. 776 */ 777 dma_resv_add_fence(ttm_bo->base.resv, fence, 778 DMA_RESV_USAGE_KERNEL); 779 ttm_bo_move_null(ttm_bo, new_mem); 780 } 781 782 dma_fence_put(fence); 783 } 784 785 xe_device_mem_access_put(xe); 786 787 out: 788 return ret; 789 790 } 791 792 /** 793 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 794 * @bo: The buffer object to move. 795 * 796 * On successful completion, the object memory will be moved to sytem memory. 797 * This function blocks until the object has been fully moved. 798 * 799 * This is needed to for special handling of pinned VRAM object during 800 * suspend-resume. 801 * 802 * Return: 0 on success. Negative error code on failure. 803 */ 804 int xe_bo_evict_pinned(struct xe_bo *bo) 805 { 806 struct ttm_place place = { 807 .mem_type = XE_PL_TT, 808 }; 809 struct ttm_placement placement = { 810 .placement = &place, 811 .num_placement = 1, 812 }; 813 struct ttm_operation_ctx ctx = { 814 .interruptible = false, 815 }; 816 struct ttm_resource *new_mem; 817 int ret; 818 819 xe_bo_assert_held(bo); 820 821 if (WARN_ON(!bo->ttm.resource)) 822 return -EINVAL; 823 824 if (WARN_ON(!xe_bo_is_pinned(bo))) 825 return -EINVAL; 826 827 if (WARN_ON(!xe_bo_is_vram(bo))) 828 return -EINVAL; 829 830 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 831 if (ret) 832 return ret; 833 834 if (!bo->ttm.ttm) { 835 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 836 if (!bo->ttm.ttm) { 837 ret = -ENOMEM; 838 goto err_res_free; 839 } 840 } 841 842 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 843 if (ret) 844 goto err_res_free; 845 846 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 847 if (ret) 848 goto err_res_free; 849 850 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 851 if (ret) 852 goto err_res_free; 853 854 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 855 false, MAX_SCHEDULE_TIMEOUT); 856 857 return 0; 858 859 err_res_free: 860 ttm_resource_free(&bo->ttm, &new_mem); 861 return ret; 862 } 863 864 /** 865 * xe_bo_restore_pinned() - Restore a pinned VRAM object 866 * @bo: The buffer object to move. 867 * 868 * On successful completion, the object memory will be moved back to VRAM. 869 * This function blocks until the object has been fully moved. 870 * 871 * This is needed to for special handling of pinned VRAM object during 872 * suspend-resume. 873 * 874 * Return: 0 on success. Negative error code on failure. 875 */ 876 int xe_bo_restore_pinned(struct xe_bo *bo) 877 { 878 struct ttm_operation_ctx ctx = { 879 .interruptible = false, 880 }; 881 struct ttm_resource *new_mem; 882 int ret; 883 884 xe_bo_assert_held(bo); 885 886 if (WARN_ON(!bo->ttm.resource)) 887 return -EINVAL; 888 889 if (WARN_ON(!xe_bo_is_pinned(bo))) 890 return -EINVAL; 891 892 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 893 return -EINVAL; 894 895 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 896 if (ret) 897 return ret; 898 899 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 900 if (ret) 901 goto err_res_free; 902 903 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 904 if (ret) 905 goto err_res_free; 906 907 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 908 if (ret) 909 goto err_res_free; 910 911 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 912 false, MAX_SCHEDULE_TIMEOUT); 913 914 return 0; 915 916 err_res_free: 917 ttm_resource_free(&bo->ttm, &new_mem); 918 return ret; 919 } 920 921 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 922 unsigned long page_offset) 923 { 924 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 925 struct xe_res_cursor cursor; 926 struct xe_mem_region *vram; 927 928 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 929 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 930 931 vram = res_to_mem_region(ttm_bo->resource); 932 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 933 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 934 } 935 936 static void __xe_bo_vunmap(struct xe_bo *bo); 937 938 /* 939 * TODO: Move this function to TTM so we don't rely on how TTM does its 940 * locking, thereby abusing TTM internals. 941 */ 942 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 943 { 944 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 945 bool locked; 946 947 xe_assert(xe, !kref_read(&ttm_bo->kref)); 948 949 /* 950 * We can typically only race with TTM trylocking under the 951 * lru_lock, which will immediately be unlocked again since 952 * the ttm_bo refcount is zero at this point. So trylocking *should* 953 * always succeed here, as long as we hold the lru lock. 954 */ 955 spin_lock(&ttm_bo->bdev->lru_lock); 956 locked = dma_resv_trylock(ttm_bo->base.resv); 957 spin_unlock(&ttm_bo->bdev->lru_lock); 958 xe_assert(xe, locked); 959 960 return locked; 961 } 962 963 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 964 { 965 struct dma_resv_iter cursor; 966 struct dma_fence *fence; 967 struct dma_fence *replacement = NULL; 968 struct xe_bo *bo; 969 970 if (!xe_bo_is_xe_bo(ttm_bo)) 971 return; 972 973 bo = ttm_to_xe_bo(ttm_bo); 974 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 975 976 /* 977 * Corner case where TTM fails to allocate memory and this BOs resv 978 * still points the VMs resv 979 */ 980 if (ttm_bo->base.resv != &ttm_bo->base._resv) 981 return; 982 983 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 984 return; 985 986 /* 987 * Scrub the preempt fences if any. The unbind fence is already 988 * attached to the resv. 989 * TODO: Don't do this for external bos once we scrub them after 990 * unbind. 991 */ 992 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 993 DMA_RESV_USAGE_BOOKKEEP, fence) { 994 if (xe_fence_is_xe_preempt(fence) && 995 !dma_fence_is_signaled(fence)) { 996 if (!replacement) 997 replacement = dma_fence_get_stub(); 998 999 dma_resv_replace_fences(ttm_bo->base.resv, 1000 fence->context, 1001 replacement, 1002 DMA_RESV_USAGE_BOOKKEEP); 1003 } 1004 } 1005 dma_fence_put(replacement); 1006 1007 dma_resv_unlock(ttm_bo->base.resv); 1008 } 1009 1010 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1011 { 1012 if (!xe_bo_is_xe_bo(ttm_bo)) 1013 return; 1014 1015 /* 1016 * Object is idle and about to be destroyed. Release the 1017 * dma-buf attachment. 1018 */ 1019 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1020 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1021 struct xe_ttm_tt, ttm); 1022 1023 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1024 DMA_BIDIRECTIONAL); 1025 ttm_bo->sg = NULL; 1026 xe_tt->sg = NULL; 1027 } 1028 } 1029 1030 struct ttm_device_funcs xe_ttm_funcs = { 1031 .ttm_tt_create = xe_ttm_tt_create, 1032 .ttm_tt_populate = xe_ttm_tt_populate, 1033 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1034 .ttm_tt_destroy = xe_ttm_tt_destroy, 1035 .evict_flags = xe_evict_flags, 1036 .move = xe_bo_move, 1037 .io_mem_reserve = xe_ttm_io_mem_reserve, 1038 .io_mem_pfn = xe_ttm_io_mem_pfn, 1039 .release_notify = xe_ttm_bo_release_notify, 1040 .eviction_valuable = ttm_bo_eviction_valuable, 1041 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1042 }; 1043 1044 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1045 { 1046 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1047 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1048 1049 if (bo->ttm.base.import_attach) 1050 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1051 drm_gem_object_release(&bo->ttm.base); 1052 1053 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1054 1055 if (bo->ggtt_node.size) 1056 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1057 1058 #ifdef CONFIG_PROC_FS 1059 if (bo->client) 1060 xe_drm_client_remove_bo(bo); 1061 #endif 1062 1063 if (bo->vm && xe_bo_is_user(bo)) 1064 xe_vm_put(bo->vm); 1065 1066 kfree(bo); 1067 } 1068 1069 static void xe_gem_object_free(struct drm_gem_object *obj) 1070 { 1071 /* Our BO reference counting scheme works as follows: 1072 * 1073 * The gem object kref is typically used throughout the driver, 1074 * and the gem object holds a ttm_buffer_object refcount, so 1075 * that when the last gem object reference is put, which is when 1076 * we end up in this function, we put also that ttm_buffer_object 1077 * refcount. Anything using gem interfaces is then no longer 1078 * allowed to access the object in a way that requires a gem 1079 * refcount, including locking the object. 1080 * 1081 * driver ttm callbacks is allowed to use the ttm_buffer_object 1082 * refcount directly if needed. 1083 */ 1084 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1085 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1086 } 1087 1088 static void xe_gem_object_close(struct drm_gem_object *obj, 1089 struct drm_file *file_priv) 1090 { 1091 struct xe_bo *bo = gem_to_xe_bo(obj); 1092 1093 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1094 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1095 1096 xe_bo_lock(bo, false); 1097 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1098 xe_bo_unlock(bo); 1099 } 1100 } 1101 1102 static bool should_migrate_to_system(struct xe_bo *bo) 1103 { 1104 struct xe_device *xe = xe_bo_device(bo); 1105 1106 return xe_device_in_fault_mode(xe) && bo->props.cpu_atomic; 1107 } 1108 1109 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1110 { 1111 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1112 struct drm_device *ddev = tbo->base.dev; 1113 vm_fault_t ret; 1114 int idx, r = 0; 1115 1116 ret = ttm_bo_vm_reserve(tbo, vmf); 1117 if (ret) 1118 return ret; 1119 1120 if (drm_dev_enter(ddev, &idx)) { 1121 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1122 1123 trace_xe_bo_cpu_fault(bo); 1124 1125 if (should_migrate_to_system(bo)) { 1126 r = xe_bo_migrate(bo, XE_PL_TT); 1127 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1128 ret = VM_FAULT_NOPAGE; 1129 else if (r) 1130 ret = VM_FAULT_SIGBUS; 1131 } 1132 if (!ret) 1133 ret = ttm_bo_vm_fault_reserved(vmf, 1134 vmf->vma->vm_page_prot, 1135 TTM_BO_VM_NUM_PREFAULT); 1136 drm_dev_exit(idx); 1137 } else { 1138 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1139 } 1140 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1141 return ret; 1142 1143 dma_resv_unlock(tbo->base.resv); 1144 return ret; 1145 } 1146 1147 static const struct vm_operations_struct xe_gem_vm_ops = { 1148 .fault = xe_gem_fault, 1149 .open = ttm_bo_vm_open, 1150 .close = ttm_bo_vm_close, 1151 .access = ttm_bo_vm_access 1152 }; 1153 1154 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1155 .free = xe_gem_object_free, 1156 .close = xe_gem_object_close, 1157 .mmap = drm_gem_ttm_mmap, 1158 .export = xe_gem_prime_export, 1159 .vm_ops = &xe_gem_vm_ops, 1160 }; 1161 1162 /** 1163 * xe_bo_alloc - Allocate storage for a struct xe_bo 1164 * 1165 * This funcition is intended to allocate storage to be used for input 1166 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1167 * created is needed before the call to __xe_bo_create_locked(). 1168 * If __xe_bo_create_locked ends up never to be called, then the 1169 * storage allocated with this function needs to be freed using 1170 * xe_bo_free(). 1171 * 1172 * Return: A pointer to an uninitialized struct xe_bo on success, 1173 * ERR_PTR(-ENOMEM) on error. 1174 */ 1175 struct xe_bo *xe_bo_alloc(void) 1176 { 1177 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1178 1179 if (!bo) 1180 return ERR_PTR(-ENOMEM); 1181 1182 return bo; 1183 } 1184 1185 /** 1186 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1187 * @bo: The buffer object storage. 1188 * 1189 * Refer to xe_bo_alloc() documentation for valid use-cases. 1190 */ 1191 void xe_bo_free(struct xe_bo *bo) 1192 { 1193 kfree(bo); 1194 } 1195 1196 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1197 struct xe_tile *tile, struct dma_resv *resv, 1198 struct ttm_lru_bulk_move *bulk, size_t size, 1199 u16 cpu_caching, enum ttm_bo_type type, 1200 u32 flags) 1201 { 1202 struct ttm_operation_ctx ctx = { 1203 .interruptible = true, 1204 .no_wait_gpu = false, 1205 }; 1206 struct ttm_placement *placement; 1207 uint32_t alignment; 1208 size_t aligned_size; 1209 int err; 1210 1211 /* Only kernel objects should set GT */ 1212 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1213 1214 if (XE_WARN_ON(!size)) { 1215 xe_bo_free(bo); 1216 return ERR_PTR(-EINVAL); 1217 } 1218 1219 if (flags & (XE_BO_CREATE_VRAM_MASK | XE_BO_CREATE_STOLEN_BIT) && 1220 !(flags & XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT) && 1221 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) { 1222 aligned_size = ALIGN(size, SZ_64K); 1223 if (type != ttm_bo_type_device) 1224 size = ALIGN(size, SZ_64K); 1225 flags |= XE_BO_INTERNAL_64K; 1226 alignment = SZ_64K >> PAGE_SHIFT; 1227 1228 } else { 1229 aligned_size = ALIGN(size, SZ_4K); 1230 flags &= ~XE_BO_INTERNAL_64K; 1231 alignment = SZ_4K >> PAGE_SHIFT; 1232 } 1233 1234 if (type == ttm_bo_type_device && aligned_size != size) 1235 return ERR_PTR(-EINVAL); 1236 1237 if (!bo) { 1238 bo = xe_bo_alloc(); 1239 if (IS_ERR(bo)) 1240 return bo; 1241 } 1242 1243 bo->ccs_cleared = false; 1244 bo->tile = tile; 1245 bo->size = size; 1246 bo->flags = flags; 1247 bo->cpu_caching = cpu_caching; 1248 bo->ttm.base.funcs = &xe_gem_object_funcs; 1249 bo->props.preferred_mem_class = XE_BO_PROPS_INVALID; 1250 bo->props.preferred_gt = XE_BO_PROPS_INVALID; 1251 bo->props.preferred_mem_type = XE_BO_PROPS_INVALID; 1252 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1253 INIT_LIST_HEAD(&bo->pinned_link); 1254 #ifdef CONFIG_PROC_FS 1255 INIT_LIST_HEAD(&bo->client_link); 1256 #endif 1257 1258 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1259 1260 if (resv) { 1261 ctx.allow_res_evict = !(flags & XE_BO_CREATE_NO_RESV_EVICT); 1262 ctx.resv = resv; 1263 } 1264 1265 if (!(flags & XE_BO_FIXED_PLACEMENT_BIT)) { 1266 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1267 if (WARN_ON(err)) { 1268 xe_ttm_bo_destroy(&bo->ttm); 1269 return ERR_PTR(err); 1270 } 1271 } 1272 1273 /* Defer populating type_sg bos */ 1274 placement = (type == ttm_bo_type_sg || 1275 bo->flags & XE_BO_DEFER_BACKING) ? &sys_placement : 1276 &bo->placement; 1277 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1278 placement, alignment, 1279 &ctx, NULL, resv, xe_ttm_bo_destroy); 1280 if (err) 1281 return ERR_PTR(err); 1282 1283 /* 1284 * The VRAM pages underneath are potentially still being accessed by the 1285 * GPU, as per async GPU clearing and async evictions. However TTM makes 1286 * sure to add any corresponding move/clear fences into the objects 1287 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1288 * 1289 * For KMD internal buffers we don't care about GPU clearing, however we 1290 * still need to handle async evictions, where the VRAM is still being 1291 * accessed by the GPU. Most internal callers are not expecting this, 1292 * since they are missing the required synchronisation before accessing 1293 * the memory. To keep things simple just sync wait any kernel fences 1294 * here, if the buffer is designated KMD internal. 1295 * 1296 * For normal userspace objects we should already have the required 1297 * pipelining or sync waiting elsewhere, since we already have to deal 1298 * with things like async GPU clearing. 1299 */ 1300 if (type == ttm_bo_type_kernel) { 1301 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1302 DMA_RESV_USAGE_KERNEL, 1303 ctx.interruptible, 1304 MAX_SCHEDULE_TIMEOUT); 1305 1306 if (timeout < 0) { 1307 if (!resv) 1308 dma_resv_unlock(bo->ttm.base.resv); 1309 xe_bo_put(bo); 1310 return ERR_PTR(timeout); 1311 } 1312 } 1313 1314 bo->created = true; 1315 if (bulk) 1316 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1317 else 1318 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1319 1320 return bo; 1321 } 1322 1323 static int __xe_bo_fixed_placement(struct xe_device *xe, 1324 struct xe_bo *bo, 1325 u32 flags, 1326 u64 start, u64 end, u64 size) 1327 { 1328 struct ttm_place *place = bo->placements; 1329 1330 if (flags & (XE_BO_CREATE_USER_BIT|XE_BO_CREATE_SYSTEM_BIT)) 1331 return -EINVAL; 1332 1333 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1334 place->fpfn = start >> PAGE_SHIFT; 1335 place->lpfn = end >> PAGE_SHIFT; 1336 1337 switch (flags & (XE_BO_CREATE_STOLEN_BIT | XE_BO_CREATE_VRAM_MASK)) { 1338 case XE_BO_CREATE_VRAM0_BIT: 1339 place->mem_type = XE_PL_VRAM0; 1340 break; 1341 case XE_BO_CREATE_VRAM1_BIT: 1342 place->mem_type = XE_PL_VRAM1; 1343 break; 1344 case XE_BO_CREATE_STOLEN_BIT: 1345 place->mem_type = XE_PL_STOLEN; 1346 break; 1347 1348 default: 1349 /* 0 or multiple of the above set */ 1350 return -EINVAL; 1351 } 1352 1353 bo->placement = (struct ttm_placement) { 1354 .num_placement = 1, 1355 .placement = place, 1356 .num_busy_placement = 1, 1357 .busy_placement = place, 1358 }; 1359 1360 return 0; 1361 } 1362 1363 static struct xe_bo * 1364 __xe_bo_create_locked(struct xe_device *xe, 1365 struct xe_tile *tile, struct xe_vm *vm, 1366 size_t size, u64 start, u64 end, 1367 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1368 { 1369 struct xe_bo *bo = NULL; 1370 int err; 1371 1372 if (vm) 1373 xe_vm_assert_held(vm); 1374 1375 if (start || end != ~0ULL) { 1376 bo = xe_bo_alloc(); 1377 if (IS_ERR(bo)) 1378 return bo; 1379 1380 flags |= XE_BO_FIXED_PLACEMENT_BIT; 1381 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1382 if (err) { 1383 xe_bo_free(bo); 1384 return ERR_PTR(err); 1385 } 1386 } 1387 1388 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1389 vm && !xe_vm_in_fault_mode(vm) && 1390 flags & XE_BO_CREATE_USER_BIT ? 1391 &vm->lru_bulk_move : NULL, size, 1392 cpu_caching, type, flags); 1393 if (IS_ERR(bo)) 1394 return bo; 1395 1396 /* 1397 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1398 * to ensure the shared resv doesn't disappear under the bo, the bo 1399 * will keep a reference to the vm, and avoid circular references 1400 * by having all the vm's bo refereferences released at vm close 1401 * time. 1402 */ 1403 if (vm && xe_bo_is_user(bo)) 1404 xe_vm_get(vm); 1405 bo->vm = vm; 1406 1407 if (bo->flags & XE_BO_CREATE_GGTT_BIT) { 1408 if (!tile && flags & XE_BO_CREATE_STOLEN_BIT) 1409 tile = xe_device_get_root_tile(xe); 1410 1411 xe_assert(xe, tile); 1412 1413 if (flags & XE_BO_FIXED_PLACEMENT_BIT) { 1414 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1415 start + bo->size, U64_MAX); 1416 } else { 1417 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1418 } 1419 if (err) 1420 goto err_unlock_put_bo; 1421 } 1422 1423 return bo; 1424 1425 err_unlock_put_bo: 1426 __xe_bo_unset_bulk_move(bo); 1427 xe_bo_unlock_vm_held(bo); 1428 xe_bo_put(bo); 1429 return ERR_PTR(err); 1430 } 1431 1432 struct xe_bo * 1433 xe_bo_create_locked_range(struct xe_device *xe, 1434 struct xe_tile *tile, struct xe_vm *vm, 1435 size_t size, u64 start, u64 end, 1436 enum ttm_bo_type type, u32 flags) 1437 { 1438 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1439 } 1440 1441 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1442 struct xe_vm *vm, size_t size, 1443 enum ttm_bo_type type, u32 flags) 1444 { 1445 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1446 } 1447 1448 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1449 struct xe_vm *vm, size_t size, 1450 u16 cpu_caching, 1451 enum ttm_bo_type type, 1452 u32 flags) 1453 { 1454 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1455 cpu_caching, type, 1456 flags | XE_BO_CREATE_USER_BIT); 1457 if (!IS_ERR(bo)) 1458 xe_bo_unlock_vm_held(bo); 1459 1460 return bo; 1461 } 1462 1463 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1464 struct xe_vm *vm, size_t size, 1465 enum ttm_bo_type type, u32 flags) 1466 { 1467 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1468 1469 if (!IS_ERR(bo)) 1470 xe_bo_unlock_vm_held(bo); 1471 1472 return bo; 1473 } 1474 1475 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1476 struct xe_vm *vm, 1477 size_t size, u64 offset, 1478 enum ttm_bo_type type, u32 flags) 1479 { 1480 struct xe_bo *bo; 1481 int err; 1482 u64 start = offset == ~0ull ? 0 : offset; 1483 u64 end = offset == ~0ull ? offset : start + size; 1484 1485 if (flags & XE_BO_CREATE_STOLEN_BIT && 1486 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1487 flags |= XE_BO_CREATE_GGTT_BIT; 1488 1489 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1490 flags | XE_BO_NEEDS_CPU_ACCESS); 1491 if (IS_ERR(bo)) 1492 return bo; 1493 1494 err = xe_bo_pin(bo); 1495 if (err) 1496 goto err_put; 1497 1498 err = xe_bo_vmap(bo); 1499 if (err) 1500 goto err_unpin; 1501 1502 xe_bo_unlock_vm_held(bo); 1503 1504 return bo; 1505 1506 err_unpin: 1507 xe_bo_unpin(bo); 1508 err_put: 1509 xe_bo_unlock_vm_held(bo); 1510 xe_bo_put(bo); 1511 return ERR_PTR(err); 1512 } 1513 1514 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1515 struct xe_vm *vm, size_t size, 1516 enum ttm_bo_type type, u32 flags) 1517 { 1518 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1519 } 1520 1521 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1522 const void *data, size_t size, 1523 enum ttm_bo_type type, u32 flags) 1524 { 1525 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1526 ALIGN(size, PAGE_SIZE), 1527 type, flags); 1528 if (IS_ERR(bo)) 1529 return bo; 1530 1531 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1532 1533 return bo; 1534 } 1535 1536 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1537 { 1538 xe_bo_unpin_map_no_vm(arg); 1539 } 1540 1541 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1542 size_t size, u32 flags) 1543 { 1544 struct xe_bo *bo; 1545 int ret; 1546 1547 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1548 if (IS_ERR(bo)) 1549 return bo; 1550 1551 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1552 if (ret) 1553 return ERR_PTR(ret); 1554 1555 return bo; 1556 } 1557 1558 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1559 const void *data, size_t size, u32 flags) 1560 { 1561 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1562 1563 if (IS_ERR(bo)) 1564 return bo; 1565 1566 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1567 1568 return bo; 1569 } 1570 1571 /* 1572 * XXX: This is in the VM bind data path, likely should calculate this once and 1573 * store, with a recalculation if the BO is moved. 1574 */ 1575 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1576 { 1577 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1578 1579 if (res->mem_type == XE_PL_STOLEN) 1580 return xe_ttm_stolen_gpu_offset(xe); 1581 1582 return res_to_mem_region(res)->dpa_base; 1583 } 1584 1585 /** 1586 * xe_bo_pin_external - pin an external BO 1587 * @bo: buffer object to be pinned 1588 * 1589 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1590 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1591 * asserts and code to ensure evict / restore on suspend / resume. 1592 * 1593 * Returns 0 for success, negative error code otherwise. 1594 */ 1595 int xe_bo_pin_external(struct xe_bo *bo) 1596 { 1597 struct xe_device *xe = xe_bo_device(bo); 1598 int err; 1599 1600 xe_assert(xe, !bo->vm); 1601 xe_assert(xe, xe_bo_is_user(bo)); 1602 1603 if (!xe_bo_is_pinned(bo)) { 1604 err = xe_bo_validate(bo, NULL, false); 1605 if (err) 1606 return err; 1607 1608 if (xe_bo_is_vram(bo)) { 1609 spin_lock(&xe->pinned.lock); 1610 list_add_tail(&bo->pinned_link, 1611 &xe->pinned.external_vram); 1612 spin_unlock(&xe->pinned.lock); 1613 } 1614 } 1615 1616 ttm_bo_pin(&bo->ttm); 1617 1618 /* 1619 * FIXME: If we always use the reserve / unreserve functions for locking 1620 * we do not need this. 1621 */ 1622 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1623 1624 return 0; 1625 } 1626 1627 int xe_bo_pin(struct xe_bo *bo) 1628 { 1629 struct xe_device *xe = xe_bo_device(bo); 1630 int err; 1631 1632 /* We currently don't expect user BO to be pinned */ 1633 xe_assert(xe, !xe_bo_is_user(bo)); 1634 1635 /* Pinned object must be in GGTT or have pinned flag */ 1636 xe_assert(xe, bo->flags & (XE_BO_CREATE_PINNED_BIT | 1637 XE_BO_CREATE_GGTT_BIT)); 1638 1639 /* 1640 * No reason we can't support pinning imported dma-bufs we just don't 1641 * expect to pin an imported dma-buf. 1642 */ 1643 xe_assert(xe, !bo->ttm.base.import_attach); 1644 1645 /* We only expect at most 1 pin */ 1646 xe_assert(xe, !xe_bo_is_pinned(bo)); 1647 1648 err = xe_bo_validate(bo, NULL, false); 1649 if (err) 1650 return err; 1651 1652 /* 1653 * For pinned objects in on DGFX, which are also in vram, we expect 1654 * these to be in contiguous VRAM memory. Required eviction / restore 1655 * during suspend / resume (force restore to same physical address). 1656 */ 1657 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1658 bo->flags & XE_BO_INTERNAL_TEST)) { 1659 struct ttm_place *place = &(bo->placements[0]); 1660 1661 if (mem_type_is_vram(place->mem_type)) { 1662 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1663 1664 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1665 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1666 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1667 1668 spin_lock(&xe->pinned.lock); 1669 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1670 spin_unlock(&xe->pinned.lock); 1671 } 1672 } 1673 1674 ttm_bo_pin(&bo->ttm); 1675 1676 /* 1677 * FIXME: If we always use the reserve / unreserve functions for locking 1678 * we do not need this. 1679 */ 1680 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * xe_bo_unpin_external - unpin an external BO 1687 * @bo: buffer object to be unpinned 1688 * 1689 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1690 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1691 * asserts and code to ensure evict / restore on suspend / resume. 1692 * 1693 * Returns 0 for success, negative error code otherwise. 1694 */ 1695 void xe_bo_unpin_external(struct xe_bo *bo) 1696 { 1697 struct xe_device *xe = xe_bo_device(bo); 1698 1699 xe_assert(xe, !bo->vm); 1700 xe_assert(xe, xe_bo_is_pinned(bo)); 1701 xe_assert(xe, xe_bo_is_user(bo)); 1702 1703 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { 1704 spin_lock(&xe->pinned.lock); 1705 list_del_init(&bo->pinned_link); 1706 spin_unlock(&xe->pinned.lock); 1707 } 1708 1709 ttm_bo_unpin(&bo->ttm); 1710 1711 /* 1712 * FIXME: If we always use the reserve / unreserve functions for locking 1713 * we do not need this. 1714 */ 1715 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1716 } 1717 1718 void xe_bo_unpin(struct xe_bo *bo) 1719 { 1720 struct xe_device *xe = xe_bo_device(bo); 1721 1722 xe_assert(xe, !bo->ttm.base.import_attach); 1723 xe_assert(xe, xe_bo_is_pinned(bo)); 1724 1725 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1726 bo->flags & XE_BO_INTERNAL_TEST)) { 1727 struct ttm_place *place = &(bo->placements[0]); 1728 1729 if (mem_type_is_vram(place->mem_type)) { 1730 xe_assert(xe, !list_empty(&bo->pinned_link)); 1731 1732 spin_lock(&xe->pinned.lock); 1733 list_del_init(&bo->pinned_link); 1734 spin_unlock(&xe->pinned.lock); 1735 } 1736 } 1737 1738 ttm_bo_unpin(&bo->ttm); 1739 } 1740 1741 /** 1742 * xe_bo_validate() - Make sure the bo is in an allowed placement 1743 * @bo: The bo, 1744 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1745 * NULL. Used together with @allow_res_evict. 1746 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1747 * reservation object. 1748 * 1749 * Make sure the bo is in allowed placement, migrating it if necessary. If 1750 * needed, other bos will be evicted. If bos selected for eviction shares 1751 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1752 * set to true, otherwise they will be bypassed. 1753 * 1754 * Return: 0 on success, negative error code on failure. May return 1755 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1756 */ 1757 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1758 { 1759 struct ttm_operation_ctx ctx = { 1760 .interruptible = true, 1761 .no_wait_gpu = false, 1762 }; 1763 1764 if (vm) { 1765 lockdep_assert_held(&vm->lock); 1766 xe_vm_assert_held(vm); 1767 1768 ctx.allow_res_evict = allow_res_evict; 1769 ctx.resv = xe_vm_resv(vm); 1770 } 1771 1772 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1773 } 1774 1775 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1776 { 1777 if (bo->destroy == &xe_ttm_bo_destroy) 1778 return true; 1779 1780 return false; 1781 } 1782 1783 /* 1784 * Resolve a BO address. There is no assert to check if the proper lock is held 1785 * so it should only be used in cases where it is not fatal to get the wrong 1786 * address, such as printing debug information, but not in cases where memory is 1787 * written based on this result. 1788 */ 1789 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1790 { 1791 struct xe_device *xe = xe_bo_device(bo); 1792 struct xe_res_cursor cur; 1793 u64 page; 1794 1795 xe_assert(xe, page_size <= PAGE_SIZE); 1796 page = offset >> PAGE_SHIFT; 1797 offset &= (PAGE_SIZE - 1); 1798 1799 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1800 xe_assert(xe, bo->ttm.ttm); 1801 1802 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1803 page_size, &cur); 1804 return xe_res_dma(&cur) + offset; 1805 } else { 1806 struct xe_res_cursor cur; 1807 1808 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1809 page_size, &cur); 1810 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1811 } 1812 } 1813 1814 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1815 { 1816 if (!READ_ONCE(bo->ttm.pin_count)) 1817 xe_bo_assert_held(bo); 1818 return __xe_bo_addr(bo, offset, page_size); 1819 } 1820 1821 int xe_bo_vmap(struct xe_bo *bo) 1822 { 1823 void *virtual; 1824 bool is_iomem; 1825 int ret; 1826 1827 xe_bo_assert_held(bo); 1828 1829 if (!(bo->flags & XE_BO_NEEDS_CPU_ACCESS)) 1830 return -EINVAL; 1831 1832 if (!iosys_map_is_null(&bo->vmap)) 1833 return 0; 1834 1835 /* 1836 * We use this more or less deprecated interface for now since 1837 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1838 * single page bos, which is done here. 1839 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1840 * to use struct iosys_map. 1841 */ 1842 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1843 if (ret) 1844 return ret; 1845 1846 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1847 if (is_iomem) 1848 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1849 else 1850 iosys_map_set_vaddr(&bo->vmap, virtual); 1851 1852 return 0; 1853 } 1854 1855 static void __xe_bo_vunmap(struct xe_bo *bo) 1856 { 1857 if (!iosys_map_is_null(&bo->vmap)) { 1858 iosys_map_clear(&bo->vmap); 1859 ttm_bo_kunmap(&bo->kmap); 1860 } 1861 } 1862 1863 void xe_bo_vunmap(struct xe_bo *bo) 1864 { 1865 xe_bo_assert_held(bo); 1866 __xe_bo_vunmap(bo); 1867 } 1868 1869 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1870 struct drm_file *file) 1871 { 1872 struct xe_device *xe = to_xe_device(dev); 1873 struct xe_file *xef = to_xe_file(file); 1874 struct drm_xe_gem_create *args = data; 1875 struct xe_vm *vm = NULL; 1876 struct xe_bo *bo; 1877 unsigned int bo_flags; 1878 u32 handle; 1879 int err; 1880 1881 if (XE_IOCTL_DBG(xe, args->extensions) || 1882 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1883 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1884 return -EINVAL; 1885 1886 /* at least one valid memory placement must be specified */ 1887 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1888 !args->placement)) 1889 return -EINVAL; 1890 1891 if (XE_IOCTL_DBG(xe, args->flags & 1892 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1893 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1894 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1895 return -EINVAL; 1896 1897 if (XE_IOCTL_DBG(xe, args->handle)) 1898 return -EINVAL; 1899 1900 if (XE_IOCTL_DBG(xe, !args->size)) 1901 return -EINVAL; 1902 1903 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1904 return -EINVAL; 1905 1906 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1907 return -EINVAL; 1908 1909 bo_flags = 0; 1910 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1911 bo_flags |= XE_BO_DEFER_BACKING; 1912 1913 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1914 bo_flags |= XE_BO_SCANOUT_BIT; 1915 1916 bo_flags |= args->placement << (ffs(XE_BO_CREATE_SYSTEM_BIT) - 1); 1917 1918 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1919 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_CREATE_VRAM_MASK))) 1920 return -EINVAL; 1921 1922 bo_flags |= XE_BO_NEEDS_CPU_ACCESS; 1923 } 1924 1925 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1926 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1927 return -EINVAL; 1928 1929 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_CREATE_VRAM_MASK && 1930 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1931 return -EINVAL; 1932 1933 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_SCANOUT_BIT && 1934 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 1935 return -EINVAL; 1936 1937 if (args->vm_id) { 1938 vm = xe_vm_lookup(xef, args->vm_id); 1939 if (XE_IOCTL_DBG(xe, !vm)) 1940 return -ENOENT; 1941 err = xe_vm_lock(vm, true); 1942 if (err) 1943 goto out_vm; 1944 } 1945 1946 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 1947 ttm_bo_type_device, bo_flags); 1948 1949 if (vm) 1950 xe_vm_unlock(vm); 1951 1952 if (IS_ERR(bo)) { 1953 err = PTR_ERR(bo); 1954 goto out_vm; 1955 } 1956 1957 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 1958 if (err) 1959 goto out_bulk; 1960 1961 args->handle = handle; 1962 goto out_put; 1963 1964 out_bulk: 1965 if (vm && !xe_vm_in_fault_mode(vm)) { 1966 xe_vm_lock(vm, false); 1967 __xe_bo_unset_bulk_move(bo); 1968 xe_vm_unlock(vm); 1969 } 1970 out_put: 1971 xe_bo_put(bo); 1972 out_vm: 1973 if (vm) 1974 xe_vm_put(vm); 1975 1976 return err; 1977 } 1978 1979 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 1980 struct drm_file *file) 1981 { 1982 struct xe_device *xe = to_xe_device(dev); 1983 struct drm_xe_gem_mmap_offset *args = data; 1984 struct drm_gem_object *gem_obj; 1985 1986 if (XE_IOCTL_DBG(xe, args->extensions) || 1987 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1988 return -EINVAL; 1989 1990 if (XE_IOCTL_DBG(xe, args->flags)) 1991 return -EINVAL; 1992 1993 gem_obj = drm_gem_object_lookup(file, args->handle); 1994 if (XE_IOCTL_DBG(xe, !gem_obj)) 1995 return -ENOENT; 1996 1997 /* The mmap offset was set up at BO allocation time. */ 1998 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 1999 2000 xe_bo_put(gem_to_xe_bo(gem_obj)); 2001 return 0; 2002 } 2003 2004 /** 2005 * xe_bo_lock() - Lock the buffer object's dma_resv object 2006 * @bo: The struct xe_bo whose lock is to be taken 2007 * @intr: Whether to perform any wait interruptible 2008 * 2009 * Locks the buffer object's dma_resv object. If the buffer object is 2010 * pointing to a shared dma_resv object, that shared lock is locked. 2011 * 2012 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2013 * contended lock was interrupted. If @intr is set to false, the 2014 * function always returns 0. 2015 */ 2016 int xe_bo_lock(struct xe_bo *bo, bool intr) 2017 { 2018 if (intr) 2019 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2020 2021 dma_resv_lock(bo->ttm.base.resv, NULL); 2022 2023 return 0; 2024 } 2025 2026 /** 2027 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2028 * @bo: The struct xe_bo whose lock is to be released. 2029 * 2030 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2031 */ 2032 void xe_bo_unlock(struct xe_bo *bo) 2033 { 2034 dma_resv_unlock(bo->ttm.base.resv); 2035 } 2036 2037 /** 2038 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2039 * @bo: The buffer object to migrate 2040 * @mem_type: The TTM memory type intended to migrate to 2041 * 2042 * Check whether the buffer object supports migration to the 2043 * given memory type. Note that pinning may affect the ability to migrate as 2044 * returned by this function. 2045 * 2046 * This function is primarily intended as a helper for checking the 2047 * possibility to migrate buffer objects and can be called without 2048 * the object lock held. 2049 * 2050 * Return: true if migration is possible, false otherwise. 2051 */ 2052 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2053 { 2054 unsigned int cur_place; 2055 2056 if (bo->ttm.type == ttm_bo_type_kernel) 2057 return true; 2058 2059 if (bo->ttm.type == ttm_bo_type_sg) 2060 return false; 2061 2062 for (cur_place = 0; cur_place < bo->placement.num_placement; 2063 cur_place++) { 2064 if (bo->placements[cur_place].mem_type == mem_type) 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2072 { 2073 memset(place, 0, sizeof(*place)); 2074 place->mem_type = mem_type; 2075 } 2076 2077 /** 2078 * xe_bo_migrate - Migrate an object to the desired region id 2079 * @bo: The buffer object to migrate. 2080 * @mem_type: The TTM region type to migrate to. 2081 * 2082 * Attempt to migrate the buffer object to the desired memory region. The 2083 * buffer object may not be pinned, and must be locked. 2084 * On successful completion, the object memory type will be updated, 2085 * but an async migration task may not have completed yet, and to 2086 * accomplish that, the object's kernel fences must be signaled with 2087 * the object lock held. 2088 * 2089 * Return: 0 on success. Negative error code on failure. In particular may 2090 * return -EINTR or -ERESTARTSYS if signal pending. 2091 */ 2092 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2093 { 2094 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2095 struct ttm_operation_ctx ctx = { 2096 .interruptible = true, 2097 .no_wait_gpu = false, 2098 }; 2099 struct ttm_placement placement; 2100 struct ttm_place requested; 2101 2102 xe_bo_assert_held(bo); 2103 2104 if (bo->ttm.resource->mem_type == mem_type) 2105 return 0; 2106 2107 if (xe_bo_is_pinned(bo)) 2108 return -EBUSY; 2109 2110 if (!xe_bo_can_migrate(bo, mem_type)) 2111 return -EINVAL; 2112 2113 xe_place_from_ttm_type(mem_type, &requested); 2114 placement.num_placement = 1; 2115 placement.num_busy_placement = 1; 2116 placement.placement = &requested; 2117 placement.busy_placement = &requested; 2118 2119 /* 2120 * Stolen needs to be handled like below VRAM handling if we ever need 2121 * to support it. 2122 */ 2123 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2124 2125 if (mem_type_is_vram(mem_type)) { 2126 u32 c = 0; 2127 2128 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2129 } 2130 2131 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2132 } 2133 2134 /** 2135 * xe_bo_evict - Evict an object to evict placement 2136 * @bo: The buffer object to migrate. 2137 * @force_alloc: Set force_alloc in ttm_operation_ctx 2138 * 2139 * On successful completion, the object memory will be moved to evict 2140 * placement. Ths function blocks until the object has been fully moved. 2141 * 2142 * Return: 0 on success. Negative error code on failure. 2143 */ 2144 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2145 { 2146 struct ttm_operation_ctx ctx = { 2147 .interruptible = false, 2148 .no_wait_gpu = false, 2149 .force_alloc = force_alloc, 2150 }; 2151 struct ttm_placement placement; 2152 int ret; 2153 2154 xe_evict_flags(&bo->ttm, &placement); 2155 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2156 if (ret) 2157 return ret; 2158 2159 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2160 false, MAX_SCHEDULE_TIMEOUT); 2161 2162 return 0; 2163 } 2164 2165 /** 2166 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2167 * placed in system memory. 2168 * @bo: The xe_bo 2169 * 2170 * Return: true if extra pages need to be allocated, false otherwise. 2171 */ 2172 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2173 { 2174 struct xe_device *xe = xe_bo_device(bo); 2175 2176 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2177 return false; 2178 2179 /* On discrete GPUs, if the GPU can access this buffer from 2180 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2181 * can't be used since there's no CCS storage associated with 2182 * non-VRAM addresses. 2183 */ 2184 if (IS_DGFX(xe) && (bo->flags & XE_BO_CREATE_SYSTEM_BIT)) 2185 return false; 2186 2187 return true; 2188 } 2189 2190 /** 2191 * __xe_bo_release_dummy() - Dummy kref release function 2192 * @kref: The embedded struct kref. 2193 * 2194 * Dummy release function for xe_bo_put_deferred(). Keep off. 2195 */ 2196 void __xe_bo_release_dummy(struct kref *kref) 2197 { 2198 } 2199 2200 /** 2201 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2202 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2203 * 2204 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2205 * The @deferred list can be either an onstack local list or a global 2206 * shared list used by a workqueue. 2207 */ 2208 void xe_bo_put_commit(struct llist_head *deferred) 2209 { 2210 struct llist_node *freed; 2211 struct xe_bo *bo, *next; 2212 2213 if (!deferred) 2214 return; 2215 2216 freed = llist_del_all(deferred); 2217 if (!freed) 2218 return; 2219 2220 llist_for_each_entry_safe(bo, next, freed, freed) 2221 drm_gem_object_free(&bo->ttm.base.refcount); 2222 } 2223 2224 /** 2225 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2226 * @file_priv: ... 2227 * @dev: ... 2228 * @args: ... 2229 * 2230 * See dumb_create() hook in include/drm/drm_drv.h 2231 * 2232 * Return: ... 2233 */ 2234 int xe_bo_dumb_create(struct drm_file *file_priv, 2235 struct drm_device *dev, 2236 struct drm_mode_create_dumb *args) 2237 { 2238 struct xe_device *xe = to_xe_device(dev); 2239 struct xe_bo *bo; 2240 uint32_t handle; 2241 int cpp = DIV_ROUND_UP(args->bpp, 8); 2242 int err; 2243 u32 page_size = max_t(u32, PAGE_SIZE, 2244 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2245 2246 args->pitch = ALIGN(args->width * cpp, 64); 2247 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2248 page_size); 2249 2250 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2251 DRM_XE_GEM_CPU_CACHING_WC, 2252 ttm_bo_type_device, 2253 XE_BO_CREATE_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2254 XE_BO_CREATE_USER_BIT | XE_BO_SCANOUT_BIT | 2255 XE_BO_NEEDS_CPU_ACCESS); 2256 if (IS_ERR(bo)) 2257 return PTR_ERR(bo); 2258 2259 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2260 /* drop reference from allocate - handle holds it now */ 2261 drm_gem_object_put(&bo->ttm.base); 2262 if (!err) 2263 args->handle = handle; 2264 return err; 2265 } 2266 2267 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2268 #include "tests/xe_bo.c" 2269 #endif 2270