1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_managed.h> 14 #include <drm/ttm/ttm_backup.h> 15 #include <drm/ttm/ttm_device.h> 16 #include <drm/ttm/ttm_placement.h> 17 #include <drm/ttm/ttm_tt.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include <kunit/static_stub.h> 21 22 #include "xe_device.h" 23 #include "xe_dma_buf.h" 24 #include "xe_drm_client.h" 25 #include "xe_ggtt.h" 26 #include "xe_gt.h" 27 #include "xe_map.h" 28 #include "xe_migrate.h" 29 #include "xe_pm.h" 30 #include "xe_preempt_fence.h" 31 #include "xe_pxp.h" 32 #include "xe_res_cursor.h" 33 #include "xe_shrinker.h" 34 #include "xe_trace_bo.h" 35 #include "xe_ttm_stolen_mgr.h" 36 #include "xe_vm.h" 37 38 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 39 [XE_PL_SYSTEM] = "system", 40 [XE_PL_TT] = "gtt", 41 [XE_PL_VRAM0] = "vram0", 42 [XE_PL_VRAM1] = "vram1", 43 [XE_PL_STOLEN] = "stolen" 44 }; 45 46 static const struct ttm_place sys_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = XE_PL_SYSTEM, 50 .flags = 0, 51 }; 52 53 static struct ttm_placement sys_placement = { 54 .num_placement = 1, 55 .placement = &sys_placement_flags, 56 }; 57 58 static struct ttm_placement purge_placement; 59 60 static const struct ttm_place tt_placement_flags[] = { 61 { 62 .fpfn = 0, 63 .lpfn = 0, 64 .mem_type = XE_PL_TT, 65 .flags = TTM_PL_FLAG_DESIRED, 66 }, 67 { 68 .fpfn = 0, 69 .lpfn = 0, 70 .mem_type = XE_PL_SYSTEM, 71 .flags = TTM_PL_FLAG_FALLBACK, 72 } 73 }; 74 75 static struct ttm_placement tt_placement = { 76 .num_placement = 2, 77 .placement = tt_placement_flags, 78 }; 79 80 bool mem_type_is_vram(u32 mem_type) 81 { 82 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 83 } 84 85 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 86 { 87 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 88 } 89 90 static bool resource_is_vram(struct ttm_resource *res) 91 { 92 return mem_type_is_vram(res->mem_type); 93 } 94 95 bool xe_bo_is_vram(struct xe_bo *bo) 96 { 97 return resource_is_vram(bo->ttm.resource) || 98 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 99 } 100 101 bool xe_bo_is_stolen(struct xe_bo *bo) 102 { 103 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 104 } 105 106 /** 107 * xe_bo_has_single_placement - check if BO is placed only in one memory location 108 * @bo: The BO 109 * 110 * This function checks whether a given BO is placed in only one memory location. 111 * 112 * Returns: true if the BO is placed in a single memory location, false otherwise. 113 * 114 */ 115 bool xe_bo_has_single_placement(struct xe_bo *bo) 116 { 117 return bo->placement.num_placement == 1; 118 } 119 120 /** 121 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 122 * @bo: The BO 123 * 124 * The stolen memory is accessed through the PCI BAR for both DGFX and some 125 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 126 * 127 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 128 */ 129 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 130 { 131 return xe_bo_is_stolen(bo) && 132 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 133 } 134 135 /** 136 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 137 * @bo: The BO 138 * 139 * Check if a given bo is bound through VM_BIND. This requires the 140 * reservation lock for the BO to be held. 141 * 142 * Returns: boolean 143 */ 144 bool xe_bo_is_vm_bound(struct xe_bo *bo) 145 { 146 xe_bo_assert_held(bo); 147 148 return !list_empty(&bo->ttm.base.gpuva.list); 149 } 150 151 static bool xe_bo_is_user(struct xe_bo *bo) 152 { 153 return bo->flags & XE_BO_FLAG_USER; 154 } 155 156 static struct xe_migrate * 157 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 158 { 159 struct xe_tile *tile; 160 161 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 162 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 163 return tile->migrate; 164 } 165 166 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 167 { 168 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 169 struct ttm_resource_manager *mgr; 170 struct xe_ttm_vram_mgr *vram_mgr; 171 172 xe_assert(xe, resource_is_vram(res)); 173 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 174 vram_mgr = to_xe_ttm_vram_mgr(mgr); 175 176 return container_of(vram_mgr, struct xe_vram_region, ttm); 177 } 178 179 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 180 u32 bo_flags, u32 *c) 181 { 182 if (bo_flags & XE_BO_FLAG_SYSTEM) { 183 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 184 185 bo->placements[*c] = (struct ttm_place) { 186 .mem_type = XE_PL_TT, 187 }; 188 *c += 1; 189 } 190 } 191 192 static bool force_contiguous(u32 bo_flags) 193 { 194 if (bo_flags & XE_BO_FLAG_STOLEN) 195 return true; /* users expect this */ 196 else if (bo_flags & XE_BO_FLAG_PINNED && 197 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) 198 return true; /* needs vmap */ 199 200 /* 201 * For eviction / restore on suspend / resume objects pinned in VRAM 202 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 203 */ 204 return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && 205 bo_flags & XE_BO_FLAG_PINNED; 206 } 207 208 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 209 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 210 { 211 struct ttm_place place = { .mem_type = mem_type }; 212 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 213 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 214 215 struct xe_vram_region *vram; 216 u64 io_size; 217 218 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 219 220 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 221 xe_assert(xe, vram && vram->usable_size); 222 io_size = vram->io_size; 223 224 if (force_contiguous(bo_flags)) 225 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 226 227 if (io_size < vram->usable_size) { 228 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 229 place.fpfn = 0; 230 place.lpfn = io_size >> PAGE_SHIFT; 231 } else { 232 place.flags |= TTM_PL_FLAG_TOPDOWN; 233 } 234 } 235 places[*c] = place; 236 *c += 1; 237 } 238 239 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 240 u32 bo_flags, u32 *c) 241 { 242 if (bo_flags & XE_BO_FLAG_VRAM0) 243 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 244 if (bo_flags & XE_BO_FLAG_VRAM1) 245 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 246 } 247 248 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 249 u32 bo_flags, u32 *c) 250 { 251 if (bo_flags & XE_BO_FLAG_STOLEN) { 252 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 253 254 bo->placements[*c] = (struct ttm_place) { 255 .mem_type = XE_PL_STOLEN, 256 .flags = force_contiguous(bo_flags) ? 257 TTM_PL_FLAG_CONTIGUOUS : 0, 258 }; 259 *c += 1; 260 } 261 } 262 263 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 264 u32 bo_flags) 265 { 266 u32 c = 0; 267 268 try_add_vram(xe, bo, bo_flags, &c); 269 try_add_system(xe, bo, bo_flags, &c); 270 try_add_stolen(xe, bo, bo_flags, &c); 271 272 if (!c) 273 return -EINVAL; 274 275 bo->placement = (struct ttm_placement) { 276 .num_placement = c, 277 .placement = bo->placements, 278 }; 279 280 return 0; 281 } 282 283 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 284 u32 bo_flags) 285 { 286 xe_bo_assert_held(bo); 287 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 288 } 289 290 static void xe_evict_flags(struct ttm_buffer_object *tbo, 291 struct ttm_placement *placement) 292 { 293 struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); 294 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 295 struct xe_bo *bo; 296 297 if (!xe_bo_is_xe_bo(tbo)) { 298 /* Don't handle scatter gather BOs */ 299 if (tbo->type == ttm_bo_type_sg) { 300 placement->num_placement = 0; 301 return; 302 } 303 304 *placement = device_unplugged ? purge_placement : sys_placement; 305 return; 306 } 307 308 bo = ttm_to_xe_bo(tbo); 309 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 310 *placement = sys_placement; 311 return; 312 } 313 314 if (device_unplugged && !tbo->base.dma_buf) { 315 *placement = purge_placement; 316 return; 317 } 318 319 /* 320 * For xe, sg bos that are evicted to system just triggers a 321 * rebind of the sg list upon subsequent validation to XE_PL_TT. 322 */ 323 switch (tbo->resource->mem_type) { 324 case XE_PL_VRAM0: 325 case XE_PL_VRAM1: 326 case XE_PL_STOLEN: 327 *placement = tt_placement; 328 break; 329 case XE_PL_TT: 330 default: 331 *placement = sys_placement; 332 break; 333 } 334 } 335 336 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 337 struct xe_ttm_tt { 338 struct ttm_tt ttm; 339 /** @xe - The xe device */ 340 struct xe_device *xe; 341 struct sg_table sgt; 342 struct sg_table *sg; 343 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 344 bool purgeable; 345 }; 346 347 static int xe_tt_map_sg(struct ttm_tt *tt) 348 { 349 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 350 unsigned long num_pages = tt->num_pages; 351 int ret; 352 353 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 354 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 355 356 if (xe_tt->sg) 357 return 0; 358 359 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 360 num_pages, 0, 361 (u64)num_pages << PAGE_SHIFT, 362 xe_sg_segment_size(xe_tt->xe->drm.dev), 363 GFP_KERNEL); 364 if (ret) 365 return ret; 366 367 xe_tt->sg = &xe_tt->sgt; 368 ret = dma_map_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 369 DMA_ATTR_SKIP_CPU_SYNC); 370 if (ret) { 371 sg_free_table(xe_tt->sg); 372 xe_tt->sg = NULL; 373 return ret; 374 } 375 376 return 0; 377 } 378 379 static void xe_tt_unmap_sg(struct ttm_tt *tt) 380 { 381 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 382 383 if (xe_tt->sg) { 384 dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, 385 DMA_BIDIRECTIONAL, 0); 386 sg_free_table(xe_tt->sg); 387 xe_tt->sg = NULL; 388 } 389 } 390 391 struct sg_table *xe_bo_sg(struct xe_bo *bo) 392 { 393 struct ttm_tt *tt = bo->ttm.ttm; 394 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 395 396 return xe_tt->sg; 397 } 398 399 /* 400 * Account ttm pages against the device shrinker's shrinkable and 401 * purgeable counts. 402 */ 403 static void xe_ttm_tt_account_add(struct ttm_tt *tt) 404 { 405 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 406 407 if (xe_tt->purgeable) 408 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, tt->num_pages); 409 else 410 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, tt->num_pages, 0); 411 } 412 413 static void xe_ttm_tt_account_subtract(struct ttm_tt *tt) 414 { 415 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 416 417 if (xe_tt->purgeable) 418 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, -(long)tt->num_pages); 419 else 420 xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, -(long)tt->num_pages, 0); 421 } 422 423 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 424 u32 page_flags) 425 { 426 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 427 struct xe_device *xe = xe_bo_device(bo); 428 struct xe_ttm_tt *xe_tt; 429 struct ttm_tt *tt; 430 unsigned long extra_pages; 431 enum ttm_caching caching = ttm_cached; 432 int err; 433 434 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 435 if (!xe_tt) 436 return NULL; 437 438 tt = &xe_tt->ttm; 439 xe_tt->xe = xe; 440 441 extra_pages = 0; 442 if (xe_bo_needs_ccs_pages(bo)) 443 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 444 PAGE_SIZE); 445 446 /* 447 * DGFX system memory is always WB / ttm_cached, since 448 * other caching modes are only supported on x86. DGFX 449 * GPU system memory accesses are always coherent with the 450 * CPU. 451 */ 452 if (!IS_DGFX(xe)) { 453 switch (bo->cpu_caching) { 454 case DRM_XE_GEM_CPU_CACHING_WC: 455 caching = ttm_write_combined; 456 break; 457 default: 458 caching = ttm_cached; 459 break; 460 } 461 462 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 463 464 /* 465 * Display scanout is always non-coherent with the CPU cache. 466 * 467 * For Xe_LPG and beyond, PPGTT PTE lookups are also 468 * non-coherent and require a CPU:WC mapping. 469 */ 470 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 471 (xe->info.graphics_verx100 >= 1270 && 472 bo->flags & XE_BO_FLAG_PAGETABLE)) 473 caching = ttm_write_combined; 474 } 475 476 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 477 /* 478 * Valid only for internally-created buffers only, for 479 * which cpu_caching is never initialized. 480 */ 481 xe_assert(xe, bo->cpu_caching == 0); 482 caching = ttm_uncached; 483 } 484 485 if (ttm_bo->type != ttm_bo_type_sg) 486 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 487 488 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 489 if (err) { 490 kfree(xe_tt); 491 return NULL; 492 } 493 494 if (ttm_bo->type != ttm_bo_type_sg) { 495 err = ttm_tt_setup_backup(tt); 496 if (err) { 497 ttm_tt_fini(tt); 498 kfree(xe_tt); 499 return NULL; 500 } 501 } 502 503 return tt; 504 } 505 506 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 507 struct ttm_operation_ctx *ctx) 508 { 509 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 510 int err; 511 512 /* 513 * dma-bufs are not populated with pages, and the dma- 514 * addresses are set up when moved to XE_PL_TT. 515 */ 516 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 517 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 518 return 0; 519 520 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 521 err = ttm_tt_restore(ttm_dev, tt, ctx); 522 } else { 523 ttm_tt_clear_backed_up(tt); 524 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 525 } 526 if (err) 527 return err; 528 529 xe_tt->purgeable = false; 530 xe_ttm_tt_account_add(tt); 531 532 return 0; 533 } 534 535 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 536 { 537 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 538 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 539 return; 540 541 xe_tt_unmap_sg(tt); 542 543 ttm_pool_free(&ttm_dev->pool, tt); 544 xe_ttm_tt_account_subtract(tt); 545 } 546 547 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 548 { 549 ttm_tt_fini(tt); 550 kfree(tt); 551 } 552 553 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 554 { 555 struct xe_ttm_vram_mgr_resource *vres = 556 to_xe_ttm_vram_mgr_resource(mem); 557 558 return vres->used_visible_size == mem->size; 559 } 560 561 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 562 struct ttm_resource *mem) 563 { 564 struct xe_device *xe = ttm_to_xe_device(bdev); 565 566 switch (mem->mem_type) { 567 case XE_PL_SYSTEM: 568 case XE_PL_TT: 569 return 0; 570 case XE_PL_VRAM0: 571 case XE_PL_VRAM1: { 572 struct xe_vram_region *vram = res_to_mem_region(mem); 573 574 if (!xe_ttm_resource_visible(mem)) 575 return -EINVAL; 576 577 mem->bus.offset = mem->start << PAGE_SHIFT; 578 579 if (vram->mapping && 580 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 581 mem->bus.addr = (u8 __force *)vram->mapping + 582 mem->bus.offset; 583 584 mem->bus.offset += vram->io_start; 585 mem->bus.is_iomem = true; 586 587 #if !IS_ENABLED(CONFIG_X86) 588 mem->bus.caching = ttm_write_combined; 589 #endif 590 return 0; 591 } case XE_PL_STOLEN: 592 return xe_ttm_stolen_io_mem_reserve(xe, mem); 593 default: 594 return -EINVAL; 595 } 596 } 597 598 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 599 const struct ttm_operation_ctx *ctx) 600 { 601 struct dma_resv_iter cursor; 602 struct dma_fence *fence; 603 struct drm_gem_object *obj = &bo->ttm.base; 604 struct drm_gpuvm_bo *vm_bo; 605 bool idle = false; 606 int ret = 0; 607 608 dma_resv_assert_held(bo->ttm.base.resv); 609 610 if (!list_empty(&bo->ttm.base.gpuva.list)) { 611 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 612 DMA_RESV_USAGE_BOOKKEEP); 613 dma_resv_for_each_fence_unlocked(&cursor, fence) 614 dma_fence_enable_sw_signaling(fence); 615 dma_resv_iter_end(&cursor); 616 } 617 618 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 619 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 620 struct drm_gpuva *gpuva; 621 622 if (!xe_vm_in_fault_mode(vm)) { 623 drm_gpuvm_bo_evict(vm_bo, true); 624 continue; 625 } 626 627 if (!idle) { 628 long timeout; 629 630 if (ctx->no_wait_gpu && 631 !dma_resv_test_signaled(bo->ttm.base.resv, 632 DMA_RESV_USAGE_BOOKKEEP)) 633 return -EBUSY; 634 635 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 636 DMA_RESV_USAGE_BOOKKEEP, 637 ctx->interruptible, 638 MAX_SCHEDULE_TIMEOUT); 639 if (!timeout) 640 return -ETIME; 641 if (timeout < 0) 642 return timeout; 643 644 idle = true; 645 } 646 647 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 648 struct xe_vma *vma = gpuva_to_vma(gpuva); 649 650 trace_xe_vma_evict(vma); 651 ret = xe_vm_invalidate_vma(vma); 652 if (XE_WARN_ON(ret)) 653 return ret; 654 } 655 } 656 657 return ret; 658 } 659 660 /* 661 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 662 * Note that unmapping the attachment is deferred to the next 663 * map_attachment time, or to bo destroy (after idling) whichever comes first. 664 * This is to avoid syncing before unmap_attachment(), assuming that the 665 * caller relies on idling the reservation object before moving the 666 * backing store out. Should that assumption not hold, then we will be able 667 * to unconditionally call unmap_attachment() when moving out to system. 668 */ 669 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 670 struct ttm_resource *new_res) 671 { 672 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 673 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 674 ttm); 675 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 676 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 677 struct sg_table *sg; 678 679 xe_assert(xe, attach); 680 xe_assert(xe, ttm_bo->ttm); 681 682 if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && 683 ttm_bo->sg) { 684 dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 685 false, MAX_SCHEDULE_TIMEOUT); 686 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 687 ttm_bo->sg = NULL; 688 } 689 690 if (new_res->mem_type == XE_PL_SYSTEM) 691 goto out; 692 693 if (ttm_bo->sg) { 694 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 695 ttm_bo->sg = NULL; 696 } 697 698 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 699 if (IS_ERR(sg)) 700 return PTR_ERR(sg); 701 702 ttm_bo->sg = sg; 703 xe_tt->sg = sg; 704 705 out: 706 ttm_bo_move_null(ttm_bo, new_res); 707 708 return 0; 709 } 710 711 /** 712 * xe_bo_move_notify - Notify subsystems of a pending move 713 * @bo: The buffer object 714 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 715 * 716 * This function notifies subsystems of an upcoming buffer move. 717 * Upon receiving such a notification, subsystems should schedule 718 * halting access to the underlying pages and optionally add a fence 719 * to the buffer object's dma_resv object, that signals when access is 720 * stopped. The caller will wait on all dma_resv fences before 721 * starting the move. 722 * 723 * A subsystem may commence access to the object after obtaining 724 * bindings to the new backing memory under the object lock. 725 * 726 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 727 * negative error code on error. 728 */ 729 static int xe_bo_move_notify(struct xe_bo *bo, 730 const struct ttm_operation_ctx *ctx) 731 { 732 struct ttm_buffer_object *ttm_bo = &bo->ttm; 733 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 734 struct ttm_resource *old_mem = ttm_bo->resource; 735 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 736 int ret; 737 738 /* 739 * If this starts to call into many components, consider 740 * using a notification chain here. 741 */ 742 743 if (xe_bo_is_pinned(bo)) 744 return -EINVAL; 745 746 xe_bo_vunmap(bo); 747 ret = xe_bo_trigger_rebind(xe, bo, ctx); 748 if (ret) 749 return ret; 750 751 /* Don't call move_notify() for imported dma-bufs. */ 752 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 753 dma_buf_move_notify(ttm_bo->base.dma_buf); 754 755 /* 756 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 757 * so if we moved from VRAM make sure to unlink this from the userfault 758 * tracking. 759 */ 760 if (mem_type_is_vram(old_mem_type)) { 761 mutex_lock(&xe->mem_access.vram_userfault.lock); 762 if (!list_empty(&bo->vram_userfault_link)) 763 list_del_init(&bo->vram_userfault_link); 764 mutex_unlock(&xe->mem_access.vram_userfault.lock); 765 } 766 767 return 0; 768 } 769 770 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 771 struct ttm_operation_ctx *ctx, 772 struct ttm_resource *new_mem, 773 struct ttm_place *hop) 774 { 775 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 776 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 777 struct ttm_resource *old_mem = ttm_bo->resource; 778 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 779 struct ttm_tt *ttm = ttm_bo->ttm; 780 struct xe_migrate *migrate = NULL; 781 struct dma_fence *fence; 782 bool move_lacks_source; 783 bool tt_has_data; 784 bool needs_clear; 785 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 786 ttm && ttm_tt_is_populated(ttm)) ? true : false; 787 int ret = 0; 788 789 /* Bo creation path, moving to system or TT. */ 790 if ((!old_mem && ttm) && !handle_system_ccs) { 791 if (new_mem->mem_type == XE_PL_TT) 792 ret = xe_tt_map_sg(ttm); 793 if (!ret) 794 ttm_bo_move_null(ttm_bo, new_mem); 795 goto out; 796 } 797 798 if (ttm_bo->type == ttm_bo_type_sg) { 799 ret = xe_bo_move_notify(bo, ctx); 800 if (!ret) 801 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 802 return ret; 803 } 804 805 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 806 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 807 808 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 809 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 810 811 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 812 (!ttm && ttm_bo->type == ttm_bo_type_device); 813 814 if (new_mem->mem_type == XE_PL_TT) { 815 ret = xe_tt_map_sg(ttm); 816 if (ret) 817 goto out; 818 } 819 820 if ((move_lacks_source && !needs_clear)) { 821 ttm_bo_move_null(ttm_bo, new_mem); 822 goto out; 823 } 824 825 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 826 new_mem->mem_type == XE_PL_SYSTEM) { 827 ret = xe_svm_bo_evict(bo); 828 if (!ret) { 829 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 830 ttm_bo_move_null(ttm_bo, new_mem); 831 } else { 832 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 833 ERR_PTR(ret)); 834 } 835 836 goto out; 837 } 838 839 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 840 ttm_bo_move_null(ttm_bo, new_mem); 841 goto out; 842 } 843 844 /* 845 * Failed multi-hop where the old_mem is still marked as 846 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 847 */ 848 if (old_mem_type == XE_PL_TT && 849 new_mem->mem_type == XE_PL_TT) { 850 ttm_bo_move_null(ttm_bo, new_mem); 851 goto out; 852 } 853 854 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 855 ret = xe_bo_move_notify(bo, ctx); 856 if (ret) 857 goto out; 858 } 859 860 if (old_mem_type == XE_PL_TT && 861 new_mem->mem_type == XE_PL_SYSTEM) { 862 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 863 DMA_RESV_USAGE_BOOKKEEP, 864 false, 865 MAX_SCHEDULE_TIMEOUT); 866 if (timeout < 0) { 867 ret = timeout; 868 goto out; 869 } 870 871 if (!handle_system_ccs) { 872 ttm_bo_move_null(ttm_bo, new_mem); 873 goto out; 874 } 875 } 876 877 if (!move_lacks_source && 878 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 879 (mem_type_is_vram(old_mem_type) && 880 new_mem->mem_type == XE_PL_SYSTEM))) { 881 hop->fpfn = 0; 882 hop->lpfn = 0; 883 hop->mem_type = XE_PL_TT; 884 hop->flags = TTM_PL_FLAG_TEMPORARY; 885 ret = -EMULTIHOP; 886 goto out; 887 } 888 889 if (bo->tile) 890 migrate = bo->tile->migrate; 891 else if (resource_is_vram(new_mem)) 892 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 893 else if (mem_type_is_vram(old_mem_type)) 894 migrate = mem_type_to_migrate(xe, old_mem_type); 895 else 896 migrate = xe->tiles[0].migrate; 897 898 xe_assert(xe, migrate); 899 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 900 if (xe_rpm_reclaim_safe(xe)) { 901 /* 902 * We might be called through swapout in the validation path of 903 * another TTM device, so acquire rpm here. 904 */ 905 xe_pm_runtime_get(xe); 906 } else { 907 drm_WARN_ON(&xe->drm, handle_system_ccs); 908 xe_pm_runtime_get_noresume(xe); 909 } 910 911 if (move_lacks_source) { 912 u32 flags = 0; 913 914 if (mem_type_is_vram(new_mem->mem_type)) 915 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 916 else if (handle_system_ccs) 917 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 918 919 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 920 } else { 921 fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, 922 handle_system_ccs); 923 } 924 if (IS_ERR(fence)) { 925 ret = PTR_ERR(fence); 926 xe_pm_runtime_put(xe); 927 goto out; 928 } 929 if (!move_lacks_source) { 930 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, 931 new_mem); 932 if (ret) { 933 dma_fence_wait(fence, false); 934 ttm_bo_move_null(ttm_bo, new_mem); 935 ret = 0; 936 } 937 } else { 938 /* 939 * ttm_bo_move_accel_cleanup() may blow up if 940 * bo->resource == NULL, so just attach the 941 * fence and set the new resource. 942 */ 943 dma_resv_add_fence(ttm_bo->base.resv, fence, 944 DMA_RESV_USAGE_KERNEL); 945 ttm_bo_move_null(ttm_bo, new_mem); 946 } 947 948 dma_fence_put(fence); 949 xe_pm_runtime_put(xe); 950 951 out: 952 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 953 ttm_bo->ttm) { 954 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 955 DMA_RESV_USAGE_KERNEL, 956 false, 957 MAX_SCHEDULE_TIMEOUT); 958 if (timeout < 0) 959 ret = timeout; 960 961 xe_tt_unmap_sg(ttm_bo->ttm); 962 } 963 964 return ret; 965 } 966 967 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 968 struct ttm_buffer_object *bo, 969 unsigned long *scanned) 970 { 971 long lret; 972 973 /* Fake move to system, without copying data. */ 974 if (bo->resource->mem_type != XE_PL_SYSTEM) { 975 struct ttm_resource *new_resource; 976 977 lret = ttm_bo_wait_ctx(bo, ctx); 978 if (lret) 979 return lret; 980 981 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 982 if (lret) 983 return lret; 984 985 xe_tt_unmap_sg(bo->ttm); 986 ttm_bo_move_null(bo, new_resource); 987 } 988 989 *scanned += bo->ttm->num_pages; 990 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 991 {.purge = true, 992 .writeback = false, 993 .allow_move = false}); 994 995 if (lret > 0) 996 xe_ttm_tt_account_subtract(bo->ttm); 997 998 return lret; 999 } 1000 1001 static bool 1002 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) 1003 { 1004 struct drm_gpuvm_bo *vm_bo; 1005 1006 if (!ttm_bo_eviction_valuable(bo, place)) 1007 return false; 1008 1009 if (!xe_bo_is_xe_bo(bo)) 1010 return true; 1011 1012 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { 1013 if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) 1014 return false; 1015 } 1016 1017 return true; 1018 } 1019 1020 /** 1021 * xe_bo_shrink() - Try to shrink an xe bo. 1022 * @ctx: The struct ttm_operation_ctx used for shrinking. 1023 * @bo: The TTM buffer object whose pages to shrink. 1024 * @flags: Flags governing the shrink behaviour. 1025 * @scanned: Pointer to a counter of the number of pages 1026 * attempted to shrink. 1027 * 1028 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1029 * Note that we need to be able to handle also non xe bos 1030 * (ghost bos), but only if the struct ttm_tt is embedded in 1031 * a struct xe_ttm_tt. When the function attempts to shrink 1032 * the pages of a buffer object, The value pointed to by @scanned 1033 * is updated. 1034 * 1035 * Return: The number of pages shrunken or purged, or negative error 1036 * code on failure. 1037 */ 1038 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1039 const struct xe_bo_shrink_flags flags, 1040 unsigned long *scanned) 1041 { 1042 struct ttm_tt *tt = bo->ttm; 1043 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1044 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1045 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1046 struct xe_device *xe = xe_tt->xe; 1047 bool needs_rpm; 1048 long lret = 0L; 1049 1050 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1051 (flags.purge && !xe_tt->purgeable)) 1052 return -EBUSY; 1053 1054 if (!xe_bo_eviction_valuable(bo, &place)) 1055 return -EBUSY; 1056 1057 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1058 return xe_bo_shrink_purge(ctx, bo, scanned); 1059 1060 if (xe_tt->purgeable) { 1061 if (bo->resource->mem_type != XE_PL_SYSTEM) 1062 lret = xe_bo_move_notify(xe_bo, ctx); 1063 if (!lret) 1064 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1065 goto out_unref; 1066 } 1067 1068 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1069 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1070 xe_bo_needs_ccs_pages(xe_bo)); 1071 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1072 goto out_unref; 1073 1074 *scanned += tt->num_pages; 1075 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1076 {.purge = false, 1077 .writeback = flags.writeback, 1078 .allow_move = true}); 1079 if (needs_rpm) 1080 xe_pm_runtime_put(xe); 1081 1082 if (lret > 0) 1083 xe_ttm_tt_account_subtract(tt); 1084 1085 out_unref: 1086 xe_bo_put(xe_bo); 1087 1088 return lret; 1089 } 1090 1091 /** 1092 * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed 1093 * up in system memory. 1094 * @bo: The buffer object to prepare. 1095 * 1096 * On successful completion, the object backup pages are allocated. Expectation 1097 * is that this is called from the PM notifier, prior to suspend/hibernation. 1098 * 1099 * Return: 0 on success. Negative error code on failure. 1100 */ 1101 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) 1102 { 1103 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1104 struct xe_bo *backup; 1105 int ret = 0; 1106 1107 xe_bo_lock(bo, false); 1108 1109 xe_assert(xe, !bo->backup_obj); 1110 1111 /* 1112 * Since this is called from the PM notifier we might have raced with 1113 * someone unpinning this after we dropped the pinned list lock and 1114 * grabbing the above bo lock. 1115 */ 1116 if (!xe_bo_is_pinned(bo)) 1117 goto out_unlock_bo; 1118 1119 if (!xe_bo_is_vram(bo)) 1120 goto out_unlock_bo; 1121 1122 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1123 goto out_unlock_bo; 1124 1125 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size, 1126 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1127 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1128 XE_BO_FLAG_PINNED); 1129 if (IS_ERR(backup)) { 1130 ret = PTR_ERR(backup); 1131 goto out_unlock_bo; 1132 } 1133 1134 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1135 ttm_bo_pin(&backup->ttm); 1136 bo->backup_obj = backup; 1137 1138 out_unlock_bo: 1139 xe_bo_unlock(bo); 1140 return ret; 1141 } 1142 1143 /** 1144 * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. 1145 * @bo: The buffer object to undo the prepare for. 1146 * 1147 * Always returns 0. The backup object is removed, if still present. Expectation 1148 * it that this called from the PM notifier when undoing the prepare step. 1149 * 1150 * Return: Always returns 0. 1151 */ 1152 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) 1153 { 1154 xe_bo_lock(bo, false); 1155 if (bo->backup_obj) { 1156 ttm_bo_unpin(&bo->backup_obj->ttm); 1157 xe_bo_put(bo->backup_obj); 1158 bo->backup_obj = NULL; 1159 } 1160 xe_bo_unlock(bo); 1161 1162 return 0; 1163 } 1164 1165 /** 1166 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1167 * @bo: The buffer object to move. 1168 * 1169 * On successful completion, the object memory will be moved to system memory. 1170 * 1171 * This is needed to for special handling of pinned VRAM object during 1172 * suspend-resume. 1173 * 1174 * Return: 0 on success. Negative error code on failure. 1175 */ 1176 int xe_bo_evict_pinned(struct xe_bo *bo) 1177 { 1178 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1179 struct xe_bo *backup = bo->backup_obj; 1180 bool backup_created = false; 1181 bool unmap = false; 1182 int ret = 0; 1183 1184 xe_bo_lock(bo, false); 1185 1186 if (WARN_ON(!bo->ttm.resource)) { 1187 ret = -EINVAL; 1188 goto out_unlock_bo; 1189 } 1190 1191 if (WARN_ON(!xe_bo_is_pinned(bo))) { 1192 ret = -EINVAL; 1193 goto out_unlock_bo; 1194 } 1195 1196 if (!xe_bo_is_vram(bo)) 1197 goto out_unlock_bo; 1198 1199 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1200 goto out_unlock_bo; 1201 1202 if (!backup) { 1203 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size, 1204 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1205 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1206 XE_BO_FLAG_PINNED); 1207 if (IS_ERR(backup)) { 1208 ret = PTR_ERR(backup); 1209 goto out_unlock_bo; 1210 } 1211 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1212 backup_created = true; 1213 } 1214 1215 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1216 struct xe_migrate *migrate; 1217 struct dma_fence *fence; 1218 1219 if (bo->tile) 1220 migrate = bo->tile->migrate; 1221 else 1222 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1223 1224 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1225 if (ret) 1226 goto out_backup; 1227 1228 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1229 if (ret) 1230 goto out_backup; 1231 1232 fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, 1233 backup->ttm.resource, false); 1234 if (IS_ERR(fence)) { 1235 ret = PTR_ERR(fence); 1236 goto out_backup; 1237 } 1238 1239 dma_resv_add_fence(bo->ttm.base.resv, fence, 1240 DMA_RESV_USAGE_KERNEL); 1241 dma_resv_add_fence(backup->ttm.base.resv, fence, 1242 DMA_RESV_USAGE_KERNEL); 1243 dma_fence_put(fence); 1244 } else { 1245 ret = xe_bo_vmap(backup); 1246 if (ret) 1247 goto out_backup; 1248 1249 if (iosys_map_is_null(&bo->vmap)) { 1250 ret = xe_bo_vmap(bo); 1251 if (ret) 1252 goto out_backup; 1253 unmap = true; 1254 } 1255 1256 xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, 1257 bo->size); 1258 } 1259 1260 if (!bo->backup_obj) 1261 bo->backup_obj = backup; 1262 1263 out_backup: 1264 xe_bo_vunmap(backup); 1265 if (ret && backup_created) 1266 xe_bo_put(backup); 1267 out_unlock_bo: 1268 if (unmap) 1269 xe_bo_vunmap(bo); 1270 xe_bo_unlock(bo); 1271 return ret; 1272 } 1273 1274 /** 1275 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1276 * @bo: The buffer object to move. 1277 * 1278 * On successful completion, the object memory will be moved back to VRAM. 1279 * 1280 * This is needed to for special handling of pinned VRAM object during 1281 * suspend-resume. 1282 * 1283 * Return: 0 on success. Negative error code on failure. 1284 */ 1285 int xe_bo_restore_pinned(struct xe_bo *bo) 1286 { 1287 struct ttm_operation_ctx ctx = { 1288 .interruptible = false, 1289 .gfp_retry_mayfail = false, 1290 }; 1291 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1292 struct xe_bo *backup = bo->backup_obj; 1293 bool unmap = false; 1294 int ret; 1295 1296 if (!backup) 1297 return 0; 1298 1299 xe_bo_lock(bo, false); 1300 1301 if (!xe_bo_is_pinned(backup)) { 1302 ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); 1303 if (ret) 1304 goto out_unlock_bo; 1305 } 1306 1307 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1308 struct xe_migrate *migrate; 1309 struct dma_fence *fence; 1310 1311 if (bo->tile) 1312 migrate = bo->tile->migrate; 1313 else 1314 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1315 1316 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1317 if (ret) 1318 goto out_unlock_bo; 1319 1320 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1321 if (ret) 1322 goto out_unlock_bo; 1323 1324 fence = xe_migrate_copy(migrate, backup, bo, 1325 backup->ttm.resource, bo->ttm.resource, 1326 false); 1327 if (IS_ERR(fence)) { 1328 ret = PTR_ERR(fence); 1329 goto out_unlock_bo; 1330 } 1331 1332 dma_resv_add_fence(bo->ttm.base.resv, fence, 1333 DMA_RESV_USAGE_KERNEL); 1334 dma_resv_add_fence(backup->ttm.base.resv, fence, 1335 DMA_RESV_USAGE_KERNEL); 1336 dma_fence_put(fence); 1337 } else { 1338 ret = xe_bo_vmap(backup); 1339 if (ret) 1340 goto out_unlock_bo; 1341 1342 if (iosys_map_is_null(&bo->vmap)) { 1343 ret = xe_bo_vmap(bo); 1344 if (ret) 1345 goto out_backup; 1346 unmap = true; 1347 } 1348 1349 xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, 1350 bo->size); 1351 } 1352 1353 bo->backup_obj = NULL; 1354 1355 out_backup: 1356 xe_bo_vunmap(backup); 1357 if (!bo->backup_obj) { 1358 if (xe_bo_is_pinned(backup)) 1359 ttm_bo_unpin(&backup->ttm); 1360 xe_bo_put(backup); 1361 } 1362 out_unlock_bo: 1363 if (unmap) 1364 xe_bo_vunmap(bo); 1365 xe_bo_unlock(bo); 1366 return ret; 1367 } 1368 1369 int xe_bo_dma_unmap_pinned(struct xe_bo *bo) 1370 { 1371 struct ttm_buffer_object *ttm_bo = &bo->ttm; 1372 struct ttm_tt *tt = ttm_bo->ttm; 1373 1374 if (tt) { 1375 struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); 1376 1377 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1378 dma_buf_unmap_attachment(ttm_bo->base.import_attach, 1379 ttm_bo->sg, 1380 DMA_BIDIRECTIONAL); 1381 ttm_bo->sg = NULL; 1382 xe_tt->sg = NULL; 1383 } else if (xe_tt->sg) { 1384 dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, 1385 DMA_BIDIRECTIONAL, 0); 1386 sg_free_table(xe_tt->sg); 1387 xe_tt->sg = NULL; 1388 } 1389 } 1390 1391 return 0; 1392 } 1393 1394 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1395 unsigned long page_offset) 1396 { 1397 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1398 struct xe_res_cursor cursor; 1399 struct xe_vram_region *vram; 1400 1401 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1402 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1403 1404 vram = res_to_mem_region(ttm_bo->resource); 1405 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1406 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1407 } 1408 1409 static void __xe_bo_vunmap(struct xe_bo *bo); 1410 1411 /* 1412 * TODO: Move this function to TTM so we don't rely on how TTM does its 1413 * locking, thereby abusing TTM internals. 1414 */ 1415 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1416 { 1417 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1418 bool locked; 1419 1420 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1421 1422 /* 1423 * We can typically only race with TTM trylocking under the 1424 * lru_lock, which will immediately be unlocked again since 1425 * the ttm_bo refcount is zero at this point. So trylocking *should* 1426 * always succeed here, as long as we hold the lru lock. 1427 */ 1428 spin_lock(&ttm_bo->bdev->lru_lock); 1429 locked = dma_resv_trylock(ttm_bo->base.resv); 1430 spin_unlock(&ttm_bo->bdev->lru_lock); 1431 xe_assert(xe, locked); 1432 1433 return locked; 1434 } 1435 1436 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1437 { 1438 struct dma_resv_iter cursor; 1439 struct dma_fence *fence; 1440 struct dma_fence *replacement = NULL; 1441 struct xe_bo *bo; 1442 1443 if (!xe_bo_is_xe_bo(ttm_bo)) 1444 return; 1445 1446 bo = ttm_to_xe_bo(ttm_bo); 1447 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1448 1449 /* 1450 * Corner case where TTM fails to allocate memory and this BOs resv 1451 * still points the VMs resv 1452 */ 1453 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1454 return; 1455 1456 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1457 return; 1458 1459 /* 1460 * Scrub the preempt fences if any. The unbind fence is already 1461 * attached to the resv. 1462 * TODO: Don't do this for external bos once we scrub them after 1463 * unbind. 1464 */ 1465 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1466 DMA_RESV_USAGE_BOOKKEEP, fence) { 1467 if (xe_fence_is_xe_preempt(fence) && 1468 !dma_fence_is_signaled(fence)) { 1469 if (!replacement) 1470 replacement = dma_fence_get_stub(); 1471 1472 dma_resv_replace_fences(ttm_bo->base.resv, 1473 fence->context, 1474 replacement, 1475 DMA_RESV_USAGE_BOOKKEEP); 1476 } 1477 } 1478 dma_fence_put(replacement); 1479 1480 dma_resv_unlock(ttm_bo->base.resv); 1481 } 1482 1483 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1484 { 1485 if (!xe_bo_is_xe_bo(ttm_bo)) 1486 return; 1487 1488 /* 1489 * Object is idle and about to be destroyed. Release the 1490 * dma-buf attachment. 1491 */ 1492 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1493 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1494 struct xe_ttm_tt, ttm); 1495 1496 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1497 DMA_BIDIRECTIONAL); 1498 ttm_bo->sg = NULL; 1499 xe_tt->sg = NULL; 1500 } 1501 } 1502 1503 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1504 { 1505 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1506 1507 if (ttm_bo->ttm) { 1508 struct ttm_placement place = {}; 1509 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1510 1511 drm_WARN_ON(&xe->drm, ret); 1512 } 1513 } 1514 1515 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1516 { 1517 struct ttm_operation_ctx ctx = { 1518 .interruptible = false, 1519 .gfp_retry_mayfail = false, 1520 }; 1521 1522 if (ttm_bo->ttm) { 1523 struct xe_ttm_tt *xe_tt = 1524 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1525 1526 if (xe_tt->purgeable) 1527 xe_ttm_bo_purge(ttm_bo, &ctx); 1528 } 1529 } 1530 1531 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1532 unsigned long offset, void *buf, int len, 1533 int write) 1534 { 1535 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1536 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1537 struct iosys_map vmap; 1538 struct xe_res_cursor cursor; 1539 struct xe_vram_region *vram; 1540 int bytes_left = len; 1541 int err = 0; 1542 1543 xe_bo_assert_held(bo); 1544 xe_device_assert_mem_access(xe); 1545 1546 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1547 return -EIO; 1548 1549 if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) { 1550 struct xe_migrate *migrate = 1551 mem_type_to_migrate(xe, ttm_bo->resource->mem_type); 1552 1553 err = xe_migrate_access_memory(migrate, bo, offset, buf, len, 1554 write); 1555 goto out; 1556 } 1557 1558 vram = res_to_mem_region(ttm_bo->resource); 1559 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1560 bo->size - (offset & PAGE_MASK), &cursor); 1561 1562 do { 1563 unsigned long page_offset = (offset & ~PAGE_MASK); 1564 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1565 1566 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1567 cursor.start); 1568 if (write) 1569 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1570 else 1571 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1572 1573 buf += byte_count; 1574 offset += byte_count; 1575 bytes_left -= byte_count; 1576 if (bytes_left) 1577 xe_res_next(&cursor, PAGE_SIZE); 1578 } while (bytes_left); 1579 1580 out: 1581 return err ?: len; 1582 } 1583 1584 const struct ttm_device_funcs xe_ttm_funcs = { 1585 .ttm_tt_create = xe_ttm_tt_create, 1586 .ttm_tt_populate = xe_ttm_tt_populate, 1587 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1588 .ttm_tt_destroy = xe_ttm_tt_destroy, 1589 .evict_flags = xe_evict_flags, 1590 .move = xe_bo_move, 1591 .io_mem_reserve = xe_ttm_io_mem_reserve, 1592 .io_mem_pfn = xe_ttm_io_mem_pfn, 1593 .access_memory = xe_ttm_access_memory, 1594 .release_notify = xe_ttm_bo_release_notify, 1595 .eviction_valuable = xe_bo_eviction_valuable, 1596 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1597 .swap_notify = xe_ttm_bo_swap_notify, 1598 }; 1599 1600 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1601 { 1602 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1603 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1604 struct xe_tile *tile; 1605 u8 id; 1606 1607 if (bo->ttm.base.import_attach) 1608 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1609 drm_gem_object_release(&bo->ttm.base); 1610 1611 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1612 1613 for_each_tile(tile, xe, id) 1614 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1615 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1616 1617 #ifdef CONFIG_PROC_FS 1618 if (bo->client) 1619 xe_drm_client_remove_bo(bo); 1620 #endif 1621 1622 if (bo->vm && xe_bo_is_user(bo)) 1623 xe_vm_put(bo->vm); 1624 1625 if (bo->parent_obj) 1626 xe_bo_put(bo->parent_obj); 1627 1628 mutex_lock(&xe->mem_access.vram_userfault.lock); 1629 if (!list_empty(&bo->vram_userfault_link)) 1630 list_del(&bo->vram_userfault_link); 1631 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1632 1633 kfree(bo); 1634 } 1635 1636 static void xe_gem_object_free(struct drm_gem_object *obj) 1637 { 1638 /* Our BO reference counting scheme works as follows: 1639 * 1640 * The gem object kref is typically used throughout the driver, 1641 * and the gem object holds a ttm_buffer_object refcount, so 1642 * that when the last gem object reference is put, which is when 1643 * we end up in this function, we put also that ttm_buffer_object 1644 * refcount. Anything using gem interfaces is then no longer 1645 * allowed to access the object in a way that requires a gem 1646 * refcount, including locking the object. 1647 * 1648 * driver ttm callbacks is allowed to use the ttm_buffer_object 1649 * refcount directly if needed. 1650 */ 1651 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1652 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1653 } 1654 1655 static void xe_gem_object_close(struct drm_gem_object *obj, 1656 struct drm_file *file_priv) 1657 { 1658 struct xe_bo *bo = gem_to_xe_bo(obj); 1659 1660 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1661 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1662 1663 xe_bo_lock(bo, false); 1664 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1665 xe_bo_unlock(bo); 1666 } 1667 } 1668 1669 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1670 { 1671 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1672 struct drm_device *ddev = tbo->base.dev; 1673 struct xe_device *xe = to_xe_device(ddev); 1674 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1675 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1676 vm_fault_t ret; 1677 int idx; 1678 1679 if (needs_rpm) 1680 xe_pm_runtime_get(xe); 1681 1682 ret = ttm_bo_vm_reserve(tbo, vmf); 1683 if (ret) 1684 goto out; 1685 1686 if (drm_dev_enter(ddev, &idx)) { 1687 trace_xe_bo_cpu_fault(bo); 1688 1689 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1690 TTM_BO_VM_NUM_PREFAULT); 1691 drm_dev_exit(idx); 1692 } else { 1693 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1694 } 1695 1696 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1697 goto out; 1698 /* 1699 * ttm_bo_vm_reserve() already has dma_resv_lock. 1700 */ 1701 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1702 mutex_lock(&xe->mem_access.vram_userfault.lock); 1703 if (list_empty(&bo->vram_userfault_link)) 1704 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1705 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1706 } 1707 1708 dma_resv_unlock(tbo->base.resv); 1709 out: 1710 if (needs_rpm) 1711 xe_pm_runtime_put(xe); 1712 1713 return ret; 1714 } 1715 1716 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1717 void *buf, int len, int write) 1718 { 1719 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1720 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1721 struct xe_device *xe = xe_bo_device(bo); 1722 int ret; 1723 1724 xe_pm_runtime_get(xe); 1725 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1726 xe_pm_runtime_put(xe); 1727 1728 return ret; 1729 } 1730 1731 /** 1732 * xe_bo_read() - Read from an xe_bo 1733 * @bo: The buffer object to read from. 1734 * @offset: The byte offset to start reading from. 1735 * @dst: Location to store the read. 1736 * @size: Size in bytes for the read. 1737 * 1738 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1739 * 1740 * Return: Zero on success, or negative error. 1741 */ 1742 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1743 { 1744 int ret; 1745 1746 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1747 if (ret >= 0 && ret != size) 1748 ret = -EIO; 1749 else if (ret == size) 1750 ret = 0; 1751 1752 return ret; 1753 } 1754 1755 static const struct vm_operations_struct xe_gem_vm_ops = { 1756 .fault = xe_gem_fault, 1757 .open = ttm_bo_vm_open, 1758 .close = ttm_bo_vm_close, 1759 .access = xe_bo_vm_access, 1760 }; 1761 1762 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1763 .free = xe_gem_object_free, 1764 .close = xe_gem_object_close, 1765 .mmap = drm_gem_ttm_mmap, 1766 .export = xe_gem_prime_export, 1767 .vm_ops = &xe_gem_vm_ops, 1768 }; 1769 1770 /** 1771 * xe_bo_alloc - Allocate storage for a struct xe_bo 1772 * 1773 * This function is intended to allocate storage to be used for input 1774 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1775 * created is needed before the call to __xe_bo_create_locked(). 1776 * If __xe_bo_create_locked ends up never to be called, then the 1777 * storage allocated with this function needs to be freed using 1778 * xe_bo_free(). 1779 * 1780 * Return: A pointer to an uninitialized struct xe_bo on success, 1781 * ERR_PTR(-ENOMEM) on error. 1782 */ 1783 struct xe_bo *xe_bo_alloc(void) 1784 { 1785 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1786 1787 if (!bo) 1788 return ERR_PTR(-ENOMEM); 1789 1790 return bo; 1791 } 1792 1793 /** 1794 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1795 * @bo: The buffer object storage. 1796 * 1797 * Refer to xe_bo_alloc() documentation for valid use-cases. 1798 */ 1799 void xe_bo_free(struct xe_bo *bo) 1800 { 1801 kfree(bo); 1802 } 1803 1804 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1805 struct xe_tile *tile, struct dma_resv *resv, 1806 struct ttm_lru_bulk_move *bulk, size_t size, 1807 u16 cpu_caching, enum ttm_bo_type type, 1808 u32 flags) 1809 { 1810 struct ttm_operation_ctx ctx = { 1811 .interruptible = true, 1812 .no_wait_gpu = false, 1813 .gfp_retry_mayfail = true, 1814 }; 1815 struct ttm_placement *placement; 1816 uint32_t alignment; 1817 size_t aligned_size; 1818 int err; 1819 1820 /* Only kernel objects should set GT */ 1821 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1822 1823 if (XE_WARN_ON(!size)) { 1824 xe_bo_free(bo); 1825 return ERR_PTR(-EINVAL); 1826 } 1827 1828 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1829 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1830 return ERR_PTR(-EINVAL); 1831 1832 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1833 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1834 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1835 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1836 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1837 1838 aligned_size = ALIGN(size, align); 1839 if (type != ttm_bo_type_device) 1840 size = ALIGN(size, align); 1841 flags |= XE_BO_FLAG_INTERNAL_64K; 1842 alignment = align >> PAGE_SHIFT; 1843 } else { 1844 aligned_size = ALIGN(size, SZ_4K); 1845 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1846 alignment = SZ_4K >> PAGE_SHIFT; 1847 } 1848 1849 if (type == ttm_bo_type_device && aligned_size != size) 1850 return ERR_PTR(-EINVAL); 1851 1852 if (!bo) { 1853 bo = xe_bo_alloc(); 1854 if (IS_ERR(bo)) 1855 return bo; 1856 } 1857 1858 bo->ccs_cleared = false; 1859 bo->tile = tile; 1860 bo->size = size; 1861 bo->flags = flags; 1862 bo->cpu_caching = cpu_caching; 1863 bo->ttm.base.funcs = &xe_gem_object_funcs; 1864 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1865 INIT_LIST_HEAD(&bo->pinned_link); 1866 #ifdef CONFIG_PROC_FS 1867 INIT_LIST_HEAD(&bo->client_link); 1868 #endif 1869 INIT_LIST_HEAD(&bo->vram_userfault_link); 1870 1871 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1872 1873 if (resv) { 1874 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1875 ctx.resv = resv; 1876 } 1877 1878 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1879 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1880 if (WARN_ON(err)) { 1881 xe_ttm_bo_destroy(&bo->ttm); 1882 return ERR_PTR(err); 1883 } 1884 } 1885 1886 /* Defer populating type_sg bos */ 1887 placement = (type == ttm_bo_type_sg || 1888 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1889 &bo->placement; 1890 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1891 placement, alignment, 1892 &ctx, NULL, resv, xe_ttm_bo_destroy); 1893 if (err) 1894 return ERR_PTR(err); 1895 1896 /* 1897 * The VRAM pages underneath are potentially still being accessed by the 1898 * GPU, as per async GPU clearing and async evictions. However TTM makes 1899 * sure to add any corresponding move/clear fences into the objects 1900 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1901 * 1902 * For KMD internal buffers we don't care about GPU clearing, however we 1903 * still need to handle async evictions, where the VRAM is still being 1904 * accessed by the GPU. Most internal callers are not expecting this, 1905 * since they are missing the required synchronisation before accessing 1906 * the memory. To keep things simple just sync wait any kernel fences 1907 * here, if the buffer is designated KMD internal. 1908 * 1909 * For normal userspace objects we should already have the required 1910 * pipelining or sync waiting elsewhere, since we already have to deal 1911 * with things like async GPU clearing. 1912 */ 1913 if (type == ttm_bo_type_kernel) { 1914 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1915 DMA_RESV_USAGE_KERNEL, 1916 ctx.interruptible, 1917 MAX_SCHEDULE_TIMEOUT); 1918 1919 if (timeout < 0) { 1920 if (!resv) 1921 dma_resv_unlock(bo->ttm.base.resv); 1922 xe_bo_put(bo); 1923 return ERR_PTR(timeout); 1924 } 1925 } 1926 1927 bo->created = true; 1928 if (bulk) 1929 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1930 else 1931 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1932 1933 return bo; 1934 } 1935 1936 static int __xe_bo_fixed_placement(struct xe_device *xe, 1937 struct xe_bo *bo, 1938 u32 flags, 1939 u64 start, u64 end, u64 size) 1940 { 1941 struct ttm_place *place = bo->placements; 1942 1943 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1944 return -EINVAL; 1945 1946 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1947 place->fpfn = start >> PAGE_SHIFT; 1948 place->lpfn = end >> PAGE_SHIFT; 1949 1950 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1951 case XE_BO_FLAG_VRAM0: 1952 place->mem_type = XE_PL_VRAM0; 1953 break; 1954 case XE_BO_FLAG_VRAM1: 1955 place->mem_type = XE_PL_VRAM1; 1956 break; 1957 case XE_BO_FLAG_STOLEN: 1958 place->mem_type = XE_PL_STOLEN; 1959 break; 1960 1961 default: 1962 /* 0 or multiple of the above set */ 1963 return -EINVAL; 1964 } 1965 1966 bo->placement = (struct ttm_placement) { 1967 .num_placement = 1, 1968 .placement = place, 1969 }; 1970 1971 return 0; 1972 } 1973 1974 static struct xe_bo * 1975 __xe_bo_create_locked(struct xe_device *xe, 1976 struct xe_tile *tile, struct xe_vm *vm, 1977 size_t size, u64 start, u64 end, 1978 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 1979 u64 alignment) 1980 { 1981 struct xe_bo *bo = NULL; 1982 int err; 1983 1984 if (vm) 1985 xe_vm_assert_held(vm); 1986 1987 if (start || end != ~0ULL) { 1988 bo = xe_bo_alloc(); 1989 if (IS_ERR(bo)) 1990 return bo; 1991 1992 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1993 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1994 if (err) { 1995 xe_bo_free(bo); 1996 return ERR_PTR(err); 1997 } 1998 } 1999 2000 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 2001 vm && !xe_vm_in_fault_mode(vm) && 2002 flags & XE_BO_FLAG_USER ? 2003 &vm->lru_bulk_move : NULL, size, 2004 cpu_caching, type, flags); 2005 if (IS_ERR(bo)) 2006 return bo; 2007 2008 bo->min_align = alignment; 2009 2010 /* 2011 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 2012 * to ensure the shared resv doesn't disappear under the bo, the bo 2013 * will keep a reference to the vm, and avoid circular references 2014 * by having all the vm's bo refereferences released at vm close 2015 * time. 2016 */ 2017 if (vm && xe_bo_is_user(bo)) 2018 xe_vm_get(vm); 2019 bo->vm = vm; 2020 2021 if (bo->flags & XE_BO_FLAG_GGTT) { 2022 struct xe_tile *t; 2023 u8 id; 2024 2025 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 2026 if (!tile && flags & XE_BO_FLAG_STOLEN) 2027 tile = xe_device_get_root_tile(xe); 2028 2029 xe_assert(xe, tile); 2030 } 2031 2032 for_each_tile(t, xe, id) { 2033 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 2034 continue; 2035 2036 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 2037 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 2038 start + bo->size, U64_MAX); 2039 } else { 2040 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 2041 } 2042 if (err) 2043 goto err_unlock_put_bo; 2044 } 2045 } 2046 2047 trace_xe_bo_create(bo); 2048 return bo; 2049 2050 err_unlock_put_bo: 2051 __xe_bo_unset_bulk_move(bo); 2052 xe_bo_unlock_vm_held(bo); 2053 xe_bo_put(bo); 2054 return ERR_PTR(err); 2055 } 2056 2057 struct xe_bo * 2058 xe_bo_create_locked_range(struct xe_device *xe, 2059 struct xe_tile *tile, struct xe_vm *vm, 2060 size_t size, u64 start, u64 end, 2061 enum ttm_bo_type type, u32 flags, u64 alignment) 2062 { 2063 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 2064 flags, alignment); 2065 } 2066 2067 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 2068 struct xe_vm *vm, size_t size, 2069 enum ttm_bo_type type, u32 flags) 2070 { 2071 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 2072 flags, 0); 2073 } 2074 2075 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 2076 struct xe_vm *vm, size_t size, 2077 u16 cpu_caching, 2078 u32 flags) 2079 { 2080 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 2081 cpu_caching, ttm_bo_type_device, 2082 flags | XE_BO_FLAG_USER, 0); 2083 if (!IS_ERR(bo)) 2084 xe_bo_unlock_vm_held(bo); 2085 2086 return bo; 2087 } 2088 2089 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 2090 struct xe_vm *vm, size_t size, 2091 enum ttm_bo_type type, u32 flags) 2092 { 2093 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 2094 2095 if (!IS_ERR(bo)) 2096 xe_bo_unlock_vm_held(bo); 2097 2098 return bo; 2099 } 2100 2101 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 2102 struct xe_vm *vm, 2103 size_t size, u64 offset, 2104 enum ttm_bo_type type, u32 flags) 2105 { 2106 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 2107 type, flags, 0); 2108 } 2109 2110 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 2111 struct xe_tile *tile, 2112 struct xe_vm *vm, 2113 size_t size, u64 offset, 2114 enum ttm_bo_type type, u32 flags, 2115 u64 alignment) 2116 { 2117 struct xe_bo *bo; 2118 int err; 2119 u64 start = offset == ~0ull ? 0 : offset; 2120 u64 end = offset == ~0ull ? offset : start + size; 2121 2122 if (flags & XE_BO_FLAG_STOLEN && 2123 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 2124 flags |= XE_BO_FLAG_GGTT; 2125 2126 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 2127 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, 2128 alignment); 2129 if (IS_ERR(bo)) 2130 return bo; 2131 2132 err = xe_bo_pin(bo); 2133 if (err) 2134 goto err_put; 2135 2136 err = xe_bo_vmap(bo); 2137 if (err) 2138 goto err_unpin; 2139 2140 xe_bo_unlock_vm_held(bo); 2141 2142 return bo; 2143 2144 err_unpin: 2145 xe_bo_unpin(bo); 2146 err_put: 2147 xe_bo_unlock_vm_held(bo); 2148 xe_bo_put(bo); 2149 return ERR_PTR(err); 2150 } 2151 2152 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2153 struct xe_vm *vm, size_t size, 2154 enum ttm_bo_type type, u32 flags) 2155 { 2156 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 2157 } 2158 2159 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2160 const void *data, size_t size, 2161 enum ttm_bo_type type, u32 flags) 2162 { 2163 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 2164 ALIGN(size, PAGE_SIZE), 2165 type, flags); 2166 if (IS_ERR(bo)) 2167 return bo; 2168 2169 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2170 2171 return bo; 2172 } 2173 2174 static void __xe_bo_unpin_map_no_vm(void *arg) 2175 { 2176 xe_bo_unpin_map_no_vm(arg); 2177 } 2178 2179 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2180 size_t size, u32 flags) 2181 { 2182 struct xe_bo *bo; 2183 int ret; 2184 2185 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2186 2187 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2188 if (IS_ERR(bo)) 2189 return bo; 2190 2191 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2192 if (ret) 2193 return ERR_PTR(ret); 2194 2195 return bo; 2196 } 2197 2198 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2199 const void *data, size_t size, u32 flags) 2200 { 2201 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2202 2203 if (IS_ERR(bo)) 2204 return bo; 2205 2206 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2207 2208 return bo; 2209 } 2210 2211 /** 2212 * xe_managed_bo_reinit_in_vram 2213 * @xe: xe device 2214 * @tile: Tile where the new buffer will be created 2215 * @src: Managed buffer object allocated in system memory 2216 * 2217 * Replace a managed src buffer object allocated in system memory with a new 2218 * one allocated in vram, copying the data between them. 2219 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2220 * is responsible for making sure that any old references to it are updated. 2221 * 2222 * Returns 0 for success, negative error code otherwise. 2223 */ 2224 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2225 { 2226 struct xe_bo *bo; 2227 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2228 2229 dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | 2230 XE_BO_FLAG_PINNED_NORESTORE); 2231 2232 xe_assert(xe, IS_DGFX(xe)); 2233 xe_assert(xe, !(*src)->vmap.is_iomem); 2234 2235 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2236 (*src)->size, dst_flags); 2237 if (IS_ERR(bo)) 2238 return PTR_ERR(bo); 2239 2240 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2241 *src = bo; 2242 2243 return 0; 2244 } 2245 2246 /* 2247 * XXX: This is in the VM bind data path, likely should calculate this once and 2248 * store, with a recalculation if the BO is moved. 2249 */ 2250 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2251 { 2252 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2253 2254 switch (res->mem_type) { 2255 case XE_PL_STOLEN: 2256 return xe_ttm_stolen_gpu_offset(xe); 2257 case XE_PL_TT: 2258 case XE_PL_SYSTEM: 2259 return 0; 2260 default: 2261 return res_to_mem_region(res)->dpa_base; 2262 } 2263 return 0; 2264 } 2265 2266 /** 2267 * xe_bo_pin_external - pin an external BO 2268 * @bo: buffer object to be pinned 2269 * 2270 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2271 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2272 * asserts and code to ensure evict / restore on suspend / resume. 2273 * 2274 * Returns 0 for success, negative error code otherwise. 2275 */ 2276 int xe_bo_pin_external(struct xe_bo *bo) 2277 { 2278 struct xe_device *xe = xe_bo_device(bo); 2279 int err; 2280 2281 xe_assert(xe, !bo->vm); 2282 xe_assert(xe, xe_bo_is_user(bo)); 2283 2284 if (!xe_bo_is_pinned(bo)) { 2285 err = xe_bo_validate(bo, NULL, false); 2286 if (err) 2287 return err; 2288 2289 spin_lock(&xe->pinned.lock); 2290 list_add_tail(&bo->pinned_link, &xe->pinned.late.external); 2291 spin_unlock(&xe->pinned.lock); 2292 } 2293 2294 ttm_bo_pin(&bo->ttm); 2295 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2296 xe_ttm_tt_account_subtract(bo->ttm.ttm); 2297 2298 /* 2299 * FIXME: If we always use the reserve / unreserve functions for locking 2300 * we do not need this. 2301 */ 2302 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2303 2304 return 0; 2305 } 2306 2307 int xe_bo_pin(struct xe_bo *bo) 2308 { 2309 struct ttm_place *place = &bo->placements[0]; 2310 struct xe_device *xe = xe_bo_device(bo); 2311 int err; 2312 2313 /* We currently don't expect user BO to be pinned */ 2314 xe_assert(xe, !xe_bo_is_user(bo)); 2315 2316 /* Pinned object must be in GGTT or have pinned flag */ 2317 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2318 XE_BO_FLAG_GGTT)); 2319 2320 /* 2321 * No reason we can't support pinning imported dma-bufs we just don't 2322 * expect to pin an imported dma-buf. 2323 */ 2324 xe_assert(xe, !bo->ttm.base.import_attach); 2325 2326 /* We only expect at most 1 pin */ 2327 xe_assert(xe, !xe_bo_is_pinned(bo)); 2328 2329 err = xe_bo_validate(bo, NULL, false); 2330 if (err) 2331 return err; 2332 2333 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2334 spin_lock(&xe->pinned.lock); 2335 if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) 2336 list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); 2337 else 2338 list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); 2339 spin_unlock(&xe->pinned.lock); 2340 } 2341 2342 ttm_bo_pin(&bo->ttm); 2343 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2344 xe_ttm_tt_account_subtract(bo->ttm.ttm); 2345 2346 /* 2347 * FIXME: If we always use the reserve / unreserve functions for locking 2348 * we do not need this. 2349 */ 2350 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2351 2352 return 0; 2353 } 2354 2355 /** 2356 * xe_bo_unpin_external - unpin an external BO 2357 * @bo: buffer object to be unpinned 2358 * 2359 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2360 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2361 * asserts and code to ensure evict / restore on suspend / resume. 2362 * 2363 * Returns 0 for success, negative error code otherwise. 2364 */ 2365 void xe_bo_unpin_external(struct xe_bo *bo) 2366 { 2367 struct xe_device *xe = xe_bo_device(bo); 2368 2369 xe_assert(xe, !bo->vm); 2370 xe_assert(xe, xe_bo_is_pinned(bo)); 2371 xe_assert(xe, xe_bo_is_user(bo)); 2372 2373 spin_lock(&xe->pinned.lock); 2374 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2375 list_del_init(&bo->pinned_link); 2376 spin_unlock(&xe->pinned.lock); 2377 2378 ttm_bo_unpin(&bo->ttm); 2379 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2380 xe_ttm_tt_account_add(bo->ttm.ttm); 2381 2382 /* 2383 * FIXME: If we always use the reserve / unreserve functions for locking 2384 * we do not need this. 2385 */ 2386 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2387 } 2388 2389 void xe_bo_unpin(struct xe_bo *bo) 2390 { 2391 struct ttm_place *place = &bo->placements[0]; 2392 struct xe_device *xe = xe_bo_device(bo); 2393 2394 xe_assert(xe, !bo->ttm.base.import_attach); 2395 xe_assert(xe, xe_bo_is_pinned(bo)); 2396 2397 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2398 spin_lock(&xe->pinned.lock); 2399 xe_assert(xe, !list_empty(&bo->pinned_link)); 2400 list_del_init(&bo->pinned_link); 2401 spin_unlock(&xe->pinned.lock); 2402 2403 if (bo->backup_obj) { 2404 if (xe_bo_is_pinned(bo->backup_obj)) 2405 ttm_bo_unpin(&bo->backup_obj->ttm); 2406 xe_bo_put(bo->backup_obj); 2407 bo->backup_obj = NULL; 2408 } 2409 } 2410 ttm_bo_unpin(&bo->ttm); 2411 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2412 xe_ttm_tt_account_add(bo->ttm.ttm); 2413 } 2414 2415 /** 2416 * xe_bo_validate() - Make sure the bo is in an allowed placement 2417 * @bo: The bo, 2418 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2419 * NULL. Used together with @allow_res_evict. 2420 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2421 * reservation object. 2422 * 2423 * Make sure the bo is in allowed placement, migrating it if necessary. If 2424 * needed, other bos will be evicted. If bos selected for eviction shares 2425 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2426 * set to true, otherwise they will be bypassed. 2427 * 2428 * Return: 0 on success, negative error code on failure. May return 2429 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2430 */ 2431 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2432 { 2433 struct ttm_operation_ctx ctx = { 2434 .interruptible = true, 2435 .no_wait_gpu = false, 2436 .gfp_retry_mayfail = true, 2437 }; 2438 struct pin_cookie cookie; 2439 int ret; 2440 2441 if (vm) { 2442 lockdep_assert_held(&vm->lock); 2443 xe_vm_assert_held(vm); 2444 2445 ctx.allow_res_evict = allow_res_evict; 2446 ctx.resv = xe_vm_resv(vm); 2447 } 2448 2449 cookie = xe_vm_set_validating(vm, allow_res_evict); 2450 trace_xe_bo_validate(bo); 2451 ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2452 xe_vm_clear_validating(vm, allow_res_evict, cookie); 2453 2454 return ret; 2455 } 2456 2457 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2458 { 2459 if (bo->destroy == &xe_ttm_bo_destroy) 2460 return true; 2461 2462 return false; 2463 } 2464 2465 /* 2466 * Resolve a BO address. There is no assert to check if the proper lock is held 2467 * so it should only be used in cases where it is not fatal to get the wrong 2468 * address, such as printing debug information, but not in cases where memory is 2469 * written based on this result. 2470 */ 2471 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2472 { 2473 struct xe_device *xe = xe_bo_device(bo); 2474 struct xe_res_cursor cur; 2475 u64 page; 2476 2477 xe_assert(xe, page_size <= PAGE_SIZE); 2478 page = offset >> PAGE_SHIFT; 2479 offset &= (PAGE_SIZE - 1); 2480 2481 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2482 xe_assert(xe, bo->ttm.ttm); 2483 2484 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2485 page_size, &cur); 2486 return xe_res_dma(&cur) + offset; 2487 } else { 2488 struct xe_res_cursor cur; 2489 2490 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2491 page_size, &cur); 2492 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2493 } 2494 } 2495 2496 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2497 { 2498 if (!READ_ONCE(bo->ttm.pin_count)) 2499 xe_bo_assert_held(bo); 2500 return __xe_bo_addr(bo, offset, page_size); 2501 } 2502 2503 int xe_bo_vmap(struct xe_bo *bo) 2504 { 2505 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2506 void *virtual; 2507 bool is_iomem; 2508 int ret; 2509 2510 xe_bo_assert_held(bo); 2511 2512 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2513 !force_contiguous(bo->flags))) 2514 return -EINVAL; 2515 2516 if (!iosys_map_is_null(&bo->vmap)) 2517 return 0; 2518 2519 /* 2520 * We use this more or less deprecated interface for now since 2521 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2522 * single page bos, which is done here. 2523 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2524 * to use struct iosys_map. 2525 */ 2526 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 2527 if (ret) 2528 return ret; 2529 2530 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2531 if (is_iomem) 2532 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2533 else 2534 iosys_map_set_vaddr(&bo->vmap, virtual); 2535 2536 return 0; 2537 } 2538 2539 static void __xe_bo_vunmap(struct xe_bo *bo) 2540 { 2541 if (!iosys_map_is_null(&bo->vmap)) { 2542 iosys_map_clear(&bo->vmap); 2543 ttm_bo_kunmap(&bo->kmap); 2544 } 2545 } 2546 2547 void xe_bo_vunmap(struct xe_bo *bo) 2548 { 2549 xe_bo_assert_held(bo); 2550 __xe_bo_vunmap(bo); 2551 } 2552 2553 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2554 { 2555 if (value == DRM_XE_PXP_TYPE_NONE) 2556 return 0; 2557 2558 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2559 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2560 return -EINVAL; 2561 2562 return xe_pxp_key_assign(xe->pxp, bo); 2563 } 2564 2565 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2566 struct xe_bo *bo, 2567 u64 value); 2568 2569 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2570 [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, 2571 }; 2572 2573 static int gem_create_user_ext_set_property(struct xe_device *xe, 2574 struct xe_bo *bo, 2575 u64 extension) 2576 { 2577 u64 __user *address = u64_to_user_ptr(extension); 2578 struct drm_xe_ext_set_property ext; 2579 int err; 2580 u32 idx; 2581 2582 err = copy_from_user(&ext, address, sizeof(ext)); 2583 if (XE_IOCTL_DBG(xe, err)) 2584 return -EFAULT; 2585 2586 if (XE_IOCTL_DBG(xe, ext.property >= 2587 ARRAY_SIZE(gem_create_set_property_funcs)) || 2588 XE_IOCTL_DBG(xe, ext.pad) || 2589 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2590 return -EINVAL; 2591 2592 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2593 if (!gem_create_set_property_funcs[idx]) 2594 return -EINVAL; 2595 2596 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2597 } 2598 2599 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2600 struct xe_bo *bo, 2601 u64 extension); 2602 2603 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2604 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2605 }; 2606 2607 #define MAX_USER_EXTENSIONS 16 2608 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2609 u64 extensions, int ext_number) 2610 { 2611 u64 __user *address = u64_to_user_ptr(extensions); 2612 struct drm_xe_user_extension ext; 2613 int err; 2614 u32 idx; 2615 2616 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2617 return -E2BIG; 2618 2619 err = copy_from_user(&ext, address, sizeof(ext)); 2620 if (XE_IOCTL_DBG(xe, err)) 2621 return -EFAULT; 2622 2623 if (XE_IOCTL_DBG(xe, ext.pad) || 2624 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2625 return -EINVAL; 2626 2627 idx = array_index_nospec(ext.name, 2628 ARRAY_SIZE(gem_create_user_extension_funcs)); 2629 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2630 if (XE_IOCTL_DBG(xe, err)) 2631 return err; 2632 2633 if (ext.next_extension) 2634 return gem_create_user_extensions(xe, bo, ext.next_extension, 2635 ++ext_number); 2636 2637 return 0; 2638 } 2639 2640 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2641 struct drm_file *file) 2642 { 2643 struct xe_device *xe = to_xe_device(dev); 2644 struct xe_file *xef = to_xe_file(file); 2645 struct drm_xe_gem_create *args = data; 2646 struct xe_vm *vm = NULL; 2647 ktime_t end = 0; 2648 struct xe_bo *bo; 2649 unsigned int bo_flags; 2650 u32 handle; 2651 int err; 2652 2653 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2654 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2655 return -EINVAL; 2656 2657 /* at least one valid memory placement must be specified */ 2658 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2659 !args->placement)) 2660 return -EINVAL; 2661 2662 if (XE_IOCTL_DBG(xe, args->flags & 2663 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2664 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2665 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2666 return -EINVAL; 2667 2668 if (XE_IOCTL_DBG(xe, args->handle)) 2669 return -EINVAL; 2670 2671 if (XE_IOCTL_DBG(xe, !args->size)) 2672 return -EINVAL; 2673 2674 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2675 return -EINVAL; 2676 2677 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2678 return -EINVAL; 2679 2680 bo_flags = 0; 2681 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2682 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2683 2684 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2685 bo_flags |= XE_BO_FLAG_SCANOUT; 2686 2687 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2688 2689 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2690 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2691 (bo_flags & XE_BO_FLAG_SCANOUT) && 2692 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2693 IS_ALIGNED(args->size, SZ_64K)) 2694 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2695 2696 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2697 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2698 return -EINVAL; 2699 2700 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2701 } 2702 2703 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2704 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2705 return -EINVAL; 2706 2707 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2708 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2709 return -EINVAL; 2710 2711 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2712 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2713 return -EINVAL; 2714 2715 if (args->vm_id) { 2716 vm = xe_vm_lookup(xef, args->vm_id); 2717 if (XE_IOCTL_DBG(xe, !vm)) 2718 return -ENOENT; 2719 } 2720 2721 retry: 2722 if (vm) { 2723 err = xe_vm_lock(vm, true); 2724 if (err) 2725 goto out_vm; 2726 } 2727 2728 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2729 bo_flags); 2730 2731 if (vm) 2732 xe_vm_unlock(vm); 2733 2734 if (IS_ERR(bo)) { 2735 err = PTR_ERR(bo); 2736 if (xe_vm_validate_should_retry(NULL, err, &end)) 2737 goto retry; 2738 goto out_vm; 2739 } 2740 2741 if (args->extensions) { 2742 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2743 if (err) 2744 goto out_bulk; 2745 } 2746 2747 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2748 if (err) 2749 goto out_bulk; 2750 2751 args->handle = handle; 2752 goto out_put; 2753 2754 out_bulk: 2755 if (vm && !xe_vm_in_fault_mode(vm)) { 2756 xe_vm_lock(vm, false); 2757 __xe_bo_unset_bulk_move(bo); 2758 xe_vm_unlock(vm); 2759 } 2760 out_put: 2761 xe_bo_put(bo); 2762 out_vm: 2763 if (vm) 2764 xe_vm_put(vm); 2765 2766 return err; 2767 } 2768 2769 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2770 struct drm_file *file) 2771 { 2772 struct xe_device *xe = to_xe_device(dev); 2773 struct drm_xe_gem_mmap_offset *args = data; 2774 struct drm_gem_object *gem_obj; 2775 2776 if (XE_IOCTL_DBG(xe, args->extensions) || 2777 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2778 return -EINVAL; 2779 2780 if (XE_IOCTL_DBG(xe, args->flags & 2781 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2782 return -EINVAL; 2783 2784 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2785 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2786 return -EINVAL; 2787 2788 if (XE_IOCTL_DBG(xe, args->handle)) 2789 return -EINVAL; 2790 2791 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2792 return -EINVAL; 2793 2794 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2795 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2796 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2797 return 0; 2798 } 2799 2800 gem_obj = drm_gem_object_lookup(file, args->handle); 2801 if (XE_IOCTL_DBG(xe, !gem_obj)) 2802 return -ENOENT; 2803 2804 /* The mmap offset was set up at BO allocation time. */ 2805 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2806 2807 xe_bo_put(gem_to_xe_bo(gem_obj)); 2808 return 0; 2809 } 2810 2811 /** 2812 * xe_bo_lock() - Lock the buffer object's dma_resv object 2813 * @bo: The struct xe_bo whose lock is to be taken 2814 * @intr: Whether to perform any wait interruptible 2815 * 2816 * Locks the buffer object's dma_resv object. If the buffer object is 2817 * pointing to a shared dma_resv object, that shared lock is locked. 2818 * 2819 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2820 * contended lock was interrupted. If @intr is set to false, the 2821 * function always returns 0. 2822 */ 2823 int xe_bo_lock(struct xe_bo *bo, bool intr) 2824 { 2825 if (intr) 2826 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2827 2828 dma_resv_lock(bo->ttm.base.resv, NULL); 2829 2830 return 0; 2831 } 2832 2833 /** 2834 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2835 * @bo: The struct xe_bo whose lock is to be released. 2836 * 2837 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2838 */ 2839 void xe_bo_unlock(struct xe_bo *bo) 2840 { 2841 dma_resv_unlock(bo->ttm.base.resv); 2842 } 2843 2844 /** 2845 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2846 * @bo: The buffer object to migrate 2847 * @mem_type: The TTM memory type intended to migrate to 2848 * 2849 * Check whether the buffer object supports migration to the 2850 * given memory type. Note that pinning may affect the ability to migrate as 2851 * returned by this function. 2852 * 2853 * This function is primarily intended as a helper for checking the 2854 * possibility to migrate buffer objects and can be called without 2855 * the object lock held. 2856 * 2857 * Return: true if migration is possible, false otherwise. 2858 */ 2859 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2860 { 2861 unsigned int cur_place; 2862 2863 if (bo->ttm.type == ttm_bo_type_kernel) 2864 return true; 2865 2866 if (bo->ttm.type == ttm_bo_type_sg) 2867 return false; 2868 2869 for (cur_place = 0; cur_place < bo->placement.num_placement; 2870 cur_place++) { 2871 if (bo->placements[cur_place].mem_type == mem_type) 2872 return true; 2873 } 2874 2875 return false; 2876 } 2877 2878 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2879 { 2880 memset(place, 0, sizeof(*place)); 2881 place->mem_type = mem_type; 2882 } 2883 2884 /** 2885 * xe_bo_migrate - Migrate an object to the desired region id 2886 * @bo: The buffer object to migrate. 2887 * @mem_type: The TTM region type to migrate to. 2888 * 2889 * Attempt to migrate the buffer object to the desired memory region. The 2890 * buffer object may not be pinned, and must be locked. 2891 * On successful completion, the object memory type will be updated, 2892 * but an async migration task may not have completed yet, and to 2893 * accomplish that, the object's kernel fences must be signaled with 2894 * the object lock held. 2895 * 2896 * Return: 0 on success. Negative error code on failure. In particular may 2897 * return -EINTR or -ERESTARTSYS if signal pending. 2898 */ 2899 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2900 { 2901 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2902 struct ttm_operation_ctx ctx = { 2903 .interruptible = true, 2904 .no_wait_gpu = false, 2905 .gfp_retry_mayfail = true, 2906 }; 2907 struct ttm_placement placement; 2908 struct ttm_place requested; 2909 2910 xe_bo_assert_held(bo); 2911 2912 if (bo->ttm.resource->mem_type == mem_type) 2913 return 0; 2914 2915 if (xe_bo_is_pinned(bo)) 2916 return -EBUSY; 2917 2918 if (!xe_bo_can_migrate(bo, mem_type)) 2919 return -EINVAL; 2920 2921 xe_place_from_ttm_type(mem_type, &requested); 2922 placement.num_placement = 1; 2923 placement.placement = &requested; 2924 2925 /* 2926 * Stolen needs to be handled like below VRAM handling if we ever need 2927 * to support it. 2928 */ 2929 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2930 2931 if (mem_type_is_vram(mem_type)) { 2932 u32 c = 0; 2933 2934 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2935 } 2936 2937 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2938 } 2939 2940 /** 2941 * xe_bo_evict - Evict an object to evict placement 2942 * @bo: The buffer object to migrate. 2943 * 2944 * On successful completion, the object memory will be moved to evict 2945 * placement. This function blocks until the object has been fully moved. 2946 * 2947 * Return: 0 on success. Negative error code on failure. 2948 */ 2949 int xe_bo_evict(struct xe_bo *bo) 2950 { 2951 struct ttm_operation_ctx ctx = { 2952 .interruptible = false, 2953 .no_wait_gpu = false, 2954 .gfp_retry_mayfail = true, 2955 }; 2956 struct ttm_placement placement; 2957 int ret; 2958 2959 xe_evict_flags(&bo->ttm, &placement); 2960 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2961 if (ret) 2962 return ret; 2963 2964 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2965 false, MAX_SCHEDULE_TIMEOUT); 2966 2967 return 0; 2968 } 2969 2970 /** 2971 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2972 * placed in system memory. 2973 * @bo: The xe_bo 2974 * 2975 * Return: true if extra pages need to be allocated, false otherwise. 2976 */ 2977 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2978 { 2979 struct xe_device *xe = xe_bo_device(bo); 2980 2981 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2982 return false; 2983 2984 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2985 return false; 2986 2987 /* On discrete GPUs, if the GPU can access this buffer from 2988 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2989 * can't be used since there's no CCS storage associated with 2990 * non-VRAM addresses. 2991 */ 2992 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2993 return false; 2994 2995 return true; 2996 } 2997 2998 /** 2999 * __xe_bo_release_dummy() - Dummy kref release function 3000 * @kref: The embedded struct kref. 3001 * 3002 * Dummy release function for xe_bo_put_deferred(). Keep off. 3003 */ 3004 void __xe_bo_release_dummy(struct kref *kref) 3005 { 3006 } 3007 3008 /** 3009 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 3010 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 3011 * 3012 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 3013 * The @deferred list can be either an onstack local list or a global 3014 * shared list used by a workqueue. 3015 */ 3016 void xe_bo_put_commit(struct llist_head *deferred) 3017 { 3018 struct llist_node *freed; 3019 struct xe_bo *bo, *next; 3020 3021 if (!deferred) 3022 return; 3023 3024 freed = llist_del_all(deferred); 3025 if (!freed) 3026 return; 3027 3028 llist_for_each_entry_safe(bo, next, freed, freed) 3029 drm_gem_object_free(&bo->ttm.base.refcount); 3030 } 3031 3032 static void xe_bo_dev_work_func(struct work_struct *work) 3033 { 3034 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 3035 3036 xe_bo_put_commit(&bo_dev->async_list); 3037 } 3038 3039 /** 3040 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 3041 * @bo_dev: The BO dev structure 3042 */ 3043 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 3044 { 3045 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 3046 } 3047 3048 /** 3049 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 3050 * @bo_dev: The BO dev structure 3051 */ 3052 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 3053 { 3054 flush_work(&bo_dev->async_free); 3055 } 3056 3057 void xe_bo_put(struct xe_bo *bo) 3058 { 3059 struct xe_tile *tile; 3060 u8 id; 3061 3062 might_sleep(); 3063 if (bo) { 3064 #ifdef CONFIG_PROC_FS 3065 if (bo->client) 3066 might_lock(&bo->client->bos_lock); 3067 #endif 3068 for_each_tile(tile, xe_bo_device(bo), id) 3069 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 3070 might_lock(&bo->ggtt_node[id]->ggtt->lock); 3071 drm_gem_object_put(&bo->ttm.base); 3072 } 3073 } 3074 3075 /** 3076 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 3077 * @file_priv: ... 3078 * @dev: ... 3079 * @args: ... 3080 * 3081 * See dumb_create() hook in include/drm/drm_drv.h 3082 * 3083 * Return: ... 3084 */ 3085 int xe_bo_dumb_create(struct drm_file *file_priv, 3086 struct drm_device *dev, 3087 struct drm_mode_create_dumb *args) 3088 { 3089 struct xe_device *xe = to_xe_device(dev); 3090 struct xe_bo *bo; 3091 uint32_t handle; 3092 int cpp = DIV_ROUND_UP(args->bpp, 8); 3093 int err; 3094 u32 page_size = max_t(u32, PAGE_SIZE, 3095 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 3096 3097 args->pitch = ALIGN(args->width * cpp, 64); 3098 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 3099 page_size); 3100 3101 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 3102 DRM_XE_GEM_CPU_CACHING_WC, 3103 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 3104 XE_BO_FLAG_SCANOUT | 3105 XE_BO_FLAG_NEEDS_CPU_ACCESS); 3106 if (IS_ERR(bo)) 3107 return PTR_ERR(bo); 3108 3109 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 3110 /* drop reference from allocate - handle holds it now */ 3111 drm_gem_object_put(&bo->ttm.base); 3112 if (!err) 3113 args->handle = handle; 3114 return err; 3115 } 3116 3117 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 3118 { 3119 struct ttm_buffer_object *tbo = &bo->ttm; 3120 struct ttm_device *bdev = tbo->bdev; 3121 3122 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 3123 3124 list_del_init(&bo->vram_userfault_link); 3125 } 3126 3127 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 3128 #include "tests/xe_bo.c" 3129 #endif 3130