1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace_bo.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 167 { 168 struct ttm_place place = { .mem_type = mem_type }; 169 struct xe_mem_region *vram; 170 u64 io_size; 171 172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 173 174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 175 xe_assert(xe, vram && vram->usable_size); 176 io_size = vram->io_size; 177 178 /* 179 * For eviction / restore on suspend / resume objects 180 * pinned in VRAM must be contiguous 181 */ 182 if (bo_flags & (XE_BO_FLAG_PINNED | 183 XE_BO_FLAG_GGTT)) 184 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 185 186 if (io_size < vram->usable_size) { 187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 188 place.fpfn = 0; 189 place.lpfn = io_size >> PAGE_SHIFT; 190 } else { 191 place.flags |= TTM_PL_FLAG_TOPDOWN; 192 } 193 } 194 places[*c] = place; 195 *c += 1; 196 } 197 198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 199 u32 bo_flags, u32 *c) 200 { 201 if (bo_flags & XE_BO_FLAG_VRAM0) 202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 203 if (bo_flags & XE_BO_FLAG_VRAM1) 204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 205 } 206 207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 208 u32 bo_flags, u32 *c) 209 { 210 if (bo_flags & XE_BO_FLAG_STOLEN) { 211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 212 213 bo->placements[*c] = (struct ttm_place) { 214 .mem_type = XE_PL_STOLEN, 215 .flags = bo_flags & (XE_BO_FLAG_PINNED | 216 XE_BO_FLAG_GGTT) ? 217 TTM_PL_FLAG_CONTIGUOUS : 0, 218 }; 219 *c += 1; 220 } 221 } 222 223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 224 u32 bo_flags) 225 { 226 u32 c = 0; 227 228 try_add_vram(xe, bo, bo_flags, &c); 229 try_add_system(xe, bo, bo_flags, &c); 230 try_add_stolen(xe, bo, bo_flags, &c); 231 232 if (!c) 233 return -EINVAL; 234 235 bo->placement = (struct ttm_placement) { 236 .num_placement = c, 237 .placement = bo->placements, 238 }; 239 240 return 0; 241 } 242 243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 244 u32 bo_flags) 245 { 246 xe_bo_assert_held(bo); 247 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 248 } 249 250 static void xe_evict_flags(struct ttm_buffer_object *tbo, 251 struct ttm_placement *placement) 252 { 253 if (!xe_bo_is_xe_bo(tbo)) { 254 /* Don't handle scatter gather BOs */ 255 if (tbo->type == ttm_bo_type_sg) { 256 placement->num_placement = 0; 257 return; 258 } 259 260 *placement = sys_placement; 261 return; 262 } 263 264 /* 265 * For xe, sg bos that are evicted to system just triggers a 266 * rebind of the sg list upon subsequent validation to XE_PL_TT. 267 */ 268 switch (tbo->resource->mem_type) { 269 case XE_PL_VRAM0: 270 case XE_PL_VRAM1: 271 case XE_PL_STOLEN: 272 *placement = tt_placement; 273 break; 274 case XE_PL_TT: 275 default: 276 *placement = sys_placement; 277 break; 278 } 279 } 280 281 struct xe_ttm_tt { 282 struct ttm_tt ttm; 283 struct device *dev; 284 struct sg_table sgt; 285 struct sg_table *sg; 286 }; 287 288 static int xe_tt_map_sg(struct ttm_tt *tt) 289 { 290 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 291 unsigned long num_pages = tt->num_pages; 292 int ret; 293 294 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 295 296 if (xe_tt->sg) 297 return 0; 298 299 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 300 num_pages, 0, 301 (u64)num_pages << PAGE_SHIFT, 302 xe_sg_segment_size(xe_tt->dev), 303 GFP_KERNEL); 304 if (ret) 305 return ret; 306 307 xe_tt->sg = &xe_tt->sgt; 308 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 309 DMA_ATTR_SKIP_CPU_SYNC); 310 if (ret) { 311 sg_free_table(xe_tt->sg); 312 xe_tt->sg = NULL; 313 return ret; 314 } 315 316 return 0; 317 } 318 319 static void xe_tt_unmap_sg(struct ttm_tt *tt) 320 { 321 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 322 323 if (xe_tt->sg) { 324 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 325 DMA_BIDIRECTIONAL, 0); 326 sg_free_table(xe_tt->sg); 327 xe_tt->sg = NULL; 328 } 329 } 330 331 struct sg_table *xe_bo_sg(struct xe_bo *bo) 332 { 333 struct ttm_tt *tt = bo->ttm.ttm; 334 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 335 336 return xe_tt->sg; 337 } 338 339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 340 u32 page_flags) 341 { 342 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 343 struct xe_device *xe = xe_bo_device(bo); 344 struct xe_ttm_tt *tt; 345 unsigned long extra_pages; 346 enum ttm_caching caching = ttm_cached; 347 int err; 348 349 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 350 if (!tt) 351 return NULL; 352 353 tt->dev = xe->drm.dev; 354 355 extra_pages = 0; 356 if (xe_bo_needs_ccs_pages(bo)) 357 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 358 PAGE_SIZE); 359 360 /* 361 * DGFX system memory is always WB / ttm_cached, since 362 * other caching modes are only supported on x86. DGFX 363 * GPU system memory accesses are always coherent with the 364 * CPU. 365 */ 366 if (!IS_DGFX(xe)) { 367 switch (bo->cpu_caching) { 368 case DRM_XE_GEM_CPU_CACHING_WC: 369 caching = ttm_write_combined; 370 break; 371 default: 372 caching = ttm_cached; 373 break; 374 } 375 376 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 377 378 /* 379 * Display scanout is always non-coherent with the CPU cache. 380 * 381 * For Xe_LPG and beyond, PPGTT PTE lookups are also 382 * non-coherent and require a CPU:WC mapping. 383 */ 384 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 385 (xe->info.graphics_verx100 >= 1270 && 386 bo->flags & XE_BO_FLAG_PAGETABLE)) 387 caching = ttm_write_combined; 388 } 389 390 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 391 /* 392 * Valid only for internally-created buffers only, for 393 * which cpu_caching is never initialized. 394 */ 395 xe_assert(xe, bo->cpu_caching == 0); 396 caching = ttm_uncached; 397 } 398 399 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 400 if (err) { 401 kfree(tt); 402 return NULL; 403 } 404 405 return &tt->ttm; 406 } 407 408 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 409 struct ttm_operation_ctx *ctx) 410 { 411 int err; 412 413 /* 414 * dma-bufs are not populated with pages, and the dma- 415 * addresses are set up when moved to XE_PL_TT. 416 */ 417 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 418 return 0; 419 420 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 421 if (err) 422 return err; 423 424 return err; 425 } 426 427 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 428 { 429 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 430 return; 431 432 xe_tt_unmap_sg(tt); 433 434 return ttm_pool_free(&ttm_dev->pool, tt); 435 } 436 437 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 438 { 439 ttm_tt_fini(tt); 440 kfree(tt); 441 } 442 443 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 444 struct ttm_resource *mem) 445 { 446 struct xe_device *xe = ttm_to_xe_device(bdev); 447 448 switch (mem->mem_type) { 449 case XE_PL_SYSTEM: 450 case XE_PL_TT: 451 return 0; 452 case XE_PL_VRAM0: 453 case XE_PL_VRAM1: { 454 struct xe_ttm_vram_mgr_resource *vres = 455 to_xe_ttm_vram_mgr_resource(mem); 456 struct xe_mem_region *vram = res_to_mem_region(mem); 457 458 if (vres->used_visible_size < mem->size) 459 return -EINVAL; 460 461 mem->bus.offset = mem->start << PAGE_SHIFT; 462 463 if (vram->mapping && 464 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 465 mem->bus.addr = (u8 __force *)vram->mapping + 466 mem->bus.offset; 467 468 mem->bus.offset += vram->io_start; 469 mem->bus.is_iomem = true; 470 471 #if !defined(CONFIG_X86) 472 mem->bus.caching = ttm_write_combined; 473 #endif 474 return 0; 475 } case XE_PL_STOLEN: 476 return xe_ttm_stolen_io_mem_reserve(xe, mem); 477 default: 478 return -EINVAL; 479 } 480 } 481 482 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 483 const struct ttm_operation_ctx *ctx) 484 { 485 struct dma_resv_iter cursor; 486 struct dma_fence *fence; 487 struct drm_gem_object *obj = &bo->ttm.base; 488 struct drm_gpuvm_bo *vm_bo; 489 bool idle = false; 490 int ret = 0; 491 492 dma_resv_assert_held(bo->ttm.base.resv); 493 494 if (!list_empty(&bo->ttm.base.gpuva.list)) { 495 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 496 DMA_RESV_USAGE_BOOKKEEP); 497 dma_resv_for_each_fence_unlocked(&cursor, fence) 498 dma_fence_enable_sw_signaling(fence); 499 dma_resv_iter_end(&cursor); 500 } 501 502 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 503 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 504 struct drm_gpuva *gpuva; 505 506 if (!xe_vm_in_fault_mode(vm)) { 507 drm_gpuvm_bo_evict(vm_bo, true); 508 continue; 509 } 510 511 if (!idle) { 512 long timeout; 513 514 if (ctx->no_wait_gpu && 515 !dma_resv_test_signaled(bo->ttm.base.resv, 516 DMA_RESV_USAGE_BOOKKEEP)) 517 return -EBUSY; 518 519 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 520 DMA_RESV_USAGE_BOOKKEEP, 521 ctx->interruptible, 522 MAX_SCHEDULE_TIMEOUT); 523 if (!timeout) 524 return -ETIME; 525 if (timeout < 0) 526 return timeout; 527 528 idle = true; 529 } 530 531 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 532 struct xe_vma *vma = gpuva_to_vma(gpuva); 533 534 trace_xe_vma_evict(vma); 535 ret = xe_vm_invalidate_vma(vma); 536 if (XE_WARN_ON(ret)) 537 return ret; 538 } 539 } 540 541 return ret; 542 } 543 544 /* 545 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 546 * Note that unmapping the attachment is deferred to the next 547 * map_attachment time, or to bo destroy (after idling) whichever comes first. 548 * This is to avoid syncing before unmap_attachment(), assuming that the 549 * caller relies on idling the reservation object before moving the 550 * backing store out. Should that assumption not hold, then we will be able 551 * to unconditionally call unmap_attachment() when moving out to system. 552 */ 553 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 554 struct ttm_resource *new_res) 555 { 556 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 557 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 558 ttm); 559 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 560 struct sg_table *sg; 561 562 xe_assert(xe, attach); 563 xe_assert(xe, ttm_bo->ttm); 564 565 if (new_res->mem_type == XE_PL_SYSTEM) 566 goto out; 567 568 if (ttm_bo->sg) { 569 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 570 ttm_bo->sg = NULL; 571 } 572 573 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 574 if (IS_ERR(sg)) 575 return PTR_ERR(sg); 576 577 ttm_bo->sg = sg; 578 xe_tt->sg = sg; 579 580 out: 581 ttm_bo_move_null(ttm_bo, new_res); 582 583 return 0; 584 } 585 586 /** 587 * xe_bo_move_notify - Notify subsystems of a pending move 588 * @bo: The buffer object 589 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 590 * 591 * This function notifies subsystems of an upcoming buffer move. 592 * Upon receiving such a notification, subsystems should schedule 593 * halting access to the underlying pages and optionally add a fence 594 * to the buffer object's dma_resv object, that signals when access is 595 * stopped. The caller will wait on all dma_resv fences before 596 * starting the move. 597 * 598 * A subsystem may commence access to the object after obtaining 599 * bindings to the new backing memory under the object lock. 600 * 601 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 602 * negative error code on error. 603 */ 604 static int xe_bo_move_notify(struct xe_bo *bo, 605 const struct ttm_operation_ctx *ctx) 606 { 607 struct ttm_buffer_object *ttm_bo = &bo->ttm; 608 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 609 struct ttm_resource *old_mem = ttm_bo->resource; 610 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 611 int ret; 612 613 /* 614 * If this starts to call into many components, consider 615 * using a notification chain here. 616 */ 617 618 if (xe_bo_is_pinned(bo)) 619 return -EINVAL; 620 621 xe_bo_vunmap(bo); 622 ret = xe_bo_trigger_rebind(xe, bo, ctx); 623 if (ret) 624 return ret; 625 626 /* Don't call move_notify() for imported dma-bufs. */ 627 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 628 dma_buf_move_notify(ttm_bo->base.dma_buf); 629 630 /* 631 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 632 * so if we moved from VRAM make sure to unlink this from the userfault 633 * tracking. 634 */ 635 if (mem_type_is_vram(old_mem_type)) { 636 mutex_lock(&xe->mem_access.vram_userfault.lock); 637 if (!list_empty(&bo->vram_userfault_link)) 638 list_del_init(&bo->vram_userfault_link); 639 mutex_unlock(&xe->mem_access.vram_userfault.lock); 640 } 641 642 return 0; 643 } 644 645 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 646 struct ttm_operation_ctx *ctx, 647 struct ttm_resource *new_mem, 648 struct ttm_place *hop) 649 { 650 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 651 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 652 struct ttm_resource *old_mem = ttm_bo->resource; 653 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 654 struct ttm_tt *ttm = ttm_bo->ttm; 655 struct xe_migrate *migrate = NULL; 656 struct dma_fence *fence; 657 bool move_lacks_source; 658 bool tt_has_data; 659 bool needs_clear; 660 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 661 ttm && ttm_tt_is_populated(ttm)) ? true : false; 662 int ret = 0; 663 664 /* Bo creation path, moving to system or TT. */ 665 if ((!old_mem && ttm) && !handle_system_ccs) { 666 if (new_mem->mem_type == XE_PL_TT) 667 ret = xe_tt_map_sg(ttm); 668 if (!ret) 669 ttm_bo_move_null(ttm_bo, new_mem); 670 goto out; 671 } 672 673 if (ttm_bo->type == ttm_bo_type_sg) { 674 ret = xe_bo_move_notify(bo, ctx); 675 if (!ret) 676 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 677 return ret; 678 } 679 680 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 681 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 682 683 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 684 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 685 686 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 687 (!ttm && ttm_bo->type == ttm_bo_type_device); 688 689 if (new_mem->mem_type == XE_PL_TT) { 690 ret = xe_tt_map_sg(ttm); 691 if (ret) 692 goto out; 693 } 694 695 if ((move_lacks_source && !needs_clear)) { 696 ttm_bo_move_null(ttm_bo, new_mem); 697 goto out; 698 } 699 700 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 701 ttm_bo_move_null(ttm_bo, new_mem); 702 goto out; 703 } 704 705 /* 706 * Failed multi-hop where the old_mem is still marked as 707 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 708 */ 709 if (old_mem_type == XE_PL_TT && 710 new_mem->mem_type == XE_PL_TT) { 711 ttm_bo_move_null(ttm_bo, new_mem); 712 goto out; 713 } 714 715 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 716 ret = xe_bo_move_notify(bo, ctx); 717 if (ret) 718 goto out; 719 } 720 721 if (old_mem_type == XE_PL_TT && 722 new_mem->mem_type == XE_PL_SYSTEM) { 723 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 724 DMA_RESV_USAGE_BOOKKEEP, 725 true, 726 MAX_SCHEDULE_TIMEOUT); 727 if (timeout < 0) { 728 ret = timeout; 729 goto out; 730 } 731 732 if (!handle_system_ccs) { 733 ttm_bo_move_null(ttm_bo, new_mem); 734 goto out; 735 } 736 } 737 738 if (!move_lacks_source && 739 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 740 (mem_type_is_vram(old_mem_type) && 741 new_mem->mem_type == XE_PL_SYSTEM))) { 742 hop->fpfn = 0; 743 hop->lpfn = 0; 744 hop->mem_type = XE_PL_TT; 745 hop->flags = TTM_PL_FLAG_TEMPORARY; 746 ret = -EMULTIHOP; 747 goto out; 748 } 749 750 if (bo->tile) 751 migrate = bo->tile->migrate; 752 else if (resource_is_vram(new_mem)) 753 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 754 else if (mem_type_is_vram(old_mem_type)) 755 migrate = mem_type_to_migrate(xe, old_mem_type); 756 else 757 migrate = xe->tiles[0].migrate; 758 759 xe_assert(xe, migrate); 760 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 761 xe_pm_runtime_get_noresume(xe); 762 763 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 764 /* 765 * Kernel memory that is pinned should only be moved on suspend 766 * / resume, some of the pinned memory is required for the 767 * device to resume / use the GPU to move other evicted memory 768 * (user memory) around. This likely could be optimized a bit 769 * futher where we find the minimum set of pinned memory 770 * required for resume but for simplity doing a memcpy for all 771 * pinned memory. 772 */ 773 ret = xe_bo_vmap(bo); 774 if (!ret) { 775 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 776 777 /* Create a new VMAP once kernel BO back in VRAM */ 778 if (!ret && resource_is_vram(new_mem)) { 779 struct xe_mem_region *vram = res_to_mem_region(new_mem); 780 void __iomem *new_addr = vram->mapping + 781 (new_mem->start << PAGE_SHIFT); 782 783 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 784 ret = -EINVAL; 785 xe_pm_runtime_put(xe); 786 goto out; 787 } 788 789 xe_assert(xe, new_mem->start == 790 bo->placements->fpfn); 791 792 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 793 } 794 } 795 } else { 796 if (move_lacks_source) 797 fence = xe_migrate_clear(migrate, bo, new_mem); 798 else 799 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 800 new_mem, handle_system_ccs); 801 if (IS_ERR(fence)) { 802 ret = PTR_ERR(fence); 803 xe_pm_runtime_put(xe); 804 goto out; 805 } 806 if (!move_lacks_source) { 807 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 808 true, new_mem); 809 if (ret) { 810 dma_fence_wait(fence, false); 811 ttm_bo_move_null(ttm_bo, new_mem); 812 ret = 0; 813 } 814 } else { 815 /* 816 * ttm_bo_move_accel_cleanup() may blow up if 817 * bo->resource == NULL, so just attach the 818 * fence and set the new resource. 819 */ 820 dma_resv_add_fence(ttm_bo->base.resv, fence, 821 DMA_RESV_USAGE_KERNEL); 822 ttm_bo_move_null(ttm_bo, new_mem); 823 } 824 825 dma_fence_put(fence); 826 } 827 828 xe_pm_runtime_put(xe); 829 830 out: 831 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 832 ttm_bo->ttm) 833 xe_tt_unmap_sg(ttm_bo->ttm); 834 835 return ret; 836 } 837 838 /** 839 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 840 * @bo: The buffer object to move. 841 * 842 * On successful completion, the object memory will be moved to sytem memory. 843 * 844 * This is needed to for special handling of pinned VRAM object during 845 * suspend-resume. 846 * 847 * Return: 0 on success. Negative error code on failure. 848 */ 849 int xe_bo_evict_pinned(struct xe_bo *bo) 850 { 851 struct ttm_place place = { 852 .mem_type = XE_PL_TT, 853 }; 854 struct ttm_placement placement = { 855 .placement = &place, 856 .num_placement = 1, 857 }; 858 struct ttm_operation_ctx ctx = { 859 .interruptible = false, 860 }; 861 struct ttm_resource *new_mem; 862 int ret; 863 864 xe_bo_assert_held(bo); 865 866 if (WARN_ON(!bo->ttm.resource)) 867 return -EINVAL; 868 869 if (WARN_ON(!xe_bo_is_pinned(bo))) 870 return -EINVAL; 871 872 if (WARN_ON(!xe_bo_is_vram(bo))) 873 return -EINVAL; 874 875 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 876 if (ret) 877 return ret; 878 879 if (!bo->ttm.ttm) { 880 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 881 if (!bo->ttm.ttm) { 882 ret = -ENOMEM; 883 goto err_res_free; 884 } 885 } 886 887 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 888 if (ret) 889 goto err_res_free; 890 891 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 892 if (ret) 893 goto err_res_free; 894 895 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 896 if (ret) 897 goto err_res_free; 898 899 return 0; 900 901 err_res_free: 902 ttm_resource_free(&bo->ttm, &new_mem); 903 return ret; 904 } 905 906 /** 907 * xe_bo_restore_pinned() - Restore a pinned VRAM object 908 * @bo: The buffer object to move. 909 * 910 * On successful completion, the object memory will be moved back to VRAM. 911 * 912 * This is needed to for special handling of pinned VRAM object during 913 * suspend-resume. 914 * 915 * Return: 0 on success. Negative error code on failure. 916 */ 917 int xe_bo_restore_pinned(struct xe_bo *bo) 918 { 919 struct ttm_operation_ctx ctx = { 920 .interruptible = false, 921 }; 922 struct ttm_resource *new_mem; 923 int ret; 924 925 xe_bo_assert_held(bo); 926 927 if (WARN_ON(!bo->ttm.resource)) 928 return -EINVAL; 929 930 if (WARN_ON(!xe_bo_is_pinned(bo))) 931 return -EINVAL; 932 933 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 934 return -EINVAL; 935 936 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 937 if (ret) 938 return ret; 939 940 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 941 if (ret) 942 goto err_res_free; 943 944 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 945 if (ret) 946 goto err_res_free; 947 948 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 949 if (ret) 950 goto err_res_free; 951 952 return 0; 953 954 err_res_free: 955 ttm_resource_free(&bo->ttm, &new_mem); 956 return ret; 957 } 958 959 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 960 unsigned long page_offset) 961 { 962 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 963 struct xe_res_cursor cursor; 964 struct xe_mem_region *vram; 965 966 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 967 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 968 969 vram = res_to_mem_region(ttm_bo->resource); 970 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 971 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 972 } 973 974 static void __xe_bo_vunmap(struct xe_bo *bo); 975 976 /* 977 * TODO: Move this function to TTM so we don't rely on how TTM does its 978 * locking, thereby abusing TTM internals. 979 */ 980 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 981 { 982 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 983 bool locked; 984 985 xe_assert(xe, !kref_read(&ttm_bo->kref)); 986 987 /* 988 * We can typically only race with TTM trylocking under the 989 * lru_lock, which will immediately be unlocked again since 990 * the ttm_bo refcount is zero at this point. So trylocking *should* 991 * always succeed here, as long as we hold the lru lock. 992 */ 993 spin_lock(&ttm_bo->bdev->lru_lock); 994 locked = dma_resv_trylock(ttm_bo->base.resv); 995 spin_unlock(&ttm_bo->bdev->lru_lock); 996 xe_assert(xe, locked); 997 998 return locked; 999 } 1000 1001 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1002 { 1003 struct dma_resv_iter cursor; 1004 struct dma_fence *fence; 1005 struct dma_fence *replacement = NULL; 1006 struct xe_bo *bo; 1007 1008 if (!xe_bo_is_xe_bo(ttm_bo)) 1009 return; 1010 1011 bo = ttm_to_xe_bo(ttm_bo); 1012 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1013 1014 /* 1015 * Corner case where TTM fails to allocate memory and this BOs resv 1016 * still points the VMs resv 1017 */ 1018 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1019 return; 1020 1021 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1022 return; 1023 1024 /* 1025 * Scrub the preempt fences if any. The unbind fence is already 1026 * attached to the resv. 1027 * TODO: Don't do this for external bos once we scrub them after 1028 * unbind. 1029 */ 1030 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1031 DMA_RESV_USAGE_BOOKKEEP, fence) { 1032 if (xe_fence_is_xe_preempt(fence) && 1033 !dma_fence_is_signaled(fence)) { 1034 if (!replacement) 1035 replacement = dma_fence_get_stub(); 1036 1037 dma_resv_replace_fences(ttm_bo->base.resv, 1038 fence->context, 1039 replacement, 1040 DMA_RESV_USAGE_BOOKKEEP); 1041 } 1042 } 1043 dma_fence_put(replacement); 1044 1045 dma_resv_unlock(ttm_bo->base.resv); 1046 } 1047 1048 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1049 { 1050 if (!xe_bo_is_xe_bo(ttm_bo)) 1051 return; 1052 1053 /* 1054 * Object is idle and about to be destroyed. Release the 1055 * dma-buf attachment. 1056 */ 1057 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1058 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1059 struct xe_ttm_tt, ttm); 1060 1061 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1062 DMA_BIDIRECTIONAL); 1063 ttm_bo->sg = NULL; 1064 xe_tt->sg = NULL; 1065 } 1066 } 1067 1068 const struct ttm_device_funcs xe_ttm_funcs = { 1069 .ttm_tt_create = xe_ttm_tt_create, 1070 .ttm_tt_populate = xe_ttm_tt_populate, 1071 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1072 .ttm_tt_destroy = xe_ttm_tt_destroy, 1073 .evict_flags = xe_evict_flags, 1074 .move = xe_bo_move, 1075 .io_mem_reserve = xe_ttm_io_mem_reserve, 1076 .io_mem_pfn = xe_ttm_io_mem_pfn, 1077 .release_notify = xe_ttm_bo_release_notify, 1078 .eviction_valuable = ttm_bo_eviction_valuable, 1079 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1080 }; 1081 1082 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1083 { 1084 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1085 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1086 1087 if (bo->ttm.base.import_attach) 1088 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1089 drm_gem_object_release(&bo->ttm.base); 1090 1091 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1092 1093 if (bo->ggtt_node.size) 1094 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1095 1096 #ifdef CONFIG_PROC_FS 1097 if (bo->client) 1098 xe_drm_client_remove_bo(bo); 1099 #endif 1100 1101 if (bo->vm && xe_bo_is_user(bo)) 1102 xe_vm_put(bo->vm); 1103 1104 mutex_lock(&xe->mem_access.vram_userfault.lock); 1105 if (!list_empty(&bo->vram_userfault_link)) 1106 list_del(&bo->vram_userfault_link); 1107 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1108 1109 kfree(bo); 1110 } 1111 1112 static void xe_gem_object_free(struct drm_gem_object *obj) 1113 { 1114 /* Our BO reference counting scheme works as follows: 1115 * 1116 * The gem object kref is typically used throughout the driver, 1117 * and the gem object holds a ttm_buffer_object refcount, so 1118 * that when the last gem object reference is put, which is when 1119 * we end up in this function, we put also that ttm_buffer_object 1120 * refcount. Anything using gem interfaces is then no longer 1121 * allowed to access the object in a way that requires a gem 1122 * refcount, including locking the object. 1123 * 1124 * driver ttm callbacks is allowed to use the ttm_buffer_object 1125 * refcount directly if needed. 1126 */ 1127 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1128 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1129 } 1130 1131 static void xe_gem_object_close(struct drm_gem_object *obj, 1132 struct drm_file *file_priv) 1133 { 1134 struct xe_bo *bo = gem_to_xe_bo(obj); 1135 1136 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1137 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1138 1139 xe_bo_lock(bo, false); 1140 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1141 xe_bo_unlock(bo); 1142 } 1143 } 1144 1145 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1146 { 1147 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1148 struct drm_device *ddev = tbo->base.dev; 1149 struct xe_device *xe = to_xe_device(ddev); 1150 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1151 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1152 vm_fault_t ret; 1153 int idx; 1154 1155 if (needs_rpm) 1156 xe_pm_runtime_get(xe); 1157 1158 ret = ttm_bo_vm_reserve(tbo, vmf); 1159 if (ret) 1160 goto out; 1161 1162 if (drm_dev_enter(ddev, &idx)) { 1163 trace_xe_bo_cpu_fault(bo); 1164 1165 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1166 TTM_BO_VM_NUM_PREFAULT); 1167 drm_dev_exit(idx); 1168 } else { 1169 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1170 } 1171 1172 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1173 goto out; 1174 /* 1175 * ttm_bo_vm_reserve() already has dma_resv_lock. 1176 */ 1177 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1178 mutex_lock(&xe->mem_access.vram_userfault.lock); 1179 if (list_empty(&bo->vram_userfault_link)) 1180 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1181 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1182 } 1183 1184 dma_resv_unlock(tbo->base.resv); 1185 out: 1186 if (needs_rpm) 1187 xe_pm_runtime_put(xe); 1188 1189 return ret; 1190 } 1191 1192 static const struct vm_operations_struct xe_gem_vm_ops = { 1193 .fault = xe_gem_fault, 1194 .open = ttm_bo_vm_open, 1195 .close = ttm_bo_vm_close, 1196 .access = ttm_bo_vm_access 1197 }; 1198 1199 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1200 .free = xe_gem_object_free, 1201 .close = xe_gem_object_close, 1202 .mmap = drm_gem_ttm_mmap, 1203 .export = xe_gem_prime_export, 1204 .vm_ops = &xe_gem_vm_ops, 1205 }; 1206 1207 /** 1208 * xe_bo_alloc - Allocate storage for a struct xe_bo 1209 * 1210 * This funcition is intended to allocate storage to be used for input 1211 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1212 * created is needed before the call to __xe_bo_create_locked(). 1213 * If __xe_bo_create_locked ends up never to be called, then the 1214 * storage allocated with this function needs to be freed using 1215 * xe_bo_free(). 1216 * 1217 * Return: A pointer to an uninitialized struct xe_bo on success, 1218 * ERR_PTR(-ENOMEM) on error. 1219 */ 1220 struct xe_bo *xe_bo_alloc(void) 1221 { 1222 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1223 1224 if (!bo) 1225 return ERR_PTR(-ENOMEM); 1226 1227 return bo; 1228 } 1229 1230 /** 1231 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1232 * @bo: The buffer object storage. 1233 * 1234 * Refer to xe_bo_alloc() documentation for valid use-cases. 1235 */ 1236 void xe_bo_free(struct xe_bo *bo) 1237 { 1238 kfree(bo); 1239 } 1240 1241 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1242 struct xe_tile *tile, struct dma_resv *resv, 1243 struct ttm_lru_bulk_move *bulk, size_t size, 1244 u16 cpu_caching, enum ttm_bo_type type, 1245 u32 flags) 1246 { 1247 struct ttm_operation_ctx ctx = { 1248 .interruptible = true, 1249 .no_wait_gpu = false, 1250 }; 1251 struct ttm_placement *placement; 1252 uint32_t alignment; 1253 size_t aligned_size; 1254 int err; 1255 1256 /* Only kernel objects should set GT */ 1257 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1258 1259 if (XE_WARN_ON(!size)) { 1260 xe_bo_free(bo); 1261 return ERR_PTR(-EINVAL); 1262 } 1263 1264 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1265 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1266 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1267 (flags & XE_BO_NEEDS_64K))) { 1268 aligned_size = ALIGN(size, SZ_64K); 1269 if (type != ttm_bo_type_device) 1270 size = ALIGN(size, SZ_64K); 1271 flags |= XE_BO_FLAG_INTERNAL_64K; 1272 alignment = SZ_64K >> PAGE_SHIFT; 1273 1274 } else { 1275 aligned_size = ALIGN(size, SZ_4K); 1276 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1277 alignment = SZ_4K >> PAGE_SHIFT; 1278 } 1279 1280 if (type == ttm_bo_type_device && aligned_size != size) 1281 return ERR_PTR(-EINVAL); 1282 1283 if (!bo) { 1284 bo = xe_bo_alloc(); 1285 if (IS_ERR(bo)) 1286 return bo; 1287 } 1288 1289 bo->ccs_cleared = false; 1290 bo->tile = tile; 1291 bo->size = size; 1292 bo->flags = flags; 1293 bo->cpu_caching = cpu_caching; 1294 bo->ttm.base.funcs = &xe_gem_object_funcs; 1295 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1296 INIT_LIST_HEAD(&bo->pinned_link); 1297 #ifdef CONFIG_PROC_FS 1298 INIT_LIST_HEAD(&bo->client_link); 1299 #endif 1300 INIT_LIST_HEAD(&bo->vram_userfault_link); 1301 1302 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1303 1304 if (resv) { 1305 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1306 ctx.resv = resv; 1307 } 1308 1309 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1310 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1311 if (WARN_ON(err)) { 1312 xe_ttm_bo_destroy(&bo->ttm); 1313 return ERR_PTR(err); 1314 } 1315 } 1316 1317 /* Defer populating type_sg bos */ 1318 placement = (type == ttm_bo_type_sg || 1319 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1320 &bo->placement; 1321 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1322 placement, alignment, 1323 &ctx, NULL, resv, xe_ttm_bo_destroy); 1324 if (err) 1325 return ERR_PTR(err); 1326 1327 /* 1328 * The VRAM pages underneath are potentially still being accessed by the 1329 * GPU, as per async GPU clearing and async evictions. However TTM makes 1330 * sure to add any corresponding move/clear fences into the objects 1331 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1332 * 1333 * For KMD internal buffers we don't care about GPU clearing, however we 1334 * still need to handle async evictions, where the VRAM is still being 1335 * accessed by the GPU. Most internal callers are not expecting this, 1336 * since they are missing the required synchronisation before accessing 1337 * the memory. To keep things simple just sync wait any kernel fences 1338 * here, if the buffer is designated KMD internal. 1339 * 1340 * For normal userspace objects we should already have the required 1341 * pipelining or sync waiting elsewhere, since we already have to deal 1342 * with things like async GPU clearing. 1343 */ 1344 if (type == ttm_bo_type_kernel) { 1345 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1346 DMA_RESV_USAGE_KERNEL, 1347 ctx.interruptible, 1348 MAX_SCHEDULE_TIMEOUT); 1349 1350 if (timeout < 0) { 1351 if (!resv) 1352 dma_resv_unlock(bo->ttm.base.resv); 1353 xe_bo_put(bo); 1354 return ERR_PTR(timeout); 1355 } 1356 } 1357 1358 bo->created = true; 1359 if (bulk) 1360 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1361 else 1362 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1363 1364 return bo; 1365 } 1366 1367 static int __xe_bo_fixed_placement(struct xe_device *xe, 1368 struct xe_bo *bo, 1369 u32 flags, 1370 u64 start, u64 end, u64 size) 1371 { 1372 struct ttm_place *place = bo->placements; 1373 1374 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1375 return -EINVAL; 1376 1377 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1378 place->fpfn = start >> PAGE_SHIFT; 1379 place->lpfn = end >> PAGE_SHIFT; 1380 1381 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1382 case XE_BO_FLAG_VRAM0: 1383 place->mem_type = XE_PL_VRAM0; 1384 break; 1385 case XE_BO_FLAG_VRAM1: 1386 place->mem_type = XE_PL_VRAM1; 1387 break; 1388 case XE_BO_FLAG_STOLEN: 1389 place->mem_type = XE_PL_STOLEN; 1390 break; 1391 1392 default: 1393 /* 0 or multiple of the above set */ 1394 return -EINVAL; 1395 } 1396 1397 bo->placement = (struct ttm_placement) { 1398 .num_placement = 1, 1399 .placement = place, 1400 }; 1401 1402 return 0; 1403 } 1404 1405 static struct xe_bo * 1406 __xe_bo_create_locked(struct xe_device *xe, 1407 struct xe_tile *tile, struct xe_vm *vm, 1408 size_t size, u64 start, u64 end, 1409 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1410 { 1411 struct xe_bo *bo = NULL; 1412 int err; 1413 1414 if (vm) 1415 xe_vm_assert_held(vm); 1416 1417 if (start || end != ~0ULL) { 1418 bo = xe_bo_alloc(); 1419 if (IS_ERR(bo)) 1420 return bo; 1421 1422 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1423 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1424 if (err) { 1425 xe_bo_free(bo); 1426 return ERR_PTR(err); 1427 } 1428 } 1429 1430 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1431 vm && !xe_vm_in_fault_mode(vm) && 1432 flags & XE_BO_FLAG_USER ? 1433 &vm->lru_bulk_move : NULL, size, 1434 cpu_caching, type, flags); 1435 if (IS_ERR(bo)) 1436 return bo; 1437 1438 /* 1439 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1440 * to ensure the shared resv doesn't disappear under the bo, the bo 1441 * will keep a reference to the vm, and avoid circular references 1442 * by having all the vm's bo refereferences released at vm close 1443 * time. 1444 */ 1445 if (vm && xe_bo_is_user(bo)) 1446 xe_vm_get(vm); 1447 bo->vm = vm; 1448 1449 if (bo->flags & XE_BO_FLAG_GGTT) { 1450 if (!tile && flags & XE_BO_FLAG_STOLEN) 1451 tile = xe_device_get_root_tile(xe); 1452 1453 xe_assert(xe, tile); 1454 1455 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1456 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1457 start + bo->size, U64_MAX); 1458 } else { 1459 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1460 } 1461 if (err) 1462 goto err_unlock_put_bo; 1463 } 1464 1465 return bo; 1466 1467 err_unlock_put_bo: 1468 __xe_bo_unset_bulk_move(bo); 1469 xe_bo_unlock_vm_held(bo); 1470 xe_bo_put(bo); 1471 return ERR_PTR(err); 1472 } 1473 1474 struct xe_bo * 1475 xe_bo_create_locked_range(struct xe_device *xe, 1476 struct xe_tile *tile, struct xe_vm *vm, 1477 size_t size, u64 start, u64 end, 1478 enum ttm_bo_type type, u32 flags) 1479 { 1480 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1481 } 1482 1483 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1484 struct xe_vm *vm, size_t size, 1485 enum ttm_bo_type type, u32 flags) 1486 { 1487 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1488 } 1489 1490 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1491 struct xe_vm *vm, size_t size, 1492 u16 cpu_caching, 1493 enum ttm_bo_type type, 1494 u32 flags) 1495 { 1496 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1497 cpu_caching, type, 1498 flags | XE_BO_FLAG_USER); 1499 if (!IS_ERR(bo)) 1500 xe_bo_unlock_vm_held(bo); 1501 1502 return bo; 1503 } 1504 1505 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1506 struct xe_vm *vm, size_t size, 1507 enum ttm_bo_type type, u32 flags) 1508 { 1509 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1510 1511 if (!IS_ERR(bo)) 1512 xe_bo_unlock_vm_held(bo); 1513 1514 return bo; 1515 } 1516 1517 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1518 struct xe_vm *vm, 1519 size_t size, u64 offset, 1520 enum ttm_bo_type type, u32 flags) 1521 { 1522 struct xe_bo *bo; 1523 int err; 1524 u64 start = offset == ~0ull ? 0 : offset; 1525 u64 end = offset == ~0ull ? offset : start + size; 1526 1527 if (flags & XE_BO_FLAG_STOLEN && 1528 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1529 flags |= XE_BO_FLAG_GGTT; 1530 1531 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1532 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); 1533 if (IS_ERR(bo)) 1534 return bo; 1535 1536 err = xe_bo_pin(bo); 1537 if (err) 1538 goto err_put; 1539 1540 err = xe_bo_vmap(bo); 1541 if (err) 1542 goto err_unpin; 1543 1544 xe_bo_unlock_vm_held(bo); 1545 1546 return bo; 1547 1548 err_unpin: 1549 xe_bo_unpin(bo); 1550 err_put: 1551 xe_bo_unlock_vm_held(bo); 1552 xe_bo_put(bo); 1553 return ERR_PTR(err); 1554 } 1555 1556 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1557 struct xe_vm *vm, size_t size, 1558 enum ttm_bo_type type, u32 flags) 1559 { 1560 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1561 } 1562 1563 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1564 const void *data, size_t size, 1565 enum ttm_bo_type type, u32 flags) 1566 { 1567 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1568 ALIGN(size, PAGE_SIZE), 1569 type, flags); 1570 if (IS_ERR(bo)) 1571 return bo; 1572 1573 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1574 1575 return bo; 1576 } 1577 1578 static void __xe_bo_unpin_map_no_vm(void *arg) 1579 { 1580 xe_bo_unpin_map_no_vm(arg); 1581 } 1582 1583 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1584 size_t size, u32 flags) 1585 { 1586 struct xe_bo *bo; 1587 int ret; 1588 1589 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1590 if (IS_ERR(bo)) 1591 return bo; 1592 1593 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 1594 if (ret) 1595 return ERR_PTR(ret); 1596 1597 return bo; 1598 } 1599 1600 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1601 const void *data, size_t size, u32 flags) 1602 { 1603 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1604 1605 if (IS_ERR(bo)) 1606 return bo; 1607 1608 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1609 1610 return bo; 1611 } 1612 1613 /** 1614 * xe_managed_bo_reinit_in_vram 1615 * @xe: xe device 1616 * @tile: Tile where the new buffer will be created 1617 * @src: Managed buffer object allocated in system memory 1618 * 1619 * Replace a managed src buffer object allocated in system memory with a new 1620 * one allocated in vram, copying the data between them. 1621 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1622 * is responsible for making sure that any old references to it are updated. 1623 * 1624 * Returns 0 for success, negative error code otherwise. 1625 */ 1626 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1627 { 1628 struct xe_bo *bo; 1629 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1630 1631 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1632 1633 xe_assert(xe, IS_DGFX(xe)); 1634 xe_assert(xe, !(*src)->vmap.is_iomem); 1635 1636 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1637 (*src)->size, dst_flags); 1638 if (IS_ERR(bo)) 1639 return PTR_ERR(bo); 1640 1641 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 1642 *src = bo; 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * XXX: This is in the VM bind data path, likely should calculate this once and 1649 * store, with a recalculation if the BO is moved. 1650 */ 1651 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1652 { 1653 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1654 1655 if (res->mem_type == XE_PL_STOLEN) 1656 return xe_ttm_stolen_gpu_offset(xe); 1657 1658 return res_to_mem_region(res)->dpa_base; 1659 } 1660 1661 /** 1662 * xe_bo_pin_external - pin an external BO 1663 * @bo: buffer object to be pinned 1664 * 1665 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1666 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1667 * asserts and code to ensure evict / restore on suspend / resume. 1668 * 1669 * Returns 0 for success, negative error code otherwise. 1670 */ 1671 int xe_bo_pin_external(struct xe_bo *bo) 1672 { 1673 struct xe_device *xe = xe_bo_device(bo); 1674 int err; 1675 1676 xe_assert(xe, !bo->vm); 1677 xe_assert(xe, xe_bo_is_user(bo)); 1678 1679 if (!xe_bo_is_pinned(bo)) { 1680 err = xe_bo_validate(bo, NULL, false); 1681 if (err) 1682 return err; 1683 1684 if (xe_bo_is_vram(bo)) { 1685 spin_lock(&xe->pinned.lock); 1686 list_add_tail(&bo->pinned_link, 1687 &xe->pinned.external_vram); 1688 spin_unlock(&xe->pinned.lock); 1689 } 1690 } 1691 1692 ttm_bo_pin(&bo->ttm); 1693 1694 /* 1695 * FIXME: If we always use the reserve / unreserve functions for locking 1696 * we do not need this. 1697 */ 1698 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1699 1700 return 0; 1701 } 1702 1703 int xe_bo_pin(struct xe_bo *bo) 1704 { 1705 struct xe_device *xe = xe_bo_device(bo); 1706 int err; 1707 1708 /* We currently don't expect user BO to be pinned */ 1709 xe_assert(xe, !xe_bo_is_user(bo)); 1710 1711 /* Pinned object must be in GGTT or have pinned flag */ 1712 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1713 XE_BO_FLAG_GGTT)); 1714 1715 /* 1716 * No reason we can't support pinning imported dma-bufs we just don't 1717 * expect to pin an imported dma-buf. 1718 */ 1719 xe_assert(xe, !bo->ttm.base.import_attach); 1720 1721 /* We only expect at most 1 pin */ 1722 xe_assert(xe, !xe_bo_is_pinned(bo)); 1723 1724 err = xe_bo_validate(bo, NULL, false); 1725 if (err) 1726 return err; 1727 1728 /* 1729 * For pinned objects in on DGFX, which are also in vram, we expect 1730 * these to be in contiguous VRAM memory. Required eviction / restore 1731 * during suspend / resume (force restore to same physical address). 1732 */ 1733 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1734 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1735 struct ttm_place *place = &(bo->placements[0]); 1736 1737 if (mem_type_is_vram(place->mem_type)) { 1738 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1739 1740 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1741 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1742 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1743 1744 spin_lock(&xe->pinned.lock); 1745 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1746 spin_unlock(&xe->pinned.lock); 1747 } 1748 } 1749 1750 ttm_bo_pin(&bo->ttm); 1751 1752 /* 1753 * FIXME: If we always use the reserve / unreserve functions for locking 1754 * we do not need this. 1755 */ 1756 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1757 1758 return 0; 1759 } 1760 1761 /** 1762 * xe_bo_unpin_external - unpin an external BO 1763 * @bo: buffer object to be unpinned 1764 * 1765 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1766 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1767 * asserts and code to ensure evict / restore on suspend / resume. 1768 * 1769 * Returns 0 for success, negative error code otherwise. 1770 */ 1771 void xe_bo_unpin_external(struct xe_bo *bo) 1772 { 1773 struct xe_device *xe = xe_bo_device(bo); 1774 1775 xe_assert(xe, !bo->vm); 1776 xe_assert(xe, xe_bo_is_pinned(bo)); 1777 xe_assert(xe, xe_bo_is_user(bo)); 1778 1779 spin_lock(&xe->pinned.lock); 1780 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1781 list_del_init(&bo->pinned_link); 1782 spin_unlock(&xe->pinned.lock); 1783 1784 ttm_bo_unpin(&bo->ttm); 1785 1786 /* 1787 * FIXME: If we always use the reserve / unreserve functions for locking 1788 * we do not need this. 1789 */ 1790 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1791 } 1792 1793 void xe_bo_unpin(struct xe_bo *bo) 1794 { 1795 struct xe_device *xe = xe_bo_device(bo); 1796 1797 xe_assert(xe, !bo->ttm.base.import_attach); 1798 xe_assert(xe, xe_bo_is_pinned(bo)); 1799 1800 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1801 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1802 struct ttm_place *place = &(bo->placements[0]); 1803 1804 if (mem_type_is_vram(place->mem_type)) { 1805 spin_lock(&xe->pinned.lock); 1806 xe_assert(xe, !list_empty(&bo->pinned_link)); 1807 list_del_init(&bo->pinned_link); 1808 spin_unlock(&xe->pinned.lock); 1809 } 1810 } 1811 1812 ttm_bo_unpin(&bo->ttm); 1813 } 1814 1815 /** 1816 * xe_bo_validate() - Make sure the bo is in an allowed placement 1817 * @bo: The bo, 1818 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1819 * NULL. Used together with @allow_res_evict. 1820 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1821 * reservation object. 1822 * 1823 * Make sure the bo is in allowed placement, migrating it if necessary. If 1824 * needed, other bos will be evicted. If bos selected for eviction shares 1825 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1826 * set to true, otherwise they will be bypassed. 1827 * 1828 * Return: 0 on success, negative error code on failure. May return 1829 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1830 */ 1831 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1832 { 1833 struct ttm_operation_ctx ctx = { 1834 .interruptible = true, 1835 .no_wait_gpu = false, 1836 }; 1837 1838 if (vm) { 1839 lockdep_assert_held(&vm->lock); 1840 xe_vm_assert_held(vm); 1841 1842 ctx.allow_res_evict = allow_res_evict; 1843 ctx.resv = xe_vm_resv(vm); 1844 } 1845 1846 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1847 } 1848 1849 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1850 { 1851 if (bo->destroy == &xe_ttm_bo_destroy) 1852 return true; 1853 1854 return false; 1855 } 1856 1857 /* 1858 * Resolve a BO address. There is no assert to check if the proper lock is held 1859 * so it should only be used in cases where it is not fatal to get the wrong 1860 * address, such as printing debug information, but not in cases where memory is 1861 * written based on this result. 1862 */ 1863 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1864 { 1865 struct xe_device *xe = xe_bo_device(bo); 1866 struct xe_res_cursor cur; 1867 u64 page; 1868 1869 xe_assert(xe, page_size <= PAGE_SIZE); 1870 page = offset >> PAGE_SHIFT; 1871 offset &= (PAGE_SIZE - 1); 1872 1873 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1874 xe_assert(xe, bo->ttm.ttm); 1875 1876 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1877 page_size, &cur); 1878 return xe_res_dma(&cur) + offset; 1879 } else { 1880 struct xe_res_cursor cur; 1881 1882 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1883 page_size, &cur); 1884 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1885 } 1886 } 1887 1888 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1889 { 1890 if (!READ_ONCE(bo->ttm.pin_count)) 1891 xe_bo_assert_held(bo); 1892 return __xe_bo_addr(bo, offset, page_size); 1893 } 1894 1895 int xe_bo_vmap(struct xe_bo *bo) 1896 { 1897 void *virtual; 1898 bool is_iomem; 1899 int ret; 1900 1901 xe_bo_assert_held(bo); 1902 1903 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1904 return -EINVAL; 1905 1906 if (!iosys_map_is_null(&bo->vmap)) 1907 return 0; 1908 1909 /* 1910 * We use this more or less deprecated interface for now since 1911 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1912 * single page bos, which is done here. 1913 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1914 * to use struct iosys_map. 1915 */ 1916 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1917 if (ret) 1918 return ret; 1919 1920 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1921 if (is_iomem) 1922 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1923 else 1924 iosys_map_set_vaddr(&bo->vmap, virtual); 1925 1926 return 0; 1927 } 1928 1929 static void __xe_bo_vunmap(struct xe_bo *bo) 1930 { 1931 if (!iosys_map_is_null(&bo->vmap)) { 1932 iosys_map_clear(&bo->vmap); 1933 ttm_bo_kunmap(&bo->kmap); 1934 } 1935 } 1936 1937 void xe_bo_vunmap(struct xe_bo *bo) 1938 { 1939 xe_bo_assert_held(bo); 1940 __xe_bo_vunmap(bo); 1941 } 1942 1943 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1944 struct drm_file *file) 1945 { 1946 struct xe_device *xe = to_xe_device(dev); 1947 struct xe_file *xef = to_xe_file(file); 1948 struct drm_xe_gem_create *args = data; 1949 struct xe_vm *vm = NULL; 1950 struct xe_bo *bo; 1951 unsigned int bo_flags; 1952 u32 handle; 1953 int err; 1954 1955 if (XE_IOCTL_DBG(xe, args->extensions) || 1956 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1957 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1958 return -EINVAL; 1959 1960 /* at least one valid memory placement must be specified */ 1961 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1962 !args->placement)) 1963 return -EINVAL; 1964 1965 if (XE_IOCTL_DBG(xe, args->flags & 1966 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1967 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1968 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1969 return -EINVAL; 1970 1971 if (XE_IOCTL_DBG(xe, args->handle)) 1972 return -EINVAL; 1973 1974 if (XE_IOCTL_DBG(xe, !args->size)) 1975 return -EINVAL; 1976 1977 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1978 return -EINVAL; 1979 1980 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1981 return -EINVAL; 1982 1983 bo_flags = 0; 1984 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1985 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 1986 1987 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1988 bo_flags |= XE_BO_FLAG_SCANOUT; 1989 1990 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 1991 1992 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1993 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 1994 return -EINVAL; 1995 1996 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 1997 } 1998 1999 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2000 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2001 return -EINVAL; 2002 2003 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2004 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2005 return -EINVAL; 2006 2007 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2008 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2009 return -EINVAL; 2010 2011 if (args->vm_id) { 2012 vm = xe_vm_lookup(xef, args->vm_id); 2013 if (XE_IOCTL_DBG(xe, !vm)) 2014 return -ENOENT; 2015 err = xe_vm_lock(vm, true); 2016 if (err) 2017 goto out_vm; 2018 } 2019 2020 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2021 ttm_bo_type_device, bo_flags); 2022 2023 if (vm) 2024 xe_vm_unlock(vm); 2025 2026 if (IS_ERR(bo)) { 2027 err = PTR_ERR(bo); 2028 goto out_vm; 2029 } 2030 2031 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2032 if (err) 2033 goto out_bulk; 2034 2035 args->handle = handle; 2036 goto out_put; 2037 2038 out_bulk: 2039 if (vm && !xe_vm_in_fault_mode(vm)) { 2040 xe_vm_lock(vm, false); 2041 __xe_bo_unset_bulk_move(bo); 2042 xe_vm_unlock(vm); 2043 } 2044 out_put: 2045 xe_bo_put(bo); 2046 out_vm: 2047 if (vm) 2048 xe_vm_put(vm); 2049 2050 return err; 2051 } 2052 2053 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2054 struct drm_file *file) 2055 { 2056 struct xe_device *xe = to_xe_device(dev); 2057 struct drm_xe_gem_mmap_offset *args = data; 2058 struct drm_gem_object *gem_obj; 2059 2060 if (XE_IOCTL_DBG(xe, args->extensions) || 2061 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2062 return -EINVAL; 2063 2064 if (XE_IOCTL_DBG(xe, args->flags)) 2065 return -EINVAL; 2066 2067 gem_obj = drm_gem_object_lookup(file, args->handle); 2068 if (XE_IOCTL_DBG(xe, !gem_obj)) 2069 return -ENOENT; 2070 2071 /* The mmap offset was set up at BO allocation time. */ 2072 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2073 2074 xe_bo_put(gem_to_xe_bo(gem_obj)); 2075 return 0; 2076 } 2077 2078 /** 2079 * xe_bo_lock() - Lock the buffer object's dma_resv object 2080 * @bo: The struct xe_bo whose lock is to be taken 2081 * @intr: Whether to perform any wait interruptible 2082 * 2083 * Locks the buffer object's dma_resv object. If the buffer object is 2084 * pointing to a shared dma_resv object, that shared lock is locked. 2085 * 2086 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2087 * contended lock was interrupted. If @intr is set to false, the 2088 * function always returns 0. 2089 */ 2090 int xe_bo_lock(struct xe_bo *bo, bool intr) 2091 { 2092 if (intr) 2093 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2094 2095 dma_resv_lock(bo->ttm.base.resv, NULL); 2096 2097 return 0; 2098 } 2099 2100 /** 2101 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2102 * @bo: The struct xe_bo whose lock is to be released. 2103 * 2104 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2105 */ 2106 void xe_bo_unlock(struct xe_bo *bo) 2107 { 2108 dma_resv_unlock(bo->ttm.base.resv); 2109 } 2110 2111 /** 2112 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2113 * @bo: The buffer object to migrate 2114 * @mem_type: The TTM memory type intended to migrate to 2115 * 2116 * Check whether the buffer object supports migration to the 2117 * given memory type. Note that pinning may affect the ability to migrate as 2118 * returned by this function. 2119 * 2120 * This function is primarily intended as a helper for checking the 2121 * possibility to migrate buffer objects and can be called without 2122 * the object lock held. 2123 * 2124 * Return: true if migration is possible, false otherwise. 2125 */ 2126 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2127 { 2128 unsigned int cur_place; 2129 2130 if (bo->ttm.type == ttm_bo_type_kernel) 2131 return true; 2132 2133 if (bo->ttm.type == ttm_bo_type_sg) 2134 return false; 2135 2136 for (cur_place = 0; cur_place < bo->placement.num_placement; 2137 cur_place++) { 2138 if (bo->placements[cur_place].mem_type == mem_type) 2139 return true; 2140 } 2141 2142 return false; 2143 } 2144 2145 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2146 { 2147 memset(place, 0, sizeof(*place)); 2148 place->mem_type = mem_type; 2149 } 2150 2151 /** 2152 * xe_bo_migrate - Migrate an object to the desired region id 2153 * @bo: The buffer object to migrate. 2154 * @mem_type: The TTM region type to migrate to. 2155 * 2156 * Attempt to migrate the buffer object to the desired memory region. The 2157 * buffer object may not be pinned, and must be locked. 2158 * On successful completion, the object memory type will be updated, 2159 * but an async migration task may not have completed yet, and to 2160 * accomplish that, the object's kernel fences must be signaled with 2161 * the object lock held. 2162 * 2163 * Return: 0 on success. Negative error code on failure. In particular may 2164 * return -EINTR or -ERESTARTSYS if signal pending. 2165 */ 2166 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2167 { 2168 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2169 struct ttm_operation_ctx ctx = { 2170 .interruptible = true, 2171 .no_wait_gpu = false, 2172 }; 2173 struct ttm_placement placement; 2174 struct ttm_place requested; 2175 2176 xe_bo_assert_held(bo); 2177 2178 if (bo->ttm.resource->mem_type == mem_type) 2179 return 0; 2180 2181 if (xe_bo_is_pinned(bo)) 2182 return -EBUSY; 2183 2184 if (!xe_bo_can_migrate(bo, mem_type)) 2185 return -EINVAL; 2186 2187 xe_place_from_ttm_type(mem_type, &requested); 2188 placement.num_placement = 1; 2189 placement.placement = &requested; 2190 2191 /* 2192 * Stolen needs to be handled like below VRAM handling if we ever need 2193 * to support it. 2194 */ 2195 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2196 2197 if (mem_type_is_vram(mem_type)) { 2198 u32 c = 0; 2199 2200 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2201 } 2202 2203 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2204 } 2205 2206 /** 2207 * xe_bo_evict - Evict an object to evict placement 2208 * @bo: The buffer object to migrate. 2209 * @force_alloc: Set force_alloc in ttm_operation_ctx 2210 * 2211 * On successful completion, the object memory will be moved to evict 2212 * placement. Ths function blocks until the object has been fully moved. 2213 * 2214 * Return: 0 on success. Negative error code on failure. 2215 */ 2216 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2217 { 2218 struct ttm_operation_ctx ctx = { 2219 .interruptible = false, 2220 .no_wait_gpu = false, 2221 .force_alloc = force_alloc, 2222 }; 2223 struct ttm_placement placement; 2224 int ret; 2225 2226 xe_evict_flags(&bo->ttm, &placement); 2227 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2228 if (ret) 2229 return ret; 2230 2231 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2232 false, MAX_SCHEDULE_TIMEOUT); 2233 2234 return 0; 2235 } 2236 2237 /** 2238 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2239 * placed in system memory. 2240 * @bo: The xe_bo 2241 * 2242 * Return: true if extra pages need to be allocated, false otherwise. 2243 */ 2244 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2245 { 2246 struct xe_device *xe = xe_bo_device(bo); 2247 2248 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2249 return false; 2250 2251 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2252 return false; 2253 2254 /* On discrete GPUs, if the GPU can access this buffer from 2255 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2256 * can't be used since there's no CCS storage associated with 2257 * non-VRAM addresses. 2258 */ 2259 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2260 return false; 2261 2262 return true; 2263 } 2264 2265 /** 2266 * __xe_bo_release_dummy() - Dummy kref release function 2267 * @kref: The embedded struct kref. 2268 * 2269 * Dummy release function for xe_bo_put_deferred(). Keep off. 2270 */ 2271 void __xe_bo_release_dummy(struct kref *kref) 2272 { 2273 } 2274 2275 /** 2276 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2277 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2278 * 2279 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2280 * The @deferred list can be either an onstack local list or a global 2281 * shared list used by a workqueue. 2282 */ 2283 void xe_bo_put_commit(struct llist_head *deferred) 2284 { 2285 struct llist_node *freed; 2286 struct xe_bo *bo, *next; 2287 2288 if (!deferred) 2289 return; 2290 2291 freed = llist_del_all(deferred); 2292 if (!freed) 2293 return; 2294 2295 llist_for_each_entry_safe(bo, next, freed, freed) 2296 drm_gem_object_free(&bo->ttm.base.refcount); 2297 } 2298 2299 /** 2300 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2301 * @file_priv: ... 2302 * @dev: ... 2303 * @args: ... 2304 * 2305 * See dumb_create() hook in include/drm/drm_drv.h 2306 * 2307 * Return: ... 2308 */ 2309 int xe_bo_dumb_create(struct drm_file *file_priv, 2310 struct drm_device *dev, 2311 struct drm_mode_create_dumb *args) 2312 { 2313 struct xe_device *xe = to_xe_device(dev); 2314 struct xe_bo *bo; 2315 uint32_t handle; 2316 int cpp = DIV_ROUND_UP(args->bpp, 8); 2317 int err; 2318 u32 page_size = max_t(u32, PAGE_SIZE, 2319 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2320 2321 args->pitch = ALIGN(args->width * cpp, 64); 2322 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2323 page_size); 2324 2325 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2326 DRM_XE_GEM_CPU_CACHING_WC, 2327 ttm_bo_type_device, 2328 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2329 XE_BO_FLAG_SCANOUT | 2330 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2331 if (IS_ERR(bo)) 2332 return PTR_ERR(bo); 2333 2334 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2335 /* drop reference from allocate - handle holds it now */ 2336 drm_gem_object_put(&bo->ttm.base); 2337 if (!err) 2338 args->handle = handle; 2339 return err; 2340 } 2341 2342 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2343 { 2344 struct ttm_buffer_object *tbo = &bo->ttm; 2345 struct ttm_device *bdev = tbo->bdev; 2346 2347 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2348 2349 list_del_init(&bo->vram_userfault_link); 2350 } 2351 2352 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2353 #include "tests/xe_bo.c" 2354 #endif 2355