1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <uapi/drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace_bo.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 167 { 168 struct ttm_place place = { .mem_type = mem_type }; 169 struct xe_mem_region *vram; 170 u64 io_size; 171 172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 173 174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 175 xe_assert(xe, vram && vram->usable_size); 176 io_size = vram->io_size; 177 178 /* 179 * For eviction / restore on suspend / resume objects 180 * pinned in VRAM must be contiguous 181 */ 182 if (bo_flags & (XE_BO_FLAG_PINNED | 183 XE_BO_FLAG_GGTT)) 184 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 185 186 if (io_size < vram->usable_size) { 187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 188 place.fpfn = 0; 189 place.lpfn = io_size >> PAGE_SHIFT; 190 } else { 191 place.flags |= TTM_PL_FLAG_TOPDOWN; 192 } 193 } 194 places[*c] = place; 195 *c += 1; 196 } 197 198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 199 u32 bo_flags, u32 *c) 200 { 201 if (bo_flags & XE_BO_FLAG_VRAM0) 202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 203 if (bo_flags & XE_BO_FLAG_VRAM1) 204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 205 } 206 207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 208 u32 bo_flags, u32 *c) 209 { 210 if (bo_flags & XE_BO_FLAG_STOLEN) { 211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 212 213 bo->placements[*c] = (struct ttm_place) { 214 .mem_type = XE_PL_STOLEN, 215 .flags = bo_flags & (XE_BO_FLAG_PINNED | 216 XE_BO_FLAG_GGTT) ? 217 TTM_PL_FLAG_CONTIGUOUS : 0, 218 }; 219 *c += 1; 220 } 221 } 222 223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 224 u32 bo_flags) 225 { 226 u32 c = 0; 227 228 try_add_vram(xe, bo, bo_flags, &c); 229 try_add_system(xe, bo, bo_flags, &c); 230 try_add_stolen(xe, bo, bo_flags, &c); 231 232 if (!c) 233 return -EINVAL; 234 235 bo->placement = (struct ttm_placement) { 236 .num_placement = c, 237 .placement = bo->placements, 238 }; 239 240 return 0; 241 } 242 243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 244 u32 bo_flags) 245 { 246 xe_bo_assert_held(bo); 247 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 248 } 249 250 static void xe_evict_flags(struct ttm_buffer_object *tbo, 251 struct ttm_placement *placement) 252 { 253 if (!xe_bo_is_xe_bo(tbo)) { 254 /* Don't handle scatter gather BOs */ 255 if (tbo->type == ttm_bo_type_sg) { 256 placement->num_placement = 0; 257 return; 258 } 259 260 *placement = sys_placement; 261 return; 262 } 263 264 /* 265 * For xe, sg bos that are evicted to system just triggers a 266 * rebind of the sg list upon subsequent validation to XE_PL_TT. 267 */ 268 switch (tbo->resource->mem_type) { 269 case XE_PL_VRAM0: 270 case XE_PL_VRAM1: 271 case XE_PL_STOLEN: 272 *placement = tt_placement; 273 break; 274 case XE_PL_TT: 275 default: 276 *placement = sys_placement; 277 break; 278 } 279 } 280 281 struct xe_ttm_tt { 282 struct ttm_tt ttm; 283 struct device *dev; 284 struct sg_table sgt; 285 struct sg_table *sg; 286 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 287 bool purgeable; 288 }; 289 290 static int xe_tt_map_sg(struct ttm_tt *tt) 291 { 292 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 293 unsigned long num_pages = tt->num_pages; 294 int ret; 295 296 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 297 298 if (xe_tt->sg) 299 return 0; 300 301 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 302 num_pages, 0, 303 (u64)num_pages << PAGE_SHIFT, 304 xe_sg_segment_size(xe_tt->dev), 305 GFP_KERNEL); 306 if (ret) 307 return ret; 308 309 xe_tt->sg = &xe_tt->sgt; 310 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 311 DMA_ATTR_SKIP_CPU_SYNC); 312 if (ret) { 313 sg_free_table(xe_tt->sg); 314 xe_tt->sg = NULL; 315 return ret; 316 } 317 318 return 0; 319 } 320 321 static void xe_tt_unmap_sg(struct ttm_tt *tt) 322 { 323 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 324 325 if (xe_tt->sg) { 326 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 327 DMA_BIDIRECTIONAL, 0); 328 sg_free_table(xe_tt->sg); 329 xe_tt->sg = NULL; 330 } 331 } 332 333 struct sg_table *xe_bo_sg(struct xe_bo *bo) 334 { 335 struct ttm_tt *tt = bo->ttm.ttm; 336 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 337 338 return xe_tt->sg; 339 } 340 341 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 342 u32 page_flags) 343 { 344 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 345 struct xe_device *xe = xe_bo_device(bo); 346 struct xe_ttm_tt *tt; 347 unsigned long extra_pages; 348 enum ttm_caching caching = ttm_cached; 349 int err; 350 351 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 352 if (!tt) 353 return NULL; 354 355 tt->dev = xe->drm.dev; 356 357 extra_pages = 0; 358 if (xe_bo_needs_ccs_pages(bo)) 359 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 360 PAGE_SIZE); 361 362 /* 363 * DGFX system memory is always WB / ttm_cached, since 364 * other caching modes are only supported on x86. DGFX 365 * GPU system memory accesses are always coherent with the 366 * CPU. 367 */ 368 if (!IS_DGFX(xe)) { 369 switch (bo->cpu_caching) { 370 case DRM_XE_GEM_CPU_CACHING_WC: 371 caching = ttm_write_combined; 372 break; 373 default: 374 caching = ttm_cached; 375 break; 376 } 377 378 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 379 380 /* 381 * Display scanout is always non-coherent with the CPU cache. 382 * 383 * For Xe_LPG and beyond, PPGTT PTE lookups are also 384 * non-coherent and require a CPU:WC mapping. 385 */ 386 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 387 (xe->info.graphics_verx100 >= 1270 && 388 bo->flags & XE_BO_FLAG_PAGETABLE)) 389 caching = ttm_write_combined; 390 } 391 392 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 393 /* 394 * Valid only for internally-created buffers only, for 395 * which cpu_caching is never initialized. 396 */ 397 xe_assert(xe, bo->cpu_caching == 0); 398 caching = ttm_uncached; 399 } 400 401 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 402 if (err) { 403 kfree(tt); 404 return NULL; 405 } 406 407 return &tt->ttm; 408 } 409 410 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 411 struct ttm_operation_ctx *ctx) 412 { 413 int err; 414 415 /* 416 * dma-bufs are not populated with pages, and the dma- 417 * addresses are set up when moved to XE_PL_TT. 418 */ 419 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 420 return 0; 421 422 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 423 if (err) 424 return err; 425 426 return err; 427 } 428 429 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 430 { 431 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 432 return; 433 434 xe_tt_unmap_sg(tt); 435 436 return ttm_pool_free(&ttm_dev->pool, tt); 437 } 438 439 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 440 { 441 ttm_tt_fini(tt); 442 kfree(tt); 443 } 444 445 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 446 struct ttm_resource *mem) 447 { 448 struct xe_device *xe = ttm_to_xe_device(bdev); 449 450 switch (mem->mem_type) { 451 case XE_PL_SYSTEM: 452 case XE_PL_TT: 453 return 0; 454 case XE_PL_VRAM0: 455 case XE_PL_VRAM1: { 456 struct xe_ttm_vram_mgr_resource *vres = 457 to_xe_ttm_vram_mgr_resource(mem); 458 struct xe_mem_region *vram = res_to_mem_region(mem); 459 460 if (vres->used_visible_size < mem->size) 461 return -EINVAL; 462 463 mem->bus.offset = mem->start << PAGE_SHIFT; 464 465 if (vram->mapping && 466 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 467 mem->bus.addr = (u8 __force *)vram->mapping + 468 mem->bus.offset; 469 470 mem->bus.offset += vram->io_start; 471 mem->bus.is_iomem = true; 472 473 #if !IS_ENABLED(CONFIG_X86) 474 mem->bus.caching = ttm_write_combined; 475 #endif 476 return 0; 477 } case XE_PL_STOLEN: 478 return xe_ttm_stolen_io_mem_reserve(xe, mem); 479 default: 480 return -EINVAL; 481 } 482 } 483 484 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 485 const struct ttm_operation_ctx *ctx) 486 { 487 struct dma_resv_iter cursor; 488 struct dma_fence *fence; 489 struct drm_gem_object *obj = &bo->ttm.base; 490 struct drm_gpuvm_bo *vm_bo; 491 bool idle = false; 492 int ret = 0; 493 494 dma_resv_assert_held(bo->ttm.base.resv); 495 496 if (!list_empty(&bo->ttm.base.gpuva.list)) { 497 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 498 DMA_RESV_USAGE_BOOKKEEP); 499 dma_resv_for_each_fence_unlocked(&cursor, fence) 500 dma_fence_enable_sw_signaling(fence); 501 dma_resv_iter_end(&cursor); 502 } 503 504 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 505 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 506 struct drm_gpuva *gpuva; 507 508 if (!xe_vm_in_fault_mode(vm)) { 509 drm_gpuvm_bo_evict(vm_bo, true); 510 continue; 511 } 512 513 if (!idle) { 514 long timeout; 515 516 if (ctx->no_wait_gpu && 517 !dma_resv_test_signaled(bo->ttm.base.resv, 518 DMA_RESV_USAGE_BOOKKEEP)) 519 return -EBUSY; 520 521 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 522 DMA_RESV_USAGE_BOOKKEEP, 523 ctx->interruptible, 524 MAX_SCHEDULE_TIMEOUT); 525 if (!timeout) 526 return -ETIME; 527 if (timeout < 0) 528 return timeout; 529 530 idle = true; 531 } 532 533 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 534 struct xe_vma *vma = gpuva_to_vma(gpuva); 535 536 trace_xe_vma_evict(vma); 537 ret = xe_vm_invalidate_vma(vma); 538 if (XE_WARN_ON(ret)) 539 return ret; 540 } 541 } 542 543 return ret; 544 } 545 546 /* 547 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 548 * Note that unmapping the attachment is deferred to the next 549 * map_attachment time, or to bo destroy (after idling) whichever comes first. 550 * This is to avoid syncing before unmap_attachment(), assuming that the 551 * caller relies on idling the reservation object before moving the 552 * backing store out. Should that assumption not hold, then we will be able 553 * to unconditionally call unmap_attachment() when moving out to system. 554 */ 555 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 556 struct ttm_resource *new_res) 557 { 558 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 559 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 560 ttm); 561 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 562 struct sg_table *sg; 563 564 xe_assert(xe, attach); 565 xe_assert(xe, ttm_bo->ttm); 566 567 if (new_res->mem_type == XE_PL_SYSTEM) 568 goto out; 569 570 if (ttm_bo->sg) { 571 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 572 ttm_bo->sg = NULL; 573 } 574 575 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 576 if (IS_ERR(sg)) 577 return PTR_ERR(sg); 578 579 ttm_bo->sg = sg; 580 xe_tt->sg = sg; 581 582 out: 583 ttm_bo_move_null(ttm_bo, new_res); 584 585 return 0; 586 } 587 588 /** 589 * xe_bo_move_notify - Notify subsystems of a pending move 590 * @bo: The buffer object 591 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 592 * 593 * This function notifies subsystems of an upcoming buffer move. 594 * Upon receiving such a notification, subsystems should schedule 595 * halting access to the underlying pages and optionally add a fence 596 * to the buffer object's dma_resv object, that signals when access is 597 * stopped. The caller will wait on all dma_resv fences before 598 * starting the move. 599 * 600 * A subsystem may commence access to the object after obtaining 601 * bindings to the new backing memory under the object lock. 602 * 603 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 604 * negative error code on error. 605 */ 606 static int xe_bo_move_notify(struct xe_bo *bo, 607 const struct ttm_operation_ctx *ctx) 608 { 609 struct ttm_buffer_object *ttm_bo = &bo->ttm; 610 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 611 struct ttm_resource *old_mem = ttm_bo->resource; 612 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 613 int ret; 614 615 /* 616 * If this starts to call into many components, consider 617 * using a notification chain here. 618 */ 619 620 if (xe_bo_is_pinned(bo)) 621 return -EINVAL; 622 623 xe_bo_vunmap(bo); 624 ret = xe_bo_trigger_rebind(xe, bo, ctx); 625 if (ret) 626 return ret; 627 628 /* Don't call move_notify() for imported dma-bufs. */ 629 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 630 dma_buf_move_notify(ttm_bo->base.dma_buf); 631 632 /* 633 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 634 * so if we moved from VRAM make sure to unlink this from the userfault 635 * tracking. 636 */ 637 if (mem_type_is_vram(old_mem_type)) { 638 mutex_lock(&xe->mem_access.vram_userfault.lock); 639 if (!list_empty(&bo->vram_userfault_link)) 640 list_del_init(&bo->vram_userfault_link); 641 mutex_unlock(&xe->mem_access.vram_userfault.lock); 642 } 643 644 return 0; 645 } 646 647 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 648 struct ttm_operation_ctx *ctx, 649 struct ttm_resource *new_mem, 650 struct ttm_place *hop) 651 { 652 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 653 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 654 struct ttm_resource *old_mem = ttm_bo->resource; 655 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 656 struct ttm_tt *ttm = ttm_bo->ttm; 657 struct xe_migrate *migrate = NULL; 658 struct dma_fence *fence; 659 bool move_lacks_source; 660 bool tt_has_data; 661 bool needs_clear; 662 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 663 ttm && ttm_tt_is_populated(ttm)) ? true : false; 664 int ret = 0; 665 666 /* Bo creation path, moving to system or TT. */ 667 if ((!old_mem && ttm) && !handle_system_ccs) { 668 if (new_mem->mem_type == XE_PL_TT) 669 ret = xe_tt_map_sg(ttm); 670 if (!ret) 671 ttm_bo_move_null(ttm_bo, new_mem); 672 goto out; 673 } 674 675 if (ttm_bo->type == ttm_bo_type_sg) { 676 ret = xe_bo_move_notify(bo, ctx); 677 if (!ret) 678 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 679 return ret; 680 } 681 682 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 683 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 684 685 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 686 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 687 688 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 689 (!ttm && ttm_bo->type == ttm_bo_type_device); 690 691 if (new_mem->mem_type == XE_PL_TT) { 692 ret = xe_tt_map_sg(ttm); 693 if (ret) 694 goto out; 695 } 696 697 if ((move_lacks_source && !needs_clear)) { 698 ttm_bo_move_null(ttm_bo, new_mem); 699 goto out; 700 } 701 702 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 703 ttm_bo_move_null(ttm_bo, new_mem); 704 goto out; 705 } 706 707 /* 708 * Failed multi-hop where the old_mem is still marked as 709 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 710 */ 711 if (old_mem_type == XE_PL_TT && 712 new_mem->mem_type == XE_PL_TT) { 713 ttm_bo_move_null(ttm_bo, new_mem); 714 goto out; 715 } 716 717 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 718 ret = xe_bo_move_notify(bo, ctx); 719 if (ret) 720 goto out; 721 } 722 723 if (old_mem_type == XE_PL_TT && 724 new_mem->mem_type == XE_PL_SYSTEM) { 725 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 726 DMA_RESV_USAGE_BOOKKEEP, 727 false, 728 MAX_SCHEDULE_TIMEOUT); 729 if (timeout < 0) { 730 ret = timeout; 731 goto out; 732 } 733 734 if (!handle_system_ccs) { 735 ttm_bo_move_null(ttm_bo, new_mem); 736 goto out; 737 } 738 } 739 740 if (!move_lacks_source && 741 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 742 (mem_type_is_vram(old_mem_type) && 743 new_mem->mem_type == XE_PL_SYSTEM))) { 744 hop->fpfn = 0; 745 hop->lpfn = 0; 746 hop->mem_type = XE_PL_TT; 747 hop->flags = TTM_PL_FLAG_TEMPORARY; 748 ret = -EMULTIHOP; 749 goto out; 750 } 751 752 if (bo->tile) 753 migrate = bo->tile->migrate; 754 else if (resource_is_vram(new_mem)) 755 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 756 else if (mem_type_is_vram(old_mem_type)) 757 migrate = mem_type_to_migrate(xe, old_mem_type); 758 else 759 migrate = xe->tiles[0].migrate; 760 761 xe_assert(xe, migrate); 762 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 763 if (xe_rpm_reclaim_safe(xe)) { 764 /* 765 * We might be called through swapout in the validation path of 766 * another TTM device, so acquire rpm here. 767 */ 768 xe_pm_runtime_get(xe); 769 } else { 770 drm_WARN_ON(&xe->drm, handle_system_ccs); 771 xe_pm_runtime_get_noresume(xe); 772 } 773 774 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 775 /* 776 * Kernel memory that is pinned should only be moved on suspend 777 * / resume, some of the pinned memory is required for the 778 * device to resume / use the GPU to move other evicted memory 779 * (user memory) around. This likely could be optimized a bit 780 * futher where we find the minimum set of pinned memory 781 * required for resume but for simplity doing a memcpy for all 782 * pinned memory. 783 */ 784 ret = xe_bo_vmap(bo); 785 if (!ret) { 786 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 787 788 /* Create a new VMAP once kernel BO back in VRAM */ 789 if (!ret && resource_is_vram(new_mem)) { 790 struct xe_mem_region *vram = res_to_mem_region(new_mem); 791 void __iomem *new_addr = vram->mapping + 792 (new_mem->start << PAGE_SHIFT); 793 794 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 795 ret = -EINVAL; 796 xe_pm_runtime_put(xe); 797 goto out; 798 } 799 800 xe_assert(xe, new_mem->start == 801 bo->placements->fpfn); 802 803 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 804 } 805 } 806 } else { 807 if (move_lacks_source) { 808 u32 flags = 0; 809 810 if (mem_type_is_vram(new_mem->mem_type)) 811 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 812 else if (handle_system_ccs) 813 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 814 815 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 816 } 817 else 818 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 819 new_mem, handle_system_ccs); 820 if (IS_ERR(fence)) { 821 ret = PTR_ERR(fence); 822 xe_pm_runtime_put(xe); 823 goto out; 824 } 825 if (!move_lacks_source) { 826 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 827 true, new_mem); 828 if (ret) { 829 dma_fence_wait(fence, false); 830 ttm_bo_move_null(ttm_bo, new_mem); 831 ret = 0; 832 } 833 } else { 834 /* 835 * ttm_bo_move_accel_cleanup() may blow up if 836 * bo->resource == NULL, so just attach the 837 * fence and set the new resource. 838 */ 839 dma_resv_add_fence(ttm_bo->base.resv, fence, 840 DMA_RESV_USAGE_KERNEL); 841 ttm_bo_move_null(ttm_bo, new_mem); 842 } 843 844 dma_fence_put(fence); 845 } 846 847 xe_pm_runtime_put(xe); 848 849 out: 850 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 851 ttm_bo->ttm) { 852 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 853 DMA_RESV_USAGE_KERNEL, 854 false, 855 MAX_SCHEDULE_TIMEOUT); 856 if (timeout < 0) 857 ret = timeout; 858 859 xe_tt_unmap_sg(ttm_bo->ttm); 860 } 861 862 return ret; 863 } 864 865 /** 866 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 867 * @bo: The buffer object to move. 868 * 869 * On successful completion, the object memory will be moved to sytem memory. 870 * 871 * This is needed to for special handling of pinned VRAM object during 872 * suspend-resume. 873 * 874 * Return: 0 on success. Negative error code on failure. 875 */ 876 int xe_bo_evict_pinned(struct xe_bo *bo) 877 { 878 struct ttm_place place = { 879 .mem_type = XE_PL_TT, 880 }; 881 struct ttm_placement placement = { 882 .placement = &place, 883 .num_placement = 1, 884 }; 885 struct ttm_operation_ctx ctx = { 886 .interruptible = false, 887 }; 888 struct ttm_resource *new_mem; 889 int ret; 890 891 xe_bo_assert_held(bo); 892 893 if (WARN_ON(!bo->ttm.resource)) 894 return -EINVAL; 895 896 if (WARN_ON(!xe_bo_is_pinned(bo))) 897 return -EINVAL; 898 899 if (!xe_bo_is_vram(bo)) 900 return 0; 901 902 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 903 if (ret) 904 return ret; 905 906 if (!bo->ttm.ttm) { 907 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 908 if (!bo->ttm.ttm) { 909 ret = -ENOMEM; 910 goto err_res_free; 911 } 912 } 913 914 ret = ttm_bo_populate(&bo->ttm, &ctx); 915 if (ret) 916 goto err_res_free; 917 918 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 919 if (ret) 920 goto err_res_free; 921 922 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 923 if (ret) 924 goto err_res_free; 925 926 return 0; 927 928 err_res_free: 929 ttm_resource_free(&bo->ttm, &new_mem); 930 return ret; 931 } 932 933 /** 934 * xe_bo_restore_pinned() - Restore a pinned VRAM object 935 * @bo: The buffer object to move. 936 * 937 * On successful completion, the object memory will be moved back to VRAM. 938 * 939 * This is needed to for special handling of pinned VRAM object during 940 * suspend-resume. 941 * 942 * Return: 0 on success. Negative error code on failure. 943 */ 944 int xe_bo_restore_pinned(struct xe_bo *bo) 945 { 946 struct ttm_operation_ctx ctx = { 947 .interruptible = false, 948 }; 949 struct ttm_resource *new_mem; 950 struct ttm_place *place = &bo->placements[0]; 951 int ret; 952 953 xe_bo_assert_held(bo); 954 955 if (WARN_ON(!bo->ttm.resource)) 956 return -EINVAL; 957 958 if (WARN_ON(!xe_bo_is_pinned(bo))) 959 return -EINVAL; 960 961 if (WARN_ON(xe_bo_is_vram(bo))) 962 return -EINVAL; 963 964 if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo))) 965 return -EINVAL; 966 967 if (!mem_type_is_vram(place->mem_type)) 968 return 0; 969 970 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 971 if (ret) 972 return ret; 973 974 ret = ttm_bo_populate(&bo->ttm, &ctx); 975 if (ret) 976 goto err_res_free; 977 978 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 979 if (ret) 980 goto err_res_free; 981 982 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 983 if (ret) 984 goto err_res_free; 985 986 return 0; 987 988 err_res_free: 989 ttm_resource_free(&bo->ttm, &new_mem); 990 return ret; 991 } 992 993 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 994 unsigned long page_offset) 995 { 996 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 997 struct xe_res_cursor cursor; 998 struct xe_mem_region *vram; 999 1000 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1001 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1002 1003 vram = res_to_mem_region(ttm_bo->resource); 1004 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1005 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1006 } 1007 1008 static void __xe_bo_vunmap(struct xe_bo *bo); 1009 1010 /* 1011 * TODO: Move this function to TTM so we don't rely on how TTM does its 1012 * locking, thereby abusing TTM internals. 1013 */ 1014 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1015 { 1016 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1017 bool locked; 1018 1019 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1020 1021 /* 1022 * We can typically only race with TTM trylocking under the 1023 * lru_lock, which will immediately be unlocked again since 1024 * the ttm_bo refcount is zero at this point. So trylocking *should* 1025 * always succeed here, as long as we hold the lru lock. 1026 */ 1027 spin_lock(&ttm_bo->bdev->lru_lock); 1028 locked = dma_resv_trylock(ttm_bo->base.resv); 1029 spin_unlock(&ttm_bo->bdev->lru_lock); 1030 xe_assert(xe, locked); 1031 1032 return locked; 1033 } 1034 1035 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1036 { 1037 struct dma_resv_iter cursor; 1038 struct dma_fence *fence; 1039 struct dma_fence *replacement = NULL; 1040 struct xe_bo *bo; 1041 1042 if (!xe_bo_is_xe_bo(ttm_bo)) 1043 return; 1044 1045 bo = ttm_to_xe_bo(ttm_bo); 1046 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1047 1048 /* 1049 * Corner case where TTM fails to allocate memory and this BOs resv 1050 * still points the VMs resv 1051 */ 1052 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1053 return; 1054 1055 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1056 return; 1057 1058 /* 1059 * Scrub the preempt fences if any. The unbind fence is already 1060 * attached to the resv. 1061 * TODO: Don't do this for external bos once we scrub them after 1062 * unbind. 1063 */ 1064 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1065 DMA_RESV_USAGE_BOOKKEEP, fence) { 1066 if (xe_fence_is_xe_preempt(fence) && 1067 !dma_fence_is_signaled(fence)) { 1068 if (!replacement) 1069 replacement = dma_fence_get_stub(); 1070 1071 dma_resv_replace_fences(ttm_bo->base.resv, 1072 fence->context, 1073 replacement, 1074 DMA_RESV_USAGE_BOOKKEEP); 1075 } 1076 } 1077 dma_fence_put(replacement); 1078 1079 dma_resv_unlock(ttm_bo->base.resv); 1080 } 1081 1082 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1083 { 1084 if (!xe_bo_is_xe_bo(ttm_bo)) 1085 return; 1086 1087 /* 1088 * Object is idle and about to be destroyed. Release the 1089 * dma-buf attachment. 1090 */ 1091 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1092 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1093 struct xe_ttm_tt, ttm); 1094 1095 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1096 DMA_BIDIRECTIONAL); 1097 ttm_bo->sg = NULL; 1098 xe_tt->sg = NULL; 1099 } 1100 } 1101 1102 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1103 { 1104 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1105 1106 if (ttm_bo->ttm) { 1107 struct ttm_placement place = {}; 1108 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1109 1110 drm_WARN_ON(&xe->drm, ret); 1111 } 1112 } 1113 1114 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1115 { 1116 struct ttm_operation_ctx ctx = { 1117 .interruptible = false 1118 }; 1119 1120 if (ttm_bo->ttm) { 1121 struct xe_ttm_tt *xe_tt = 1122 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1123 1124 if (xe_tt->purgeable) 1125 xe_ttm_bo_purge(ttm_bo, &ctx); 1126 } 1127 } 1128 1129 const struct ttm_device_funcs xe_ttm_funcs = { 1130 .ttm_tt_create = xe_ttm_tt_create, 1131 .ttm_tt_populate = xe_ttm_tt_populate, 1132 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1133 .ttm_tt_destroy = xe_ttm_tt_destroy, 1134 .evict_flags = xe_evict_flags, 1135 .move = xe_bo_move, 1136 .io_mem_reserve = xe_ttm_io_mem_reserve, 1137 .io_mem_pfn = xe_ttm_io_mem_pfn, 1138 .release_notify = xe_ttm_bo_release_notify, 1139 .eviction_valuable = ttm_bo_eviction_valuable, 1140 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1141 .swap_notify = xe_ttm_bo_swap_notify, 1142 }; 1143 1144 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1145 { 1146 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1147 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1148 1149 if (bo->ttm.base.import_attach) 1150 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1151 drm_gem_object_release(&bo->ttm.base); 1152 1153 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1154 1155 if (bo->ggtt_node && bo->ggtt_node->base.size) 1156 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1157 1158 #ifdef CONFIG_PROC_FS 1159 if (bo->client) 1160 xe_drm_client_remove_bo(bo); 1161 #endif 1162 1163 if (bo->vm && xe_bo_is_user(bo)) 1164 xe_vm_put(bo->vm); 1165 1166 mutex_lock(&xe->mem_access.vram_userfault.lock); 1167 if (!list_empty(&bo->vram_userfault_link)) 1168 list_del(&bo->vram_userfault_link); 1169 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1170 1171 kfree(bo); 1172 } 1173 1174 static void xe_gem_object_free(struct drm_gem_object *obj) 1175 { 1176 /* Our BO reference counting scheme works as follows: 1177 * 1178 * The gem object kref is typically used throughout the driver, 1179 * and the gem object holds a ttm_buffer_object refcount, so 1180 * that when the last gem object reference is put, which is when 1181 * we end up in this function, we put also that ttm_buffer_object 1182 * refcount. Anything using gem interfaces is then no longer 1183 * allowed to access the object in a way that requires a gem 1184 * refcount, including locking the object. 1185 * 1186 * driver ttm callbacks is allowed to use the ttm_buffer_object 1187 * refcount directly if needed. 1188 */ 1189 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1190 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1191 } 1192 1193 static void xe_gem_object_close(struct drm_gem_object *obj, 1194 struct drm_file *file_priv) 1195 { 1196 struct xe_bo *bo = gem_to_xe_bo(obj); 1197 1198 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1199 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1200 1201 xe_bo_lock(bo, false); 1202 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1203 xe_bo_unlock(bo); 1204 } 1205 } 1206 1207 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1208 { 1209 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1210 struct drm_device *ddev = tbo->base.dev; 1211 struct xe_device *xe = to_xe_device(ddev); 1212 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1213 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1214 vm_fault_t ret; 1215 int idx; 1216 1217 if (needs_rpm) 1218 xe_pm_runtime_get(xe); 1219 1220 ret = ttm_bo_vm_reserve(tbo, vmf); 1221 if (ret) 1222 goto out; 1223 1224 if (drm_dev_enter(ddev, &idx)) { 1225 trace_xe_bo_cpu_fault(bo); 1226 1227 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1228 TTM_BO_VM_NUM_PREFAULT); 1229 drm_dev_exit(idx); 1230 } else { 1231 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1232 } 1233 1234 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1235 goto out; 1236 /* 1237 * ttm_bo_vm_reserve() already has dma_resv_lock. 1238 */ 1239 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1240 mutex_lock(&xe->mem_access.vram_userfault.lock); 1241 if (list_empty(&bo->vram_userfault_link)) 1242 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1243 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1244 } 1245 1246 dma_resv_unlock(tbo->base.resv); 1247 out: 1248 if (needs_rpm) 1249 xe_pm_runtime_put(xe); 1250 1251 return ret; 1252 } 1253 1254 static const struct vm_operations_struct xe_gem_vm_ops = { 1255 .fault = xe_gem_fault, 1256 .open = ttm_bo_vm_open, 1257 .close = ttm_bo_vm_close, 1258 .access = ttm_bo_vm_access 1259 }; 1260 1261 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1262 .free = xe_gem_object_free, 1263 .close = xe_gem_object_close, 1264 .mmap = drm_gem_ttm_mmap, 1265 .export = xe_gem_prime_export, 1266 .vm_ops = &xe_gem_vm_ops, 1267 }; 1268 1269 /** 1270 * xe_bo_alloc - Allocate storage for a struct xe_bo 1271 * 1272 * This funcition is intended to allocate storage to be used for input 1273 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1274 * created is needed before the call to __xe_bo_create_locked(). 1275 * If __xe_bo_create_locked ends up never to be called, then the 1276 * storage allocated with this function needs to be freed using 1277 * xe_bo_free(). 1278 * 1279 * Return: A pointer to an uninitialized struct xe_bo on success, 1280 * ERR_PTR(-ENOMEM) on error. 1281 */ 1282 struct xe_bo *xe_bo_alloc(void) 1283 { 1284 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1285 1286 if (!bo) 1287 return ERR_PTR(-ENOMEM); 1288 1289 return bo; 1290 } 1291 1292 /** 1293 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1294 * @bo: The buffer object storage. 1295 * 1296 * Refer to xe_bo_alloc() documentation for valid use-cases. 1297 */ 1298 void xe_bo_free(struct xe_bo *bo) 1299 { 1300 kfree(bo); 1301 } 1302 1303 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1304 struct xe_tile *tile, struct dma_resv *resv, 1305 struct ttm_lru_bulk_move *bulk, size_t size, 1306 u16 cpu_caching, enum ttm_bo_type type, 1307 u32 flags) 1308 { 1309 struct ttm_operation_ctx ctx = { 1310 .interruptible = true, 1311 .no_wait_gpu = false, 1312 }; 1313 struct ttm_placement *placement; 1314 uint32_t alignment; 1315 size_t aligned_size; 1316 int err; 1317 1318 /* Only kernel objects should set GT */ 1319 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1320 1321 if (XE_WARN_ON(!size)) { 1322 xe_bo_free(bo); 1323 return ERR_PTR(-EINVAL); 1324 } 1325 1326 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1327 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1328 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1329 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1330 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1331 1332 aligned_size = ALIGN(size, align); 1333 if (type != ttm_bo_type_device) 1334 size = ALIGN(size, align); 1335 flags |= XE_BO_FLAG_INTERNAL_64K; 1336 alignment = align >> PAGE_SHIFT; 1337 } else { 1338 aligned_size = ALIGN(size, SZ_4K); 1339 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1340 alignment = SZ_4K >> PAGE_SHIFT; 1341 } 1342 1343 if (type == ttm_bo_type_device && aligned_size != size) 1344 return ERR_PTR(-EINVAL); 1345 1346 if (!bo) { 1347 bo = xe_bo_alloc(); 1348 if (IS_ERR(bo)) 1349 return bo; 1350 } 1351 1352 bo->ccs_cleared = false; 1353 bo->tile = tile; 1354 bo->size = size; 1355 bo->flags = flags; 1356 bo->cpu_caching = cpu_caching; 1357 bo->ttm.base.funcs = &xe_gem_object_funcs; 1358 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1359 INIT_LIST_HEAD(&bo->pinned_link); 1360 #ifdef CONFIG_PROC_FS 1361 INIT_LIST_HEAD(&bo->client_link); 1362 #endif 1363 INIT_LIST_HEAD(&bo->vram_userfault_link); 1364 1365 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1366 1367 if (resv) { 1368 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1369 ctx.resv = resv; 1370 } 1371 1372 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1373 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1374 if (WARN_ON(err)) { 1375 xe_ttm_bo_destroy(&bo->ttm); 1376 return ERR_PTR(err); 1377 } 1378 } 1379 1380 /* Defer populating type_sg bos */ 1381 placement = (type == ttm_bo_type_sg || 1382 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1383 &bo->placement; 1384 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1385 placement, alignment, 1386 &ctx, NULL, resv, xe_ttm_bo_destroy); 1387 if (err) 1388 return ERR_PTR(err); 1389 1390 /* 1391 * The VRAM pages underneath are potentially still being accessed by the 1392 * GPU, as per async GPU clearing and async evictions. However TTM makes 1393 * sure to add any corresponding move/clear fences into the objects 1394 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1395 * 1396 * For KMD internal buffers we don't care about GPU clearing, however we 1397 * still need to handle async evictions, where the VRAM is still being 1398 * accessed by the GPU. Most internal callers are not expecting this, 1399 * since they are missing the required synchronisation before accessing 1400 * the memory. To keep things simple just sync wait any kernel fences 1401 * here, if the buffer is designated KMD internal. 1402 * 1403 * For normal userspace objects we should already have the required 1404 * pipelining or sync waiting elsewhere, since we already have to deal 1405 * with things like async GPU clearing. 1406 */ 1407 if (type == ttm_bo_type_kernel) { 1408 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1409 DMA_RESV_USAGE_KERNEL, 1410 ctx.interruptible, 1411 MAX_SCHEDULE_TIMEOUT); 1412 1413 if (timeout < 0) { 1414 if (!resv) 1415 dma_resv_unlock(bo->ttm.base.resv); 1416 xe_bo_put(bo); 1417 return ERR_PTR(timeout); 1418 } 1419 } 1420 1421 bo->created = true; 1422 if (bulk) 1423 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1424 else 1425 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1426 1427 return bo; 1428 } 1429 1430 static int __xe_bo_fixed_placement(struct xe_device *xe, 1431 struct xe_bo *bo, 1432 u32 flags, 1433 u64 start, u64 end, u64 size) 1434 { 1435 struct ttm_place *place = bo->placements; 1436 1437 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1438 return -EINVAL; 1439 1440 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1441 place->fpfn = start >> PAGE_SHIFT; 1442 place->lpfn = end >> PAGE_SHIFT; 1443 1444 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1445 case XE_BO_FLAG_VRAM0: 1446 place->mem_type = XE_PL_VRAM0; 1447 break; 1448 case XE_BO_FLAG_VRAM1: 1449 place->mem_type = XE_PL_VRAM1; 1450 break; 1451 case XE_BO_FLAG_STOLEN: 1452 place->mem_type = XE_PL_STOLEN; 1453 break; 1454 1455 default: 1456 /* 0 or multiple of the above set */ 1457 return -EINVAL; 1458 } 1459 1460 bo->placement = (struct ttm_placement) { 1461 .num_placement = 1, 1462 .placement = place, 1463 }; 1464 1465 return 0; 1466 } 1467 1468 static struct xe_bo * 1469 __xe_bo_create_locked(struct xe_device *xe, 1470 struct xe_tile *tile, struct xe_vm *vm, 1471 size_t size, u64 start, u64 end, 1472 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 1473 u64 alignment) 1474 { 1475 struct xe_bo *bo = NULL; 1476 int err; 1477 1478 if (vm) 1479 xe_vm_assert_held(vm); 1480 1481 if (start || end != ~0ULL) { 1482 bo = xe_bo_alloc(); 1483 if (IS_ERR(bo)) 1484 return bo; 1485 1486 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1487 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1488 if (err) { 1489 xe_bo_free(bo); 1490 return ERR_PTR(err); 1491 } 1492 } 1493 1494 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1495 vm && !xe_vm_in_fault_mode(vm) && 1496 flags & XE_BO_FLAG_USER ? 1497 &vm->lru_bulk_move : NULL, size, 1498 cpu_caching, type, flags); 1499 if (IS_ERR(bo)) 1500 return bo; 1501 1502 bo->min_align = alignment; 1503 1504 /* 1505 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1506 * to ensure the shared resv doesn't disappear under the bo, the bo 1507 * will keep a reference to the vm, and avoid circular references 1508 * by having all the vm's bo refereferences released at vm close 1509 * time. 1510 */ 1511 if (vm && xe_bo_is_user(bo)) 1512 xe_vm_get(vm); 1513 bo->vm = vm; 1514 1515 if (bo->flags & XE_BO_FLAG_GGTT) { 1516 if (!tile && flags & XE_BO_FLAG_STOLEN) 1517 tile = xe_device_get_root_tile(xe); 1518 1519 xe_assert(xe, tile); 1520 1521 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1522 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1523 start + bo->size, U64_MAX); 1524 } else { 1525 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1526 } 1527 if (err) 1528 goto err_unlock_put_bo; 1529 } 1530 1531 return bo; 1532 1533 err_unlock_put_bo: 1534 __xe_bo_unset_bulk_move(bo); 1535 xe_bo_unlock_vm_held(bo); 1536 xe_bo_put(bo); 1537 return ERR_PTR(err); 1538 } 1539 1540 struct xe_bo * 1541 xe_bo_create_locked_range(struct xe_device *xe, 1542 struct xe_tile *tile, struct xe_vm *vm, 1543 size_t size, u64 start, u64 end, 1544 enum ttm_bo_type type, u32 flags, u64 alignment) 1545 { 1546 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 1547 flags, alignment); 1548 } 1549 1550 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1551 struct xe_vm *vm, size_t size, 1552 enum ttm_bo_type type, u32 flags) 1553 { 1554 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 1555 flags, 0); 1556 } 1557 1558 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1559 struct xe_vm *vm, size_t size, 1560 u16 cpu_caching, 1561 u32 flags) 1562 { 1563 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1564 cpu_caching, ttm_bo_type_device, 1565 flags | XE_BO_FLAG_USER, 0); 1566 if (!IS_ERR(bo)) 1567 xe_bo_unlock_vm_held(bo); 1568 1569 return bo; 1570 } 1571 1572 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1573 struct xe_vm *vm, size_t size, 1574 enum ttm_bo_type type, u32 flags) 1575 { 1576 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1577 1578 if (!IS_ERR(bo)) 1579 xe_bo_unlock_vm_held(bo); 1580 1581 return bo; 1582 } 1583 1584 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1585 struct xe_vm *vm, 1586 size_t size, u64 offset, 1587 enum ttm_bo_type type, u32 flags) 1588 { 1589 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 1590 type, flags, 0); 1591 } 1592 1593 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 1594 struct xe_tile *tile, 1595 struct xe_vm *vm, 1596 size_t size, u64 offset, 1597 enum ttm_bo_type type, u32 flags, 1598 u64 alignment) 1599 { 1600 struct xe_bo *bo; 1601 int err; 1602 u64 start = offset == ~0ull ? 0 : offset; 1603 u64 end = offset == ~0ull ? offset : start + size; 1604 1605 if (flags & XE_BO_FLAG_STOLEN && 1606 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1607 flags |= XE_BO_FLAG_GGTT; 1608 1609 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1610 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS, 1611 alignment); 1612 if (IS_ERR(bo)) 1613 return bo; 1614 1615 err = xe_bo_pin(bo); 1616 if (err) 1617 goto err_put; 1618 1619 err = xe_bo_vmap(bo); 1620 if (err) 1621 goto err_unpin; 1622 1623 xe_bo_unlock_vm_held(bo); 1624 1625 return bo; 1626 1627 err_unpin: 1628 xe_bo_unpin(bo); 1629 err_put: 1630 xe_bo_unlock_vm_held(bo); 1631 xe_bo_put(bo); 1632 return ERR_PTR(err); 1633 } 1634 1635 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1636 struct xe_vm *vm, size_t size, 1637 enum ttm_bo_type type, u32 flags) 1638 { 1639 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1640 } 1641 1642 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1643 const void *data, size_t size, 1644 enum ttm_bo_type type, u32 flags) 1645 { 1646 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1647 ALIGN(size, PAGE_SIZE), 1648 type, flags); 1649 if (IS_ERR(bo)) 1650 return bo; 1651 1652 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1653 1654 return bo; 1655 } 1656 1657 static void __xe_bo_unpin_map_no_vm(void *arg) 1658 { 1659 xe_bo_unpin_map_no_vm(arg); 1660 } 1661 1662 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1663 size_t size, u32 flags) 1664 { 1665 struct xe_bo *bo; 1666 int ret; 1667 1668 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1669 if (IS_ERR(bo)) 1670 return bo; 1671 1672 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 1673 if (ret) 1674 return ERR_PTR(ret); 1675 1676 return bo; 1677 } 1678 1679 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1680 const void *data, size_t size, u32 flags) 1681 { 1682 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1683 1684 if (IS_ERR(bo)) 1685 return bo; 1686 1687 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1688 1689 return bo; 1690 } 1691 1692 /** 1693 * xe_managed_bo_reinit_in_vram 1694 * @xe: xe device 1695 * @tile: Tile where the new buffer will be created 1696 * @src: Managed buffer object allocated in system memory 1697 * 1698 * Replace a managed src buffer object allocated in system memory with a new 1699 * one allocated in vram, copying the data between them. 1700 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1701 * is responsible for making sure that any old references to it are updated. 1702 * 1703 * Returns 0 for success, negative error code otherwise. 1704 */ 1705 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1706 { 1707 struct xe_bo *bo; 1708 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1709 1710 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1711 1712 xe_assert(xe, IS_DGFX(xe)); 1713 xe_assert(xe, !(*src)->vmap.is_iomem); 1714 1715 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1716 (*src)->size, dst_flags); 1717 if (IS_ERR(bo)) 1718 return PTR_ERR(bo); 1719 1720 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 1721 *src = bo; 1722 1723 return 0; 1724 } 1725 1726 /* 1727 * XXX: This is in the VM bind data path, likely should calculate this once and 1728 * store, with a recalculation if the BO is moved. 1729 */ 1730 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1731 { 1732 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1733 1734 if (res->mem_type == XE_PL_STOLEN) 1735 return xe_ttm_stolen_gpu_offset(xe); 1736 1737 return res_to_mem_region(res)->dpa_base; 1738 } 1739 1740 /** 1741 * xe_bo_pin_external - pin an external BO 1742 * @bo: buffer object to be pinned 1743 * 1744 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1745 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1746 * asserts and code to ensure evict / restore on suspend / resume. 1747 * 1748 * Returns 0 for success, negative error code otherwise. 1749 */ 1750 int xe_bo_pin_external(struct xe_bo *bo) 1751 { 1752 struct xe_device *xe = xe_bo_device(bo); 1753 int err; 1754 1755 xe_assert(xe, !bo->vm); 1756 xe_assert(xe, xe_bo_is_user(bo)); 1757 1758 if (!xe_bo_is_pinned(bo)) { 1759 err = xe_bo_validate(bo, NULL, false); 1760 if (err) 1761 return err; 1762 1763 if (xe_bo_is_vram(bo)) { 1764 spin_lock(&xe->pinned.lock); 1765 list_add_tail(&bo->pinned_link, 1766 &xe->pinned.external_vram); 1767 spin_unlock(&xe->pinned.lock); 1768 } 1769 } 1770 1771 ttm_bo_pin(&bo->ttm); 1772 1773 /* 1774 * FIXME: If we always use the reserve / unreserve functions for locking 1775 * we do not need this. 1776 */ 1777 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1778 1779 return 0; 1780 } 1781 1782 int xe_bo_pin(struct xe_bo *bo) 1783 { 1784 struct ttm_place *place = &bo->placements[0]; 1785 struct xe_device *xe = xe_bo_device(bo); 1786 int err; 1787 1788 /* We currently don't expect user BO to be pinned */ 1789 xe_assert(xe, !xe_bo_is_user(bo)); 1790 1791 /* Pinned object must be in GGTT or have pinned flag */ 1792 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1793 XE_BO_FLAG_GGTT)); 1794 1795 /* 1796 * No reason we can't support pinning imported dma-bufs we just don't 1797 * expect to pin an imported dma-buf. 1798 */ 1799 xe_assert(xe, !bo->ttm.base.import_attach); 1800 1801 /* We only expect at most 1 pin */ 1802 xe_assert(xe, !xe_bo_is_pinned(bo)); 1803 1804 err = xe_bo_validate(bo, NULL, false); 1805 if (err) 1806 return err; 1807 1808 /* 1809 * For pinned objects in on DGFX, which are also in vram, we expect 1810 * these to be in contiguous VRAM memory. Required eviction / restore 1811 * during suspend / resume (force restore to same physical address). 1812 */ 1813 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1814 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1815 if (mem_type_is_vram(place->mem_type)) { 1816 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1817 1818 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1819 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1820 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1821 } 1822 } 1823 1824 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 1825 spin_lock(&xe->pinned.lock); 1826 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1827 spin_unlock(&xe->pinned.lock); 1828 } 1829 1830 ttm_bo_pin(&bo->ttm); 1831 1832 /* 1833 * FIXME: If we always use the reserve / unreserve functions for locking 1834 * we do not need this. 1835 */ 1836 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * xe_bo_unpin_external - unpin an external BO 1843 * @bo: buffer object to be unpinned 1844 * 1845 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1846 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1847 * asserts and code to ensure evict / restore on suspend / resume. 1848 * 1849 * Returns 0 for success, negative error code otherwise. 1850 */ 1851 void xe_bo_unpin_external(struct xe_bo *bo) 1852 { 1853 struct xe_device *xe = xe_bo_device(bo); 1854 1855 xe_assert(xe, !bo->vm); 1856 xe_assert(xe, xe_bo_is_pinned(bo)); 1857 xe_assert(xe, xe_bo_is_user(bo)); 1858 1859 spin_lock(&xe->pinned.lock); 1860 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1861 list_del_init(&bo->pinned_link); 1862 spin_unlock(&xe->pinned.lock); 1863 1864 ttm_bo_unpin(&bo->ttm); 1865 1866 /* 1867 * FIXME: If we always use the reserve / unreserve functions for locking 1868 * we do not need this. 1869 */ 1870 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1871 } 1872 1873 void xe_bo_unpin(struct xe_bo *bo) 1874 { 1875 struct ttm_place *place = &bo->placements[0]; 1876 struct xe_device *xe = xe_bo_device(bo); 1877 1878 xe_assert(xe, !bo->ttm.base.import_attach); 1879 xe_assert(xe, xe_bo_is_pinned(bo)); 1880 1881 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 1882 spin_lock(&xe->pinned.lock); 1883 xe_assert(xe, !list_empty(&bo->pinned_link)); 1884 list_del_init(&bo->pinned_link); 1885 spin_unlock(&xe->pinned.lock); 1886 } 1887 ttm_bo_unpin(&bo->ttm); 1888 } 1889 1890 /** 1891 * xe_bo_validate() - Make sure the bo is in an allowed placement 1892 * @bo: The bo, 1893 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1894 * NULL. Used together with @allow_res_evict. 1895 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1896 * reservation object. 1897 * 1898 * Make sure the bo is in allowed placement, migrating it if necessary. If 1899 * needed, other bos will be evicted. If bos selected for eviction shares 1900 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1901 * set to true, otherwise they will be bypassed. 1902 * 1903 * Return: 0 on success, negative error code on failure. May return 1904 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1905 */ 1906 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1907 { 1908 struct ttm_operation_ctx ctx = { 1909 .interruptible = true, 1910 .no_wait_gpu = false, 1911 }; 1912 1913 if (vm) { 1914 lockdep_assert_held(&vm->lock); 1915 xe_vm_assert_held(vm); 1916 1917 ctx.allow_res_evict = allow_res_evict; 1918 ctx.resv = xe_vm_resv(vm); 1919 } 1920 1921 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1922 } 1923 1924 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1925 { 1926 if (bo->destroy == &xe_ttm_bo_destroy) 1927 return true; 1928 1929 return false; 1930 } 1931 1932 /* 1933 * Resolve a BO address. There is no assert to check if the proper lock is held 1934 * so it should only be used in cases where it is not fatal to get the wrong 1935 * address, such as printing debug information, but not in cases where memory is 1936 * written based on this result. 1937 */ 1938 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1939 { 1940 struct xe_device *xe = xe_bo_device(bo); 1941 struct xe_res_cursor cur; 1942 u64 page; 1943 1944 xe_assert(xe, page_size <= PAGE_SIZE); 1945 page = offset >> PAGE_SHIFT; 1946 offset &= (PAGE_SIZE - 1); 1947 1948 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1949 xe_assert(xe, bo->ttm.ttm); 1950 1951 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1952 page_size, &cur); 1953 return xe_res_dma(&cur) + offset; 1954 } else { 1955 struct xe_res_cursor cur; 1956 1957 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1958 page_size, &cur); 1959 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1960 } 1961 } 1962 1963 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1964 { 1965 if (!READ_ONCE(bo->ttm.pin_count)) 1966 xe_bo_assert_held(bo); 1967 return __xe_bo_addr(bo, offset, page_size); 1968 } 1969 1970 int xe_bo_vmap(struct xe_bo *bo) 1971 { 1972 void *virtual; 1973 bool is_iomem; 1974 int ret; 1975 1976 xe_bo_assert_held(bo); 1977 1978 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1979 return -EINVAL; 1980 1981 if (!iosys_map_is_null(&bo->vmap)) 1982 return 0; 1983 1984 /* 1985 * We use this more or less deprecated interface for now since 1986 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1987 * single page bos, which is done here. 1988 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1989 * to use struct iosys_map. 1990 */ 1991 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1992 if (ret) 1993 return ret; 1994 1995 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1996 if (is_iomem) 1997 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1998 else 1999 iosys_map_set_vaddr(&bo->vmap, virtual); 2000 2001 return 0; 2002 } 2003 2004 static void __xe_bo_vunmap(struct xe_bo *bo) 2005 { 2006 if (!iosys_map_is_null(&bo->vmap)) { 2007 iosys_map_clear(&bo->vmap); 2008 ttm_bo_kunmap(&bo->kmap); 2009 } 2010 } 2011 2012 void xe_bo_vunmap(struct xe_bo *bo) 2013 { 2014 xe_bo_assert_held(bo); 2015 __xe_bo_vunmap(bo); 2016 } 2017 2018 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2019 struct drm_file *file) 2020 { 2021 struct xe_device *xe = to_xe_device(dev); 2022 struct xe_file *xef = to_xe_file(file); 2023 struct drm_xe_gem_create *args = data; 2024 struct xe_vm *vm = NULL; 2025 struct xe_bo *bo; 2026 unsigned int bo_flags; 2027 u32 handle; 2028 int err; 2029 2030 if (XE_IOCTL_DBG(xe, args->extensions) || 2031 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2032 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2033 return -EINVAL; 2034 2035 /* at least one valid memory placement must be specified */ 2036 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2037 !args->placement)) 2038 return -EINVAL; 2039 2040 if (XE_IOCTL_DBG(xe, args->flags & 2041 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2042 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2043 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2044 return -EINVAL; 2045 2046 if (XE_IOCTL_DBG(xe, args->handle)) 2047 return -EINVAL; 2048 2049 if (XE_IOCTL_DBG(xe, !args->size)) 2050 return -EINVAL; 2051 2052 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2053 return -EINVAL; 2054 2055 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2056 return -EINVAL; 2057 2058 bo_flags = 0; 2059 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2060 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2061 2062 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2063 bo_flags |= XE_BO_FLAG_SCANOUT; 2064 2065 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2066 2067 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2068 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2069 (bo_flags & XE_BO_FLAG_SCANOUT) && 2070 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2071 IS_ALIGNED(args->size, SZ_64K)) 2072 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2073 2074 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2075 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2076 return -EINVAL; 2077 2078 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2079 } 2080 2081 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2082 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2083 return -EINVAL; 2084 2085 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2086 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2087 return -EINVAL; 2088 2089 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2090 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2091 return -EINVAL; 2092 2093 if (args->vm_id) { 2094 vm = xe_vm_lookup(xef, args->vm_id); 2095 if (XE_IOCTL_DBG(xe, !vm)) 2096 return -ENOENT; 2097 err = xe_vm_lock(vm, true); 2098 if (err) 2099 goto out_vm; 2100 } 2101 2102 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2103 bo_flags); 2104 2105 if (vm) 2106 xe_vm_unlock(vm); 2107 2108 if (IS_ERR(bo)) { 2109 err = PTR_ERR(bo); 2110 goto out_vm; 2111 } 2112 2113 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2114 if (err) 2115 goto out_bulk; 2116 2117 args->handle = handle; 2118 goto out_put; 2119 2120 out_bulk: 2121 if (vm && !xe_vm_in_fault_mode(vm)) { 2122 xe_vm_lock(vm, false); 2123 __xe_bo_unset_bulk_move(bo); 2124 xe_vm_unlock(vm); 2125 } 2126 out_put: 2127 xe_bo_put(bo); 2128 out_vm: 2129 if (vm) 2130 xe_vm_put(vm); 2131 2132 return err; 2133 } 2134 2135 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2136 struct drm_file *file) 2137 { 2138 struct xe_device *xe = to_xe_device(dev); 2139 struct drm_xe_gem_mmap_offset *args = data; 2140 struct drm_gem_object *gem_obj; 2141 2142 if (XE_IOCTL_DBG(xe, args->extensions) || 2143 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2144 return -EINVAL; 2145 2146 if (XE_IOCTL_DBG(xe, args->flags)) 2147 return -EINVAL; 2148 2149 gem_obj = drm_gem_object_lookup(file, args->handle); 2150 if (XE_IOCTL_DBG(xe, !gem_obj)) 2151 return -ENOENT; 2152 2153 /* The mmap offset was set up at BO allocation time. */ 2154 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2155 2156 xe_bo_put(gem_to_xe_bo(gem_obj)); 2157 return 0; 2158 } 2159 2160 /** 2161 * xe_bo_lock() - Lock the buffer object's dma_resv object 2162 * @bo: The struct xe_bo whose lock is to be taken 2163 * @intr: Whether to perform any wait interruptible 2164 * 2165 * Locks the buffer object's dma_resv object. If the buffer object is 2166 * pointing to a shared dma_resv object, that shared lock is locked. 2167 * 2168 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2169 * contended lock was interrupted. If @intr is set to false, the 2170 * function always returns 0. 2171 */ 2172 int xe_bo_lock(struct xe_bo *bo, bool intr) 2173 { 2174 if (intr) 2175 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2176 2177 dma_resv_lock(bo->ttm.base.resv, NULL); 2178 2179 return 0; 2180 } 2181 2182 /** 2183 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2184 * @bo: The struct xe_bo whose lock is to be released. 2185 * 2186 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2187 */ 2188 void xe_bo_unlock(struct xe_bo *bo) 2189 { 2190 dma_resv_unlock(bo->ttm.base.resv); 2191 } 2192 2193 /** 2194 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2195 * @bo: The buffer object to migrate 2196 * @mem_type: The TTM memory type intended to migrate to 2197 * 2198 * Check whether the buffer object supports migration to the 2199 * given memory type. Note that pinning may affect the ability to migrate as 2200 * returned by this function. 2201 * 2202 * This function is primarily intended as a helper for checking the 2203 * possibility to migrate buffer objects and can be called without 2204 * the object lock held. 2205 * 2206 * Return: true if migration is possible, false otherwise. 2207 */ 2208 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2209 { 2210 unsigned int cur_place; 2211 2212 if (bo->ttm.type == ttm_bo_type_kernel) 2213 return true; 2214 2215 if (bo->ttm.type == ttm_bo_type_sg) 2216 return false; 2217 2218 for (cur_place = 0; cur_place < bo->placement.num_placement; 2219 cur_place++) { 2220 if (bo->placements[cur_place].mem_type == mem_type) 2221 return true; 2222 } 2223 2224 return false; 2225 } 2226 2227 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2228 { 2229 memset(place, 0, sizeof(*place)); 2230 place->mem_type = mem_type; 2231 } 2232 2233 /** 2234 * xe_bo_migrate - Migrate an object to the desired region id 2235 * @bo: The buffer object to migrate. 2236 * @mem_type: The TTM region type to migrate to. 2237 * 2238 * Attempt to migrate the buffer object to the desired memory region. The 2239 * buffer object may not be pinned, and must be locked. 2240 * On successful completion, the object memory type will be updated, 2241 * but an async migration task may not have completed yet, and to 2242 * accomplish that, the object's kernel fences must be signaled with 2243 * the object lock held. 2244 * 2245 * Return: 0 on success. Negative error code on failure. In particular may 2246 * return -EINTR or -ERESTARTSYS if signal pending. 2247 */ 2248 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2249 { 2250 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2251 struct ttm_operation_ctx ctx = { 2252 .interruptible = true, 2253 .no_wait_gpu = false, 2254 }; 2255 struct ttm_placement placement; 2256 struct ttm_place requested; 2257 2258 xe_bo_assert_held(bo); 2259 2260 if (bo->ttm.resource->mem_type == mem_type) 2261 return 0; 2262 2263 if (xe_bo_is_pinned(bo)) 2264 return -EBUSY; 2265 2266 if (!xe_bo_can_migrate(bo, mem_type)) 2267 return -EINVAL; 2268 2269 xe_place_from_ttm_type(mem_type, &requested); 2270 placement.num_placement = 1; 2271 placement.placement = &requested; 2272 2273 /* 2274 * Stolen needs to be handled like below VRAM handling if we ever need 2275 * to support it. 2276 */ 2277 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2278 2279 if (mem_type_is_vram(mem_type)) { 2280 u32 c = 0; 2281 2282 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2283 } 2284 2285 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2286 } 2287 2288 /** 2289 * xe_bo_evict - Evict an object to evict placement 2290 * @bo: The buffer object to migrate. 2291 * @force_alloc: Set force_alloc in ttm_operation_ctx 2292 * 2293 * On successful completion, the object memory will be moved to evict 2294 * placement. Ths function blocks until the object has been fully moved. 2295 * 2296 * Return: 0 on success. Negative error code on failure. 2297 */ 2298 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2299 { 2300 struct ttm_operation_ctx ctx = { 2301 .interruptible = false, 2302 .no_wait_gpu = false, 2303 .force_alloc = force_alloc, 2304 }; 2305 struct ttm_placement placement; 2306 int ret; 2307 2308 xe_evict_flags(&bo->ttm, &placement); 2309 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2310 if (ret) 2311 return ret; 2312 2313 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2314 false, MAX_SCHEDULE_TIMEOUT); 2315 2316 return 0; 2317 } 2318 2319 /** 2320 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2321 * placed in system memory. 2322 * @bo: The xe_bo 2323 * 2324 * Return: true if extra pages need to be allocated, false otherwise. 2325 */ 2326 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2327 { 2328 struct xe_device *xe = xe_bo_device(bo); 2329 2330 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2331 return false; 2332 2333 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2334 return false; 2335 2336 /* On discrete GPUs, if the GPU can access this buffer from 2337 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2338 * can't be used since there's no CCS storage associated with 2339 * non-VRAM addresses. 2340 */ 2341 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2342 return false; 2343 2344 return true; 2345 } 2346 2347 /** 2348 * __xe_bo_release_dummy() - Dummy kref release function 2349 * @kref: The embedded struct kref. 2350 * 2351 * Dummy release function for xe_bo_put_deferred(). Keep off. 2352 */ 2353 void __xe_bo_release_dummy(struct kref *kref) 2354 { 2355 } 2356 2357 /** 2358 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2359 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2360 * 2361 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2362 * The @deferred list can be either an onstack local list or a global 2363 * shared list used by a workqueue. 2364 */ 2365 void xe_bo_put_commit(struct llist_head *deferred) 2366 { 2367 struct llist_node *freed; 2368 struct xe_bo *bo, *next; 2369 2370 if (!deferred) 2371 return; 2372 2373 freed = llist_del_all(deferred); 2374 if (!freed) 2375 return; 2376 2377 llist_for_each_entry_safe(bo, next, freed, freed) 2378 drm_gem_object_free(&bo->ttm.base.refcount); 2379 } 2380 2381 void xe_bo_put(struct xe_bo *bo) 2382 { 2383 might_sleep(); 2384 if (bo) { 2385 #ifdef CONFIG_PROC_FS 2386 if (bo->client) 2387 might_lock(&bo->client->bos_lock); 2388 #endif 2389 if (bo->ggtt_node && bo->ggtt_node->ggtt) 2390 might_lock(&bo->ggtt_node->ggtt->lock); 2391 drm_gem_object_put(&bo->ttm.base); 2392 } 2393 } 2394 2395 /** 2396 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2397 * @file_priv: ... 2398 * @dev: ... 2399 * @args: ... 2400 * 2401 * See dumb_create() hook in include/drm/drm_drv.h 2402 * 2403 * Return: ... 2404 */ 2405 int xe_bo_dumb_create(struct drm_file *file_priv, 2406 struct drm_device *dev, 2407 struct drm_mode_create_dumb *args) 2408 { 2409 struct xe_device *xe = to_xe_device(dev); 2410 struct xe_bo *bo; 2411 uint32_t handle; 2412 int cpp = DIV_ROUND_UP(args->bpp, 8); 2413 int err; 2414 u32 page_size = max_t(u32, PAGE_SIZE, 2415 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2416 2417 args->pitch = ALIGN(args->width * cpp, 64); 2418 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2419 page_size); 2420 2421 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2422 DRM_XE_GEM_CPU_CACHING_WC, 2423 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2424 XE_BO_FLAG_SCANOUT | 2425 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2426 if (IS_ERR(bo)) 2427 return PTR_ERR(bo); 2428 2429 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2430 /* drop reference from allocate - handle holds it now */ 2431 drm_gem_object_put(&bo->ttm.base); 2432 if (!err) 2433 args->handle = handle; 2434 return err; 2435 } 2436 2437 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2438 { 2439 struct ttm_buffer_object *tbo = &bo->ttm; 2440 struct ttm_device *bdev = tbo->bdev; 2441 2442 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2443 2444 list_del_init(&bo->vram_userfault_link); 2445 } 2446 2447 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2448 #include "tests/xe_bo.c" 2449 #endif 2450