1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_managed.h> 14 #include <drm/ttm/ttm_backup.h> 15 #include <drm/ttm/ttm_device.h> 16 #include <drm/ttm/ttm_placement.h> 17 #include <drm/ttm/ttm_tt.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include <kunit/static_stub.h> 21 22 #include <trace/events/gpu_mem.h> 23 24 #include "xe_device.h" 25 #include "xe_dma_buf.h" 26 #include "xe_drm_client.h" 27 #include "xe_ggtt.h" 28 #include "xe_gt.h" 29 #include "xe_map.h" 30 #include "xe_migrate.h" 31 #include "xe_pm.h" 32 #include "xe_preempt_fence.h" 33 #include "xe_pxp.h" 34 #include "xe_res_cursor.h" 35 #include "xe_shrinker.h" 36 #include "xe_trace_bo.h" 37 #include "xe_ttm_stolen_mgr.h" 38 #include "xe_vm.h" 39 40 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 41 [XE_PL_SYSTEM] = "system", 42 [XE_PL_TT] = "gtt", 43 [XE_PL_VRAM0] = "vram0", 44 [XE_PL_VRAM1] = "vram1", 45 [XE_PL_STOLEN] = "stolen" 46 }; 47 48 static const struct ttm_place sys_placement_flags = { 49 .fpfn = 0, 50 .lpfn = 0, 51 .mem_type = XE_PL_SYSTEM, 52 .flags = 0, 53 }; 54 55 static struct ttm_placement sys_placement = { 56 .num_placement = 1, 57 .placement = &sys_placement_flags, 58 }; 59 60 static struct ttm_placement purge_placement; 61 62 static const struct ttm_place tt_placement_flags[] = { 63 { 64 .fpfn = 0, 65 .lpfn = 0, 66 .mem_type = XE_PL_TT, 67 .flags = TTM_PL_FLAG_DESIRED, 68 }, 69 { 70 .fpfn = 0, 71 .lpfn = 0, 72 .mem_type = XE_PL_SYSTEM, 73 .flags = TTM_PL_FLAG_FALLBACK, 74 } 75 }; 76 77 static struct ttm_placement tt_placement = { 78 .num_placement = 2, 79 .placement = tt_placement_flags, 80 }; 81 82 bool mem_type_is_vram(u32 mem_type) 83 { 84 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 85 } 86 87 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 88 { 89 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 90 } 91 92 static bool resource_is_vram(struct ttm_resource *res) 93 { 94 return mem_type_is_vram(res->mem_type); 95 } 96 97 bool xe_bo_is_vram(struct xe_bo *bo) 98 { 99 return resource_is_vram(bo->ttm.resource) || 100 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 101 } 102 103 bool xe_bo_is_stolen(struct xe_bo *bo) 104 { 105 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 106 } 107 108 /** 109 * xe_bo_has_single_placement - check if BO is placed only in one memory location 110 * @bo: The BO 111 * 112 * This function checks whether a given BO is placed in only one memory location. 113 * 114 * Returns: true if the BO is placed in a single memory location, false otherwise. 115 * 116 */ 117 bool xe_bo_has_single_placement(struct xe_bo *bo) 118 { 119 return bo->placement.num_placement == 1; 120 } 121 122 /** 123 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 124 * @bo: The BO 125 * 126 * The stolen memory is accessed through the PCI BAR for both DGFX and some 127 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 128 * 129 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 130 */ 131 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 132 { 133 return xe_bo_is_stolen(bo) && 134 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 135 } 136 137 /** 138 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 139 * @bo: The BO 140 * 141 * Check if a given bo is bound through VM_BIND. This requires the 142 * reservation lock for the BO to be held. 143 * 144 * Returns: boolean 145 */ 146 bool xe_bo_is_vm_bound(struct xe_bo *bo) 147 { 148 xe_bo_assert_held(bo); 149 150 return !list_empty(&bo->ttm.base.gpuva.list); 151 } 152 153 static bool xe_bo_is_user(struct xe_bo *bo) 154 { 155 return bo->flags & XE_BO_FLAG_USER; 156 } 157 158 static struct xe_migrate * 159 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 160 { 161 struct xe_tile *tile; 162 163 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 164 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 165 return tile->migrate; 166 } 167 168 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 169 { 170 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 171 struct ttm_resource_manager *mgr; 172 struct xe_ttm_vram_mgr *vram_mgr; 173 174 xe_assert(xe, resource_is_vram(res)); 175 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 176 vram_mgr = to_xe_ttm_vram_mgr(mgr); 177 178 return container_of(vram_mgr, struct xe_vram_region, ttm); 179 } 180 181 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 182 u32 bo_flags, u32 *c) 183 { 184 if (bo_flags & XE_BO_FLAG_SYSTEM) { 185 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 186 187 bo->placements[*c] = (struct ttm_place) { 188 .mem_type = XE_PL_TT, 189 }; 190 *c += 1; 191 } 192 } 193 194 static bool force_contiguous(u32 bo_flags) 195 { 196 if (bo_flags & XE_BO_FLAG_STOLEN) 197 return true; /* users expect this */ 198 else if (bo_flags & XE_BO_FLAG_PINNED && 199 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) 200 return true; /* needs vmap */ 201 202 /* 203 * For eviction / restore on suspend / resume objects pinned in VRAM 204 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 205 */ 206 return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && 207 bo_flags & XE_BO_FLAG_PINNED; 208 } 209 210 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 211 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 212 { 213 struct ttm_place place = { .mem_type = mem_type }; 214 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 215 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 216 217 struct xe_vram_region *vram; 218 u64 io_size; 219 220 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 221 222 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 223 xe_assert(xe, vram && vram->usable_size); 224 io_size = vram->io_size; 225 226 if (force_contiguous(bo_flags)) 227 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 228 229 if (io_size < vram->usable_size) { 230 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 231 place.fpfn = 0; 232 place.lpfn = io_size >> PAGE_SHIFT; 233 } else { 234 place.flags |= TTM_PL_FLAG_TOPDOWN; 235 } 236 } 237 places[*c] = place; 238 *c += 1; 239 } 240 241 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 242 u32 bo_flags, u32 *c) 243 { 244 if (bo_flags & XE_BO_FLAG_VRAM0) 245 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 246 if (bo_flags & XE_BO_FLAG_VRAM1) 247 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 248 } 249 250 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 251 u32 bo_flags, u32 *c) 252 { 253 if (bo_flags & XE_BO_FLAG_STOLEN) { 254 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 255 256 bo->placements[*c] = (struct ttm_place) { 257 .mem_type = XE_PL_STOLEN, 258 .flags = force_contiguous(bo_flags) ? 259 TTM_PL_FLAG_CONTIGUOUS : 0, 260 }; 261 *c += 1; 262 } 263 } 264 265 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 266 u32 bo_flags) 267 { 268 u32 c = 0; 269 270 try_add_vram(xe, bo, bo_flags, &c); 271 try_add_system(xe, bo, bo_flags, &c); 272 try_add_stolen(xe, bo, bo_flags, &c); 273 274 if (!c) 275 return -EINVAL; 276 277 bo->placement = (struct ttm_placement) { 278 .num_placement = c, 279 .placement = bo->placements, 280 }; 281 282 return 0; 283 } 284 285 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 286 u32 bo_flags) 287 { 288 xe_bo_assert_held(bo); 289 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 290 } 291 292 static void xe_evict_flags(struct ttm_buffer_object *tbo, 293 struct ttm_placement *placement) 294 { 295 struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); 296 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 297 struct xe_bo *bo; 298 299 if (!xe_bo_is_xe_bo(tbo)) { 300 /* Don't handle scatter gather BOs */ 301 if (tbo->type == ttm_bo_type_sg) { 302 placement->num_placement = 0; 303 return; 304 } 305 306 *placement = device_unplugged ? purge_placement : sys_placement; 307 return; 308 } 309 310 bo = ttm_to_xe_bo(tbo); 311 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 312 *placement = sys_placement; 313 return; 314 } 315 316 if (device_unplugged && !tbo->base.dma_buf) { 317 *placement = purge_placement; 318 return; 319 } 320 321 /* 322 * For xe, sg bos that are evicted to system just triggers a 323 * rebind of the sg list upon subsequent validation to XE_PL_TT. 324 */ 325 switch (tbo->resource->mem_type) { 326 case XE_PL_VRAM0: 327 case XE_PL_VRAM1: 328 case XE_PL_STOLEN: 329 *placement = tt_placement; 330 break; 331 case XE_PL_TT: 332 default: 333 *placement = sys_placement; 334 break; 335 } 336 } 337 338 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 339 struct xe_ttm_tt { 340 struct ttm_tt ttm; 341 struct sg_table sgt; 342 struct sg_table *sg; 343 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 344 bool purgeable; 345 }; 346 347 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt) 348 { 349 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 350 unsigned long num_pages = tt->num_pages; 351 int ret; 352 353 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 354 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 355 356 if (xe_tt->sg) 357 return 0; 358 359 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 360 num_pages, 0, 361 (u64)num_pages << PAGE_SHIFT, 362 xe_sg_segment_size(xe->drm.dev), 363 GFP_KERNEL); 364 if (ret) 365 return ret; 366 367 xe_tt->sg = &xe_tt->sgt; 368 ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 369 DMA_ATTR_SKIP_CPU_SYNC); 370 if (ret) { 371 sg_free_table(xe_tt->sg); 372 xe_tt->sg = NULL; 373 return ret; 374 } 375 376 return 0; 377 } 378 379 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt) 380 { 381 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 382 383 if (xe_tt->sg) { 384 dma_unmap_sgtable(xe->drm.dev, xe_tt->sg, 385 DMA_BIDIRECTIONAL, 0); 386 sg_free_table(xe_tt->sg); 387 xe_tt->sg = NULL; 388 } 389 } 390 391 struct sg_table *xe_bo_sg(struct xe_bo *bo) 392 { 393 struct ttm_tt *tt = bo->ttm.ttm; 394 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 395 396 return xe_tt->sg; 397 } 398 399 /* 400 * Account ttm pages against the device shrinker's shrinkable and 401 * purgeable counts. 402 */ 403 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt) 404 { 405 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 406 407 if (xe_tt->purgeable) 408 xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages); 409 else 410 xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0); 411 } 412 413 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt) 414 { 415 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 416 417 if (xe_tt->purgeable) 418 xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages); 419 else 420 xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0); 421 } 422 423 static void update_global_total_pages(struct ttm_device *ttm_dev, 424 long num_pages) 425 { 426 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM) 427 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 428 u64 global_total_pages = 429 atomic64_add_return(num_pages, &xe->global_total_pages); 430 431 trace_gpu_mem_total(xe->drm.primary->index, 0, 432 global_total_pages << PAGE_SHIFT); 433 #endif 434 } 435 436 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 437 u32 page_flags) 438 { 439 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 440 struct xe_device *xe = xe_bo_device(bo); 441 struct xe_ttm_tt *xe_tt; 442 struct ttm_tt *tt; 443 unsigned long extra_pages; 444 enum ttm_caching caching = ttm_cached; 445 int err; 446 447 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 448 if (!xe_tt) 449 return NULL; 450 451 tt = &xe_tt->ttm; 452 453 extra_pages = 0; 454 if (xe_bo_needs_ccs_pages(bo)) 455 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)), 456 PAGE_SIZE); 457 458 /* 459 * DGFX system memory is always WB / ttm_cached, since 460 * other caching modes are only supported on x86. DGFX 461 * GPU system memory accesses are always coherent with the 462 * CPU. 463 */ 464 if (!IS_DGFX(xe)) { 465 switch (bo->cpu_caching) { 466 case DRM_XE_GEM_CPU_CACHING_WC: 467 caching = ttm_write_combined; 468 break; 469 default: 470 caching = ttm_cached; 471 break; 472 } 473 474 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 475 476 /* 477 * Display scanout is always non-coherent with the CPU cache. 478 * 479 * For Xe_LPG and beyond, PPGTT PTE lookups are also 480 * non-coherent and require a CPU:WC mapping. 481 */ 482 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 483 (xe->info.graphics_verx100 >= 1270 && 484 bo->flags & XE_BO_FLAG_PAGETABLE)) 485 caching = ttm_write_combined; 486 } 487 488 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 489 /* 490 * Valid only for internally-created buffers only, for 491 * which cpu_caching is never initialized. 492 */ 493 xe_assert(xe, bo->cpu_caching == 0); 494 caching = ttm_uncached; 495 } 496 497 if (ttm_bo->type != ttm_bo_type_sg) 498 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 499 500 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 501 if (err) { 502 kfree(xe_tt); 503 return NULL; 504 } 505 506 if (ttm_bo->type != ttm_bo_type_sg) { 507 err = ttm_tt_setup_backup(tt); 508 if (err) { 509 ttm_tt_fini(tt); 510 kfree(xe_tt); 511 return NULL; 512 } 513 } 514 515 return tt; 516 } 517 518 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 519 struct ttm_operation_ctx *ctx) 520 { 521 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 522 int err; 523 524 /* 525 * dma-bufs are not populated with pages, and the dma- 526 * addresses are set up when moved to XE_PL_TT. 527 */ 528 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 529 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 530 return 0; 531 532 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 533 err = ttm_tt_restore(ttm_dev, tt, ctx); 534 } else { 535 ttm_tt_clear_backed_up(tt); 536 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 537 } 538 if (err) 539 return err; 540 541 xe_tt->purgeable = false; 542 xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt); 543 update_global_total_pages(ttm_dev, tt->num_pages); 544 545 return 0; 546 } 547 548 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 549 { 550 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 551 552 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 553 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 554 return; 555 556 xe_tt_unmap_sg(xe, tt); 557 558 ttm_pool_free(&ttm_dev->pool, tt); 559 xe_ttm_tt_account_subtract(xe, tt); 560 update_global_total_pages(ttm_dev, -(long)tt->num_pages); 561 } 562 563 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 564 { 565 ttm_tt_fini(tt); 566 kfree(tt); 567 } 568 569 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 570 { 571 struct xe_ttm_vram_mgr_resource *vres = 572 to_xe_ttm_vram_mgr_resource(mem); 573 574 return vres->used_visible_size == mem->size; 575 } 576 577 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 578 struct ttm_resource *mem) 579 { 580 struct xe_device *xe = ttm_to_xe_device(bdev); 581 582 switch (mem->mem_type) { 583 case XE_PL_SYSTEM: 584 case XE_PL_TT: 585 return 0; 586 case XE_PL_VRAM0: 587 case XE_PL_VRAM1: { 588 struct xe_vram_region *vram = res_to_mem_region(mem); 589 590 if (!xe_ttm_resource_visible(mem)) 591 return -EINVAL; 592 593 mem->bus.offset = mem->start << PAGE_SHIFT; 594 595 if (vram->mapping && 596 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 597 mem->bus.addr = (u8 __force *)vram->mapping + 598 mem->bus.offset; 599 600 mem->bus.offset += vram->io_start; 601 mem->bus.is_iomem = true; 602 603 #if !IS_ENABLED(CONFIG_X86) 604 mem->bus.caching = ttm_write_combined; 605 #endif 606 return 0; 607 } case XE_PL_STOLEN: 608 return xe_ttm_stolen_io_mem_reserve(xe, mem); 609 default: 610 return -EINVAL; 611 } 612 } 613 614 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 615 const struct ttm_operation_ctx *ctx) 616 { 617 struct dma_resv_iter cursor; 618 struct dma_fence *fence; 619 struct drm_gem_object *obj = &bo->ttm.base; 620 struct drm_gpuvm_bo *vm_bo; 621 bool idle = false; 622 int ret = 0; 623 624 dma_resv_assert_held(bo->ttm.base.resv); 625 626 if (!list_empty(&bo->ttm.base.gpuva.list)) { 627 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 628 DMA_RESV_USAGE_BOOKKEEP); 629 dma_resv_for_each_fence_unlocked(&cursor, fence) 630 dma_fence_enable_sw_signaling(fence); 631 dma_resv_iter_end(&cursor); 632 } 633 634 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 635 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 636 struct drm_gpuva *gpuva; 637 638 if (!xe_vm_in_fault_mode(vm)) { 639 drm_gpuvm_bo_evict(vm_bo, true); 640 continue; 641 } 642 643 if (!idle) { 644 long timeout; 645 646 if (ctx->no_wait_gpu && 647 !dma_resv_test_signaled(bo->ttm.base.resv, 648 DMA_RESV_USAGE_BOOKKEEP)) 649 return -EBUSY; 650 651 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 652 DMA_RESV_USAGE_BOOKKEEP, 653 ctx->interruptible, 654 MAX_SCHEDULE_TIMEOUT); 655 if (!timeout) 656 return -ETIME; 657 if (timeout < 0) 658 return timeout; 659 660 idle = true; 661 } 662 663 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 664 struct xe_vma *vma = gpuva_to_vma(gpuva); 665 666 trace_xe_vma_evict(vma); 667 ret = xe_vm_invalidate_vma(vma); 668 if (XE_WARN_ON(ret)) 669 return ret; 670 } 671 } 672 673 return ret; 674 } 675 676 /* 677 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 678 * Note that unmapping the attachment is deferred to the next 679 * map_attachment time, or to bo destroy (after idling) whichever comes first. 680 * This is to avoid syncing before unmap_attachment(), assuming that the 681 * caller relies on idling the reservation object before moving the 682 * backing store out. Should that assumption not hold, then we will be able 683 * to unconditionally call unmap_attachment() when moving out to system. 684 */ 685 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 686 struct ttm_resource *new_res) 687 { 688 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 689 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 690 ttm); 691 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 692 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 693 struct sg_table *sg; 694 695 xe_assert(xe, attach); 696 xe_assert(xe, ttm_bo->ttm); 697 698 if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && 699 ttm_bo->sg) { 700 dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 701 false, MAX_SCHEDULE_TIMEOUT); 702 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 703 ttm_bo->sg = NULL; 704 } 705 706 if (new_res->mem_type == XE_PL_SYSTEM) 707 goto out; 708 709 if (ttm_bo->sg) { 710 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 711 ttm_bo->sg = NULL; 712 } 713 714 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 715 if (IS_ERR(sg)) 716 return PTR_ERR(sg); 717 718 ttm_bo->sg = sg; 719 xe_tt->sg = sg; 720 721 out: 722 ttm_bo_move_null(ttm_bo, new_res); 723 724 return 0; 725 } 726 727 /** 728 * xe_bo_move_notify - Notify subsystems of a pending move 729 * @bo: The buffer object 730 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 731 * 732 * This function notifies subsystems of an upcoming buffer move. 733 * Upon receiving such a notification, subsystems should schedule 734 * halting access to the underlying pages and optionally add a fence 735 * to the buffer object's dma_resv object, that signals when access is 736 * stopped. The caller will wait on all dma_resv fences before 737 * starting the move. 738 * 739 * A subsystem may commence access to the object after obtaining 740 * bindings to the new backing memory under the object lock. 741 * 742 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 743 * negative error code on error. 744 */ 745 static int xe_bo_move_notify(struct xe_bo *bo, 746 const struct ttm_operation_ctx *ctx) 747 { 748 struct ttm_buffer_object *ttm_bo = &bo->ttm; 749 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 750 struct ttm_resource *old_mem = ttm_bo->resource; 751 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 752 int ret; 753 754 /* 755 * If this starts to call into many components, consider 756 * using a notification chain here. 757 */ 758 759 if (xe_bo_is_pinned(bo)) 760 return -EINVAL; 761 762 xe_bo_vunmap(bo); 763 ret = xe_bo_trigger_rebind(xe, bo, ctx); 764 if (ret) 765 return ret; 766 767 /* Don't call move_notify() for imported dma-bufs. */ 768 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 769 dma_buf_move_notify(ttm_bo->base.dma_buf); 770 771 /* 772 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 773 * so if we moved from VRAM make sure to unlink this from the userfault 774 * tracking. 775 */ 776 if (mem_type_is_vram(old_mem_type)) { 777 mutex_lock(&xe->mem_access.vram_userfault.lock); 778 if (!list_empty(&bo->vram_userfault_link)) 779 list_del_init(&bo->vram_userfault_link); 780 mutex_unlock(&xe->mem_access.vram_userfault.lock); 781 } 782 783 return 0; 784 } 785 786 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 787 struct ttm_operation_ctx *ctx, 788 struct ttm_resource *new_mem, 789 struct ttm_place *hop) 790 { 791 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 792 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 793 struct ttm_resource *old_mem = ttm_bo->resource; 794 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 795 struct ttm_tt *ttm = ttm_bo->ttm; 796 struct xe_migrate *migrate = NULL; 797 struct dma_fence *fence; 798 bool move_lacks_source; 799 bool tt_has_data; 800 bool needs_clear; 801 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 802 ttm && ttm_tt_is_populated(ttm)) ? true : false; 803 int ret = 0; 804 805 /* Bo creation path, moving to system or TT. */ 806 if ((!old_mem && ttm) && !handle_system_ccs) { 807 if (new_mem->mem_type == XE_PL_TT) 808 ret = xe_tt_map_sg(xe, ttm); 809 if (!ret) 810 ttm_bo_move_null(ttm_bo, new_mem); 811 goto out; 812 } 813 814 if (ttm_bo->type == ttm_bo_type_sg) { 815 ret = xe_bo_move_notify(bo, ctx); 816 if (!ret) 817 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 818 return ret; 819 } 820 821 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 822 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 823 824 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 825 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 826 827 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 828 (!ttm && ttm_bo->type == ttm_bo_type_device); 829 830 if (new_mem->mem_type == XE_PL_TT) { 831 ret = xe_tt_map_sg(xe, ttm); 832 if (ret) 833 goto out; 834 } 835 836 if ((move_lacks_source && !needs_clear)) { 837 ttm_bo_move_null(ttm_bo, new_mem); 838 goto out; 839 } 840 841 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 842 new_mem->mem_type == XE_PL_SYSTEM) { 843 ret = xe_svm_bo_evict(bo); 844 if (!ret) { 845 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 846 ttm_bo_move_null(ttm_bo, new_mem); 847 } else { 848 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 849 ERR_PTR(ret)); 850 } 851 852 goto out; 853 } 854 855 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 856 ttm_bo_move_null(ttm_bo, new_mem); 857 goto out; 858 } 859 860 /* 861 * Failed multi-hop where the old_mem is still marked as 862 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 863 */ 864 if (old_mem_type == XE_PL_TT && 865 new_mem->mem_type == XE_PL_TT) { 866 ttm_bo_move_null(ttm_bo, new_mem); 867 goto out; 868 } 869 870 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 871 ret = xe_bo_move_notify(bo, ctx); 872 if (ret) 873 goto out; 874 } 875 876 if (old_mem_type == XE_PL_TT && 877 new_mem->mem_type == XE_PL_SYSTEM) { 878 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 879 DMA_RESV_USAGE_BOOKKEEP, 880 false, 881 MAX_SCHEDULE_TIMEOUT); 882 if (timeout < 0) { 883 ret = timeout; 884 goto out; 885 } 886 887 if (!handle_system_ccs) { 888 ttm_bo_move_null(ttm_bo, new_mem); 889 goto out; 890 } 891 } 892 893 if (!move_lacks_source && 894 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 895 (mem_type_is_vram(old_mem_type) && 896 new_mem->mem_type == XE_PL_SYSTEM))) { 897 hop->fpfn = 0; 898 hop->lpfn = 0; 899 hop->mem_type = XE_PL_TT; 900 hop->flags = TTM_PL_FLAG_TEMPORARY; 901 ret = -EMULTIHOP; 902 goto out; 903 } 904 905 if (bo->tile) 906 migrate = bo->tile->migrate; 907 else if (resource_is_vram(new_mem)) 908 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 909 else if (mem_type_is_vram(old_mem_type)) 910 migrate = mem_type_to_migrate(xe, old_mem_type); 911 else 912 migrate = xe->tiles[0].migrate; 913 914 xe_assert(xe, migrate); 915 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 916 if (xe_rpm_reclaim_safe(xe)) { 917 /* 918 * We might be called through swapout in the validation path of 919 * another TTM device, so acquire rpm here. 920 */ 921 xe_pm_runtime_get(xe); 922 } else { 923 drm_WARN_ON(&xe->drm, handle_system_ccs); 924 xe_pm_runtime_get_noresume(xe); 925 } 926 927 if (move_lacks_source) { 928 u32 flags = 0; 929 930 if (mem_type_is_vram(new_mem->mem_type)) 931 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 932 else if (handle_system_ccs) 933 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 934 935 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 936 } else { 937 fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, 938 handle_system_ccs); 939 } 940 if (IS_ERR(fence)) { 941 ret = PTR_ERR(fence); 942 xe_pm_runtime_put(xe); 943 goto out; 944 } 945 if (!move_lacks_source) { 946 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, 947 new_mem); 948 if (ret) { 949 dma_fence_wait(fence, false); 950 ttm_bo_move_null(ttm_bo, new_mem); 951 ret = 0; 952 } 953 } else { 954 /* 955 * ttm_bo_move_accel_cleanup() may blow up if 956 * bo->resource == NULL, so just attach the 957 * fence and set the new resource. 958 */ 959 dma_resv_add_fence(ttm_bo->base.resv, fence, 960 DMA_RESV_USAGE_KERNEL); 961 ttm_bo_move_null(ttm_bo, new_mem); 962 } 963 964 dma_fence_put(fence); 965 xe_pm_runtime_put(xe); 966 967 out: 968 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 969 ttm_bo->ttm) { 970 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 971 DMA_RESV_USAGE_KERNEL, 972 false, 973 MAX_SCHEDULE_TIMEOUT); 974 if (timeout < 0) 975 ret = timeout; 976 977 xe_tt_unmap_sg(xe, ttm_bo->ttm); 978 } 979 980 return ret; 981 } 982 983 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 984 struct ttm_buffer_object *bo, 985 unsigned long *scanned) 986 { 987 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 988 long lret; 989 990 /* Fake move to system, without copying data. */ 991 if (bo->resource->mem_type != XE_PL_SYSTEM) { 992 struct ttm_resource *new_resource; 993 994 lret = ttm_bo_wait_ctx(bo, ctx); 995 if (lret) 996 return lret; 997 998 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 999 if (lret) 1000 return lret; 1001 1002 xe_tt_unmap_sg(xe, bo->ttm); 1003 ttm_bo_move_null(bo, new_resource); 1004 } 1005 1006 *scanned += bo->ttm->num_pages; 1007 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1008 {.purge = true, 1009 .writeback = false, 1010 .allow_move = false}); 1011 1012 if (lret > 0) 1013 xe_ttm_tt_account_subtract(xe, bo->ttm); 1014 1015 return lret; 1016 } 1017 1018 static bool 1019 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) 1020 { 1021 struct drm_gpuvm_bo *vm_bo; 1022 1023 if (!ttm_bo_eviction_valuable(bo, place)) 1024 return false; 1025 1026 if (!xe_bo_is_xe_bo(bo)) 1027 return true; 1028 1029 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { 1030 if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 1037 /** 1038 * xe_bo_shrink() - Try to shrink an xe bo. 1039 * @ctx: The struct ttm_operation_ctx used for shrinking. 1040 * @bo: The TTM buffer object whose pages to shrink. 1041 * @flags: Flags governing the shrink behaviour. 1042 * @scanned: Pointer to a counter of the number of pages 1043 * attempted to shrink. 1044 * 1045 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1046 * Note that we need to be able to handle also non xe bos 1047 * (ghost bos), but only if the struct ttm_tt is embedded in 1048 * a struct xe_ttm_tt. When the function attempts to shrink 1049 * the pages of a buffer object, The value pointed to by @scanned 1050 * is updated. 1051 * 1052 * Return: The number of pages shrunken or purged, or negative error 1053 * code on failure. 1054 */ 1055 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1056 const struct xe_bo_shrink_flags flags, 1057 unsigned long *scanned) 1058 { 1059 struct ttm_tt *tt = bo->ttm; 1060 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1061 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1062 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1063 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1064 bool needs_rpm; 1065 long lret = 0L; 1066 1067 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1068 (flags.purge && !xe_tt->purgeable)) 1069 return -EBUSY; 1070 1071 if (!xe_bo_eviction_valuable(bo, &place)) 1072 return -EBUSY; 1073 1074 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1075 return xe_bo_shrink_purge(ctx, bo, scanned); 1076 1077 if (xe_tt->purgeable) { 1078 if (bo->resource->mem_type != XE_PL_SYSTEM) 1079 lret = xe_bo_move_notify(xe_bo, ctx); 1080 if (!lret) 1081 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1082 goto out_unref; 1083 } 1084 1085 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1086 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1087 xe_bo_needs_ccs_pages(xe_bo)); 1088 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1089 goto out_unref; 1090 1091 *scanned += tt->num_pages; 1092 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1093 {.purge = false, 1094 .writeback = flags.writeback, 1095 .allow_move = true}); 1096 if (needs_rpm) 1097 xe_pm_runtime_put(xe); 1098 1099 if (lret > 0) 1100 xe_ttm_tt_account_subtract(xe, tt); 1101 1102 out_unref: 1103 xe_bo_put(xe_bo); 1104 1105 return lret; 1106 } 1107 1108 /** 1109 * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed 1110 * up in system memory. 1111 * @bo: The buffer object to prepare. 1112 * 1113 * On successful completion, the object backup pages are allocated. Expectation 1114 * is that this is called from the PM notifier, prior to suspend/hibernation. 1115 * 1116 * Return: 0 on success. Negative error code on failure. 1117 */ 1118 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) 1119 { 1120 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1121 struct xe_bo *backup; 1122 int ret = 0; 1123 1124 xe_bo_lock(bo, false); 1125 1126 xe_assert(xe, !bo->backup_obj); 1127 1128 /* 1129 * Since this is called from the PM notifier we might have raced with 1130 * someone unpinning this after we dropped the pinned list lock and 1131 * grabbing the above bo lock. 1132 */ 1133 if (!xe_bo_is_pinned(bo)) 1134 goto out_unlock_bo; 1135 1136 if (!xe_bo_is_vram(bo)) 1137 goto out_unlock_bo; 1138 1139 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1140 goto out_unlock_bo; 1141 1142 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo), 1143 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1144 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1145 XE_BO_FLAG_PINNED); 1146 if (IS_ERR(backup)) { 1147 ret = PTR_ERR(backup); 1148 goto out_unlock_bo; 1149 } 1150 1151 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1152 ttm_bo_pin(&backup->ttm); 1153 bo->backup_obj = backup; 1154 1155 out_unlock_bo: 1156 xe_bo_unlock(bo); 1157 return ret; 1158 } 1159 1160 /** 1161 * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. 1162 * @bo: The buffer object to undo the prepare for. 1163 * 1164 * Always returns 0. The backup object is removed, if still present. Expectation 1165 * it that this called from the PM notifier when undoing the prepare step. 1166 * 1167 * Return: Always returns 0. 1168 */ 1169 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) 1170 { 1171 xe_bo_lock(bo, false); 1172 if (bo->backup_obj) { 1173 ttm_bo_unpin(&bo->backup_obj->ttm); 1174 xe_bo_put(bo->backup_obj); 1175 bo->backup_obj = NULL; 1176 } 1177 xe_bo_unlock(bo); 1178 1179 return 0; 1180 } 1181 1182 /** 1183 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1184 * @bo: The buffer object to move. 1185 * 1186 * On successful completion, the object memory will be moved to system memory. 1187 * 1188 * This is needed to for special handling of pinned VRAM object during 1189 * suspend-resume. 1190 * 1191 * Return: 0 on success. Negative error code on failure. 1192 */ 1193 int xe_bo_evict_pinned(struct xe_bo *bo) 1194 { 1195 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1196 struct xe_bo *backup = bo->backup_obj; 1197 bool backup_created = false; 1198 bool unmap = false; 1199 int ret = 0; 1200 1201 xe_bo_lock(bo, false); 1202 1203 if (WARN_ON(!bo->ttm.resource)) { 1204 ret = -EINVAL; 1205 goto out_unlock_bo; 1206 } 1207 1208 if (WARN_ON(!xe_bo_is_pinned(bo))) { 1209 ret = -EINVAL; 1210 goto out_unlock_bo; 1211 } 1212 1213 if (!xe_bo_is_vram(bo)) 1214 goto out_unlock_bo; 1215 1216 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1217 goto out_unlock_bo; 1218 1219 if (!backup) { 1220 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, 1221 NULL, xe_bo_size(bo), 1222 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1223 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1224 XE_BO_FLAG_PINNED); 1225 if (IS_ERR(backup)) { 1226 ret = PTR_ERR(backup); 1227 goto out_unlock_bo; 1228 } 1229 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1230 backup_created = true; 1231 } 1232 1233 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1234 struct xe_migrate *migrate; 1235 struct dma_fence *fence; 1236 1237 if (bo->tile) 1238 migrate = bo->tile->migrate; 1239 else 1240 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1241 1242 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1243 if (ret) 1244 goto out_backup; 1245 1246 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1247 if (ret) 1248 goto out_backup; 1249 1250 fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, 1251 backup->ttm.resource, false); 1252 if (IS_ERR(fence)) { 1253 ret = PTR_ERR(fence); 1254 goto out_backup; 1255 } 1256 1257 dma_resv_add_fence(bo->ttm.base.resv, fence, 1258 DMA_RESV_USAGE_KERNEL); 1259 dma_resv_add_fence(backup->ttm.base.resv, fence, 1260 DMA_RESV_USAGE_KERNEL); 1261 dma_fence_put(fence); 1262 } else { 1263 ret = xe_bo_vmap(backup); 1264 if (ret) 1265 goto out_backup; 1266 1267 if (iosys_map_is_null(&bo->vmap)) { 1268 ret = xe_bo_vmap(bo); 1269 if (ret) 1270 goto out_backup; 1271 unmap = true; 1272 } 1273 1274 xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, 1275 xe_bo_size(bo)); 1276 } 1277 1278 if (!bo->backup_obj) 1279 bo->backup_obj = backup; 1280 1281 out_backup: 1282 xe_bo_vunmap(backup); 1283 if (ret && backup_created) 1284 xe_bo_put(backup); 1285 out_unlock_bo: 1286 if (unmap) 1287 xe_bo_vunmap(bo); 1288 xe_bo_unlock(bo); 1289 return ret; 1290 } 1291 1292 /** 1293 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1294 * @bo: The buffer object to move. 1295 * 1296 * On successful completion, the object memory will be moved back to VRAM. 1297 * 1298 * This is needed to for special handling of pinned VRAM object during 1299 * suspend-resume. 1300 * 1301 * Return: 0 on success. Negative error code on failure. 1302 */ 1303 int xe_bo_restore_pinned(struct xe_bo *bo) 1304 { 1305 struct ttm_operation_ctx ctx = { 1306 .interruptible = false, 1307 .gfp_retry_mayfail = false, 1308 }; 1309 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1310 struct xe_bo *backup = bo->backup_obj; 1311 bool unmap = false; 1312 int ret; 1313 1314 if (!backup) 1315 return 0; 1316 1317 xe_bo_lock(bo, false); 1318 1319 if (!xe_bo_is_pinned(backup)) { 1320 ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); 1321 if (ret) 1322 goto out_unlock_bo; 1323 } 1324 1325 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1326 struct xe_migrate *migrate; 1327 struct dma_fence *fence; 1328 1329 if (bo->tile) 1330 migrate = bo->tile->migrate; 1331 else 1332 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1333 1334 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1335 if (ret) 1336 goto out_unlock_bo; 1337 1338 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1339 if (ret) 1340 goto out_unlock_bo; 1341 1342 fence = xe_migrate_copy(migrate, backup, bo, 1343 backup->ttm.resource, bo->ttm.resource, 1344 false); 1345 if (IS_ERR(fence)) { 1346 ret = PTR_ERR(fence); 1347 goto out_unlock_bo; 1348 } 1349 1350 dma_resv_add_fence(bo->ttm.base.resv, fence, 1351 DMA_RESV_USAGE_KERNEL); 1352 dma_resv_add_fence(backup->ttm.base.resv, fence, 1353 DMA_RESV_USAGE_KERNEL); 1354 dma_fence_put(fence); 1355 } else { 1356 ret = xe_bo_vmap(backup); 1357 if (ret) 1358 goto out_unlock_bo; 1359 1360 if (iosys_map_is_null(&bo->vmap)) { 1361 ret = xe_bo_vmap(bo); 1362 if (ret) 1363 goto out_backup; 1364 unmap = true; 1365 } 1366 1367 xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, 1368 xe_bo_size(bo)); 1369 } 1370 1371 bo->backup_obj = NULL; 1372 1373 out_backup: 1374 xe_bo_vunmap(backup); 1375 if (!bo->backup_obj) { 1376 if (xe_bo_is_pinned(backup)) 1377 ttm_bo_unpin(&backup->ttm); 1378 xe_bo_put(backup); 1379 } 1380 out_unlock_bo: 1381 if (unmap) 1382 xe_bo_vunmap(bo); 1383 xe_bo_unlock(bo); 1384 return ret; 1385 } 1386 1387 int xe_bo_dma_unmap_pinned(struct xe_bo *bo) 1388 { 1389 struct ttm_buffer_object *ttm_bo = &bo->ttm; 1390 struct ttm_tt *tt = ttm_bo->ttm; 1391 1392 if (tt) { 1393 struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); 1394 1395 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1396 dma_buf_unmap_attachment(ttm_bo->base.import_attach, 1397 ttm_bo->sg, 1398 DMA_BIDIRECTIONAL); 1399 ttm_bo->sg = NULL; 1400 xe_tt->sg = NULL; 1401 } else if (xe_tt->sg) { 1402 dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev, 1403 xe_tt->sg, 1404 DMA_BIDIRECTIONAL, 0); 1405 sg_free_table(xe_tt->sg); 1406 xe_tt->sg = NULL; 1407 } 1408 } 1409 1410 return 0; 1411 } 1412 1413 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1414 unsigned long page_offset) 1415 { 1416 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1417 struct xe_res_cursor cursor; 1418 struct xe_vram_region *vram; 1419 1420 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1421 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1422 1423 vram = res_to_mem_region(ttm_bo->resource); 1424 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1425 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1426 } 1427 1428 static void __xe_bo_vunmap(struct xe_bo *bo); 1429 1430 /* 1431 * TODO: Move this function to TTM so we don't rely on how TTM does its 1432 * locking, thereby abusing TTM internals. 1433 */ 1434 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1435 { 1436 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1437 bool locked; 1438 1439 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1440 1441 /* 1442 * We can typically only race with TTM trylocking under the 1443 * lru_lock, which will immediately be unlocked again since 1444 * the ttm_bo refcount is zero at this point. So trylocking *should* 1445 * always succeed here, as long as we hold the lru lock. 1446 */ 1447 spin_lock(&ttm_bo->bdev->lru_lock); 1448 locked = dma_resv_trylock(ttm_bo->base.resv); 1449 spin_unlock(&ttm_bo->bdev->lru_lock); 1450 xe_assert(xe, locked); 1451 1452 return locked; 1453 } 1454 1455 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1456 { 1457 struct dma_resv_iter cursor; 1458 struct dma_fence *fence; 1459 struct dma_fence *replacement = NULL; 1460 struct xe_bo *bo; 1461 1462 if (!xe_bo_is_xe_bo(ttm_bo)) 1463 return; 1464 1465 bo = ttm_to_xe_bo(ttm_bo); 1466 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1467 1468 /* 1469 * Corner case where TTM fails to allocate memory and this BOs resv 1470 * still points the VMs resv 1471 */ 1472 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1473 return; 1474 1475 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1476 return; 1477 1478 /* 1479 * Scrub the preempt fences if any. The unbind fence is already 1480 * attached to the resv. 1481 * TODO: Don't do this for external bos once we scrub them after 1482 * unbind. 1483 */ 1484 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1485 DMA_RESV_USAGE_BOOKKEEP, fence) { 1486 if (xe_fence_is_xe_preempt(fence) && 1487 !dma_fence_is_signaled(fence)) { 1488 if (!replacement) 1489 replacement = dma_fence_get_stub(); 1490 1491 dma_resv_replace_fences(ttm_bo->base.resv, 1492 fence->context, 1493 replacement, 1494 DMA_RESV_USAGE_BOOKKEEP); 1495 } 1496 } 1497 dma_fence_put(replacement); 1498 1499 dma_resv_unlock(ttm_bo->base.resv); 1500 } 1501 1502 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1503 { 1504 if (!xe_bo_is_xe_bo(ttm_bo)) 1505 return; 1506 1507 /* 1508 * Object is idle and about to be destroyed. Release the 1509 * dma-buf attachment. 1510 */ 1511 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1512 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1513 struct xe_ttm_tt, ttm); 1514 1515 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1516 DMA_BIDIRECTIONAL); 1517 ttm_bo->sg = NULL; 1518 xe_tt->sg = NULL; 1519 } 1520 } 1521 1522 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1523 { 1524 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1525 1526 if (ttm_bo->ttm) { 1527 struct ttm_placement place = {}; 1528 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1529 1530 drm_WARN_ON(&xe->drm, ret); 1531 } 1532 } 1533 1534 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1535 { 1536 struct ttm_operation_ctx ctx = { 1537 .interruptible = false, 1538 .gfp_retry_mayfail = false, 1539 }; 1540 1541 if (ttm_bo->ttm) { 1542 struct xe_ttm_tt *xe_tt = 1543 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1544 1545 if (xe_tt->purgeable) 1546 xe_ttm_bo_purge(ttm_bo, &ctx); 1547 } 1548 } 1549 1550 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1551 unsigned long offset, void *buf, int len, 1552 int write) 1553 { 1554 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1555 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1556 struct iosys_map vmap; 1557 struct xe_res_cursor cursor; 1558 struct xe_vram_region *vram; 1559 int bytes_left = len; 1560 int err = 0; 1561 1562 xe_bo_assert_held(bo); 1563 xe_device_assert_mem_access(xe); 1564 1565 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1566 return -EIO; 1567 1568 if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) { 1569 struct xe_migrate *migrate = 1570 mem_type_to_migrate(xe, ttm_bo->resource->mem_type); 1571 1572 err = xe_migrate_access_memory(migrate, bo, offset, buf, len, 1573 write); 1574 goto out; 1575 } 1576 1577 vram = res_to_mem_region(ttm_bo->resource); 1578 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1579 xe_bo_size(bo) - (offset & PAGE_MASK), &cursor); 1580 1581 do { 1582 unsigned long page_offset = (offset & ~PAGE_MASK); 1583 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1584 1585 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1586 cursor.start); 1587 if (write) 1588 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1589 else 1590 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1591 1592 buf += byte_count; 1593 offset += byte_count; 1594 bytes_left -= byte_count; 1595 if (bytes_left) 1596 xe_res_next(&cursor, PAGE_SIZE); 1597 } while (bytes_left); 1598 1599 out: 1600 return err ?: len; 1601 } 1602 1603 const struct ttm_device_funcs xe_ttm_funcs = { 1604 .ttm_tt_create = xe_ttm_tt_create, 1605 .ttm_tt_populate = xe_ttm_tt_populate, 1606 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1607 .ttm_tt_destroy = xe_ttm_tt_destroy, 1608 .evict_flags = xe_evict_flags, 1609 .move = xe_bo_move, 1610 .io_mem_reserve = xe_ttm_io_mem_reserve, 1611 .io_mem_pfn = xe_ttm_io_mem_pfn, 1612 .access_memory = xe_ttm_access_memory, 1613 .release_notify = xe_ttm_bo_release_notify, 1614 .eviction_valuable = xe_bo_eviction_valuable, 1615 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1616 .swap_notify = xe_ttm_bo_swap_notify, 1617 }; 1618 1619 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1620 { 1621 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1622 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1623 struct xe_tile *tile; 1624 u8 id; 1625 1626 if (bo->ttm.base.import_attach) 1627 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1628 drm_gem_object_release(&bo->ttm.base); 1629 1630 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1631 1632 for_each_tile(tile, xe, id) 1633 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1634 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1635 1636 #ifdef CONFIG_PROC_FS 1637 if (bo->client) 1638 xe_drm_client_remove_bo(bo); 1639 #endif 1640 1641 if (bo->vm && xe_bo_is_user(bo)) 1642 xe_vm_put(bo->vm); 1643 1644 if (bo->parent_obj) 1645 xe_bo_put(bo->parent_obj); 1646 1647 mutex_lock(&xe->mem_access.vram_userfault.lock); 1648 if (!list_empty(&bo->vram_userfault_link)) 1649 list_del(&bo->vram_userfault_link); 1650 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1651 1652 kfree(bo); 1653 } 1654 1655 static void xe_gem_object_free(struct drm_gem_object *obj) 1656 { 1657 /* Our BO reference counting scheme works as follows: 1658 * 1659 * The gem object kref is typically used throughout the driver, 1660 * and the gem object holds a ttm_buffer_object refcount, so 1661 * that when the last gem object reference is put, which is when 1662 * we end up in this function, we put also that ttm_buffer_object 1663 * refcount. Anything using gem interfaces is then no longer 1664 * allowed to access the object in a way that requires a gem 1665 * refcount, including locking the object. 1666 * 1667 * driver ttm callbacks is allowed to use the ttm_buffer_object 1668 * refcount directly if needed. 1669 */ 1670 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1671 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1672 } 1673 1674 static void xe_gem_object_close(struct drm_gem_object *obj, 1675 struct drm_file *file_priv) 1676 { 1677 struct xe_bo *bo = gem_to_xe_bo(obj); 1678 1679 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1680 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1681 1682 xe_bo_lock(bo, false); 1683 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1684 xe_bo_unlock(bo); 1685 } 1686 } 1687 1688 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1689 { 1690 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1691 struct drm_device *ddev = tbo->base.dev; 1692 struct xe_device *xe = to_xe_device(ddev); 1693 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1694 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1695 vm_fault_t ret; 1696 int idx; 1697 1698 if (needs_rpm) 1699 xe_pm_runtime_get(xe); 1700 1701 ret = ttm_bo_vm_reserve(tbo, vmf); 1702 if (ret) 1703 goto out; 1704 1705 if (drm_dev_enter(ddev, &idx)) { 1706 trace_xe_bo_cpu_fault(bo); 1707 1708 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1709 TTM_BO_VM_NUM_PREFAULT); 1710 drm_dev_exit(idx); 1711 } else { 1712 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1713 } 1714 1715 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1716 goto out; 1717 /* 1718 * ttm_bo_vm_reserve() already has dma_resv_lock. 1719 */ 1720 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1721 mutex_lock(&xe->mem_access.vram_userfault.lock); 1722 if (list_empty(&bo->vram_userfault_link)) 1723 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1724 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1725 } 1726 1727 dma_resv_unlock(tbo->base.resv); 1728 out: 1729 if (needs_rpm) 1730 xe_pm_runtime_put(xe); 1731 1732 return ret; 1733 } 1734 1735 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1736 void *buf, int len, int write) 1737 { 1738 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1739 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1740 struct xe_device *xe = xe_bo_device(bo); 1741 int ret; 1742 1743 xe_pm_runtime_get(xe); 1744 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1745 xe_pm_runtime_put(xe); 1746 1747 return ret; 1748 } 1749 1750 /** 1751 * xe_bo_read() - Read from an xe_bo 1752 * @bo: The buffer object to read from. 1753 * @offset: The byte offset to start reading from. 1754 * @dst: Location to store the read. 1755 * @size: Size in bytes for the read. 1756 * 1757 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1758 * 1759 * Return: Zero on success, or negative error. 1760 */ 1761 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1762 { 1763 int ret; 1764 1765 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1766 if (ret >= 0 && ret != size) 1767 ret = -EIO; 1768 else if (ret == size) 1769 ret = 0; 1770 1771 return ret; 1772 } 1773 1774 static const struct vm_operations_struct xe_gem_vm_ops = { 1775 .fault = xe_gem_fault, 1776 .open = ttm_bo_vm_open, 1777 .close = ttm_bo_vm_close, 1778 .access = xe_bo_vm_access, 1779 }; 1780 1781 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1782 .free = xe_gem_object_free, 1783 .close = xe_gem_object_close, 1784 .mmap = drm_gem_ttm_mmap, 1785 .export = xe_gem_prime_export, 1786 .vm_ops = &xe_gem_vm_ops, 1787 }; 1788 1789 /** 1790 * xe_bo_alloc - Allocate storage for a struct xe_bo 1791 * 1792 * This function is intended to allocate storage to be used for input 1793 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1794 * created is needed before the call to __xe_bo_create_locked(). 1795 * If __xe_bo_create_locked ends up never to be called, then the 1796 * storage allocated with this function needs to be freed using 1797 * xe_bo_free(). 1798 * 1799 * Return: A pointer to an uninitialized struct xe_bo on success, 1800 * ERR_PTR(-ENOMEM) on error. 1801 */ 1802 struct xe_bo *xe_bo_alloc(void) 1803 { 1804 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1805 1806 if (!bo) 1807 return ERR_PTR(-ENOMEM); 1808 1809 return bo; 1810 } 1811 1812 /** 1813 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1814 * @bo: The buffer object storage. 1815 * 1816 * Refer to xe_bo_alloc() documentation for valid use-cases. 1817 */ 1818 void xe_bo_free(struct xe_bo *bo) 1819 { 1820 kfree(bo); 1821 } 1822 1823 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1824 struct xe_tile *tile, struct dma_resv *resv, 1825 struct ttm_lru_bulk_move *bulk, size_t size, 1826 u16 cpu_caching, enum ttm_bo_type type, 1827 u32 flags) 1828 { 1829 struct ttm_operation_ctx ctx = { 1830 .interruptible = true, 1831 .no_wait_gpu = false, 1832 .gfp_retry_mayfail = true, 1833 }; 1834 struct ttm_placement *placement; 1835 uint32_t alignment; 1836 size_t aligned_size; 1837 int err; 1838 1839 /* Only kernel objects should set GT */ 1840 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1841 1842 if (XE_WARN_ON(!size)) { 1843 xe_bo_free(bo); 1844 return ERR_PTR(-EINVAL); 1845 } 1846 1847 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1848 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1849 return ERR_PTR(-EINVAL); 1850 1851 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1852 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1853 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1854 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1855 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1856 1857 aligned_size = ALIGN(size, align); 1858 if (type != ttm_bo_type_device) 1859 size = ALIGN(size, align); 1860 flags |= XE_BO_FLAG_INTERNAL_64K; 1861 alignment = align >> PAGE_SHIFT; 1862 } else { 1863 aligned_size = ALIGN(size, SZ_4K); 1864 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1865 alignment = SZ_4K >> PAGE_SHIFT; 1866 } 1867 1868 if (type == ttm_bo_type_device && aligned_size != size) 1869 return ERR_PTR(-EINVAL); 1870 1871 if (!bo) { 1872 bo = xe_bo_alloc(); 1873 if (IS_ERR(bo)) 1874 return bo; 1875 } 1876 1877 bo->ccs_cleared = false; 1878 bo->tile = tile; 1879 bo->flags = flags; 1880 bo->cpu_caching = cpu_caching; 1881 bo->ttm.base.funcs = &xe_gem_object_funcs; 1882 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1883 INIT_LIST_HEAD(&bo->pinned_link); 1884 #ifdef CONFIG_PROC_FS 1885 INIT_LIST_HEAD(&bo->client_link); 1886 #endif 1887 INIT_LIST_HEAD(&bo->vram_userfault_link); 1888 1889 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1890 1891 if (resv) { 1892 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1893 ctx.resv = resv; 1894 } 1895 1896 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1897 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1898 if (WARN_ON(err)) { 1899 xe_ttm_bo_destroy(&bo->ttm); 1900 return ERR_PTR(err); 1901 } 1902 } 1903 1904 /* Defer populating type_sg bos */ 1905 placement = (type == ttm_bo_type_sg || 1906 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1907 &bo->placement; 1908 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1909 placement, alignment, 1910 &ctx, NULL, resv, xe_ttm_bo_destroy); 1911 if (err) 1912 return ERR_PTR(err); 1913 1914 /* 1915 * The VRAM pages underneath are potentially still being accessed by the 1916 * GPU, as per async GPU clearing and async evictions. However TTM makes 1917 * sure to add any corresponding move/clear fences into the objects 1918 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1919 * 1920 * For KMD internal buffers we don't care about GPU clearing, however we 1921 * still need to handle async evictions, where the VRAM is still being 1922 * accessed by the GPU. Most internal callers are not expecting this, 1923 * since they are missing the required synchronisation before accessing 1924 * the memory. To keep things simple just sync wait any kernel fences 1925 * here, if the buffer is designated KMD internal. 1926 * 1927 * For normal userspace objects we should already have the required 1928 * pipelining or sync waiting elsewhere, since we already have to deal 1929 * with things like async GPU clearing. 1930 */ 1931 if (type == ttm_bo_type_kernel) { 1932 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1933 DMA_RESV_USAGE_KERNEL, 1934 ctx.interruptible, 1935 MAX_SCHEDULE_TIMEOUT); 1936 1937 if (timeout < 0) { 1938 if (!resv) 1939 dma_resv_unlock(bo->ttm.base.resv); 1940 xe_bo_put(bo); 1941 return ERR_PTR(timeout); 1942 } 1943 } 1944 1945 bo->created = true; 1946 if (bulk) 1947 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1948 else 1949 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1950 1951 return bo; 1952 } 1953 1954 static int __xe_bo_fixed_placement(struct xe_device *xe, 1955 struct xe_bo *bo, 1956 u32 flags, 1957 u64 start, u64 end, u64 size) 1958 { 1959 struct ttm_place *place = bo->placements; 1960 1961 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1962 return -EINVAL; 1963 1964 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1965 place->fpfn = start >> PAGE_SHIFT; 1966 place->lpfn = end >> PAGE_SHIFT; 1967 1968 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1969 case XE_BO_FLAG_VRAM0: 1970 place->mem_type = XE_PL_VRAM0; 1971 break; 1972 case XE_BO_FLAG_VRAM1: 1973 place->mem_type = XE_PL_VRAM1; 1974 break; 1975 case XE_BO_FLAG_STOLEN: 1976 place->mem_type = XE_PL_STOLEN; 1977 break; 1978 1979 default: 1980 /* 0 or multiple of the above set */ 1981 return -EINVAL; 1982 } 1983 1984 bo->placement = (struct ttm_placement) { 1985 .num_placement = 1, 1986 .placement = place, 1987 }; 1988 1989 return 0; 1990 } 1991 1992 static struct xe_bo * 1993 __xe_bo_create_locked(struct xe_device *xe, 1994 struct xe_tile *tile, struct xe_vm *vm, 1995 size_t size, u64 start, u64 end, 1996 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 1997 u64 alignment) 1998 { 1999 struct xe_bo *bo = NULL; 2000 int err; 2001 2002 if (vm) 2003 xe_vm_assert_held(vm); 2004 2005 if (start || end != ~0ULL) { 2006 bo = xe_bo_alloc(); 2007 if (IS_ERR(bo)) 2008 return bo; 2009 2010 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 2011 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 2012 if (err) { 2013 xe_bo_free(bo); 2014 return ERR_PTR(err); 2015 } 2016 } 2017 2018 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 2019 vm && !xe_vm_in_fault_mode(vm) && 2020 flags & XE_BO_FLAG_USER ? 2021 &vm->lru_bulk_move : NULL, size, 2022 cpu_caching, type, flags); 2023 if (IS_ERR(bo)) 2024 return bo; 2025 2026 bo->min_align = alignment; 2027 2028 /* 2029 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 2030 * to ensure the shared resv doesn't disappear under the bo, the bo 2031 * will keep a reference to the vm, and avoid circular references 2032 * by having all the vm's bo refereferences released at vm close 2033 * time. 2034 */ 2035 if (vm && xe_bo_is_user(bo)) 2036 xe_vm_get(vm); 2037 bo->vm = vm; 2038 2039 if (bo->flags & XE_BO_FLAG_GGTT) { 2040 struct xe_tile *t; 2041 u8 id; 2042 2043 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 2044 if (!tile && flags & XE_BO_FLAG_STOLEN) 2045 tile = xe_device_get_root_tile(xe); 2046 2047 xe_assert(xe, tile); 2048 } 2049 2050 for_each_tile(t, xe, id) { 2051 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 2052 continue; 2053 2054 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 2055 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 2056 start + xe_bo_size(bo), U64_MAX); 2057 } else { 2058 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 2059 } 2060 if (err) 2061 goto err_unlock_put_bo; 2062 } 2063 } 2064 2065 trace_xe_bo_create(bo); 2066 return bo; 2067 2068 err_unlock_put_bo: 2069 __xe_bo_unset_bulk_move(bo); 2070 xe_bo_unlock_vm_held(bo); 2071 xe_bo_put(bo); 2072 return ERR_PTR(err); 2073 } 2074 2075 struct xe_bo * 2076 xe_bo_create_locked_range(struct xe_device *xe, 2077 struct xe_tile *tile, struct xe_vm *vm, 2078 size_t size, u64 start, u64 end, 2079 enum ttm_bo_type type, u32 flags, u64 alignment) 2080 { 2081 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 2082 flags, alignment); 2083 } 2084 2085 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 2086 struct xe_vm *vm, size_t size, 2087 enum ttm_bo_type type, u32 flags) 2088 { 2089 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 2090 flags, 0); 2091 } 2092 2093 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 2094 struct xe_vm *vm, size_t size, 2095 u16 cpu_caching, 2096 u32 flags) 2097 { 2098 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 2099 cpu_caching, ttm_bo_type_device, 2100 flags | XE_BO_FLAG_USER, 0); 2101 if (!IS_ERR(bo)) 2102 xe_bo_unlock_vm_held(bo); 2103 2104 return bo; 2105 } 2106 2107 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 2108 struct xe_vm *vm, size_t size, 2109 enum ttm_bo_type type, u32 flags) 2110 { 2111 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 2112 2113 if (!IS_ERR(bo)) 2114 xe_bo_unlock_vm_held(bo); 2115 2116 return bo; 2117 } 2118 2119 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 2120 struct xe_vm *vm, 2121 size_t size, u64 offset, 2122 enum ttm_bo_type type, u32 flags) 2123 { 2124 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 2125 type, flags, 0); 2126 } 2127 2128 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 2129 struct xe_tile *tile, 2130 struct xe_vm *vm, 2131 size_t size, u64 offset, 2132 enum ttm_bo_type type, u32 flags, 2133 u64 alignment) 2134 { 2135 struct xe_bo *bo; 2136 int err; 2137 u64 start = offset == ~0ull ? 0 : offset; 2138 u64 end = offset == ~0ull ? offset : start + size; 2139 2140 if (flags & XE_BO_FLAG_STOLEN && 2141 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 2142 flags |= XE_BO_FLAG_GGTT; 2143 2144 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 2145 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, 2146 alignment); 2147 if (IS_ERR(bo)) 2148 return bo; 2149 2150 err = xe_bo_pin(bo); 2151 if (err) 2152 goto err_put; 2153 2154 err = xe_bo_vmap(bo); 2155 if (err) 2156 goto err_unpin; 2157 2158 xe_bo_unlock_vm_held(bo); 2159 2160 return bo; 2161 2162 err_unpin: 2163 xe_bo_unpin(bo); 2164 err_put: 2165 xe_bo_unlock_vm_held(bo); 2166 xe_bo_put(bo); 2167 return ERR_PTR(err); 2168 } 2169 2170 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2171 struct xe_vm *vm, size_t size, 2172 enum ttm_bo_type type, u32 flags) 2173 { 2174 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 2175 } 2176 2177 static void __xe_bo_unpin_map_no_vm(void *arg) 2178 { 2179 xe_bo_unpin_map_no_vm(arg); 2180 } 2181 2182 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2183 size_t size, u32 flags) 2184 { 2185 struct xe_bo *bo; 2186 int ret; 2187 2188 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2189 2190 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2191 if (IS_ERR(bo)) 2192 return bo; 2193 2194 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2195 if (ret) 2196 return ERR_PTR(ret); 2197 2198 return bo; 2199 } 2200 2201 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2202 const void *data, size_t size, u32 flags) 2203 { 2204 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2205 2206 if (IS_ERR(bo)) 2207 return bo; 2208 2209 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2210 2211 return bo; 2212 } 2213 2214 /** 2215 * xe_managed_bo_reinit_in_vram 2216 * @xe: xe device 2217 * @tile: Tile where the new buffer will be created 2218 * @src: Managed buffer object allocated in system memory 2219 * 2220 * Replace a managed src buffer object allocated in system memory with a new 2221 * one allocated in vram, copying the data between them. 2222 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2223 * is responsible for making sure that any old references to it are updated. 2224 * 2225 * Returns 0 for success, negative error code otherwise. 2226 */ 2227 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2228 { 2229 struct xe_bo *bo; 2230 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2231 2232 dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | 2233 XE_BO_FLAG_PINNED_NORESTORE); 2234 2235 xe_assert(xe, IS_DGFX(xe)); 2236 xe_assert(xe, !(*src)->vmap.is_iomem); 2237 2238 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2239 xe_bo_size(*src), dst_flags); 2240 if (IS_ERR(bo)) 2241 return PTR_ERR(bo); 2242 2243 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2244 *src = bo; 2245 2246 return 0; 2247 } 2248 2249 /* 2250 * XXX: This is in the VM bind data path, likely should calculate this once and 2251 * store, with a recalculation if the BO is moved. 2252 */ 2253 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2254 { 2255 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2256 2257 switch (res->mem_type) { 2258 case XE_PL_STOLEN: 2259 return xe_ttm_stolen_gpu_offset(xe); 2260 case XE_PL_TT: 2261 case XE_PL_SYSTEM: 2262 return 0; 2263 default: 2264 return res_to_mem_region(res)->dpa_base; 2265 } 2266 return 0; 2267 } 2268 2269 /** 2270 * xe_bo_pin_external - pin an external BO 2271 * @bo: buffer object to be pinned 2272 * 2273 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2274 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2275 * asserts and code to ensure evict / restore on suspend / resume. 2276 * 2277 * Returns 0 for success, negative error code otherwise. 2278 */ 2279 int xe_bo_pin_external(struct xe_bo *bo) 2280 { 2281 struct xe_device *xe = xe_bo_device(bo); 2282 int err; 2283 2284 xe_assert(xe, !bo->vm); 2285 xe_assert(xe, xe_bo_is_user(bo)); 2286 2287 if (!xe_bo_is_pinned(bo)) { 2288 err = xe_bo_validate(bo, NULL, false); 2289 if (err) 2290 return err; 2291 2292 spin_lock(&xe->pinned.lock); 2293 list_add_tail(&bo->pinned_link, &xe->pinned.late.external); 2294 spin_unlock(&xe->pinned.lock); 2295 } 2296 2297 ttm_bo_pin(&bo->ttm); 2298 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2299 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2300 2301 /* 2302 * FIXME: If we always use the reserve / unreserve functions for locking 2303 * we do not need this. 2304 */ 2305 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2306 2307 return 0; 2308 } 2309 2310 int xe_bo_pin(struct xe_bo *bo) 2311 { 2312 struct ttm_place *place = &bo->placements[0]; 2313 struct xe_device *xe = xe_bo_device(bo); 2314 int err; 2315 2316 /* We currently don't expect user BO to be pinned */ 2317 xe_assert(xe, !xe_bo_is_user(bo)); 2318 2319 /* Pinned object must be in GGTT or have pinned flag */ 2320 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2321 XE_BO_FLAG_GGTT)); 2322 2323 /* 2324 * No reason we can't support pinning imported dma-bufs we just don't 2325 * expect to pin an imported dma-buf. 2326 */ 2327 xe_assert(xe, !bo->ttm.base.import_attach); 2328 2329 /* We only expect at most 1 pin */ 2330 xe_assert(xe, !xe_bo_is_pinned(bo)); 2331 2332 err = xe_bo_validate(bo, NULL, false); 2333 if (err) 2334 return err; 2335 2336 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2337 spin_lock(&xe->pinned.lock); 2338 if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) 2339 list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); 2340 else 2341 list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); 2342 spin_unlock(&xe->pinned.lock); 2343 } 2344 2345 ttm_bo_pin(&bo->ttm); 2346 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2347 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2348 2349 /* 2350 * FIXME: If we always use the reserve / unreserve functions for locking 2351 * we do not need this. 2352 */ 2353 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2354 2355 return 0; 2356 } 2357 2358 /** 2359 * xe_bo_unpin_external - unpin an external BO 2360 * @bo: buffer object to be unpinned 2361 * 2362 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2363 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2364 * asserts and code to ensure evict / restore on suspend / resume. 2365 * 2366 * Returns 0 for success, negative error code otherwise. 2367 */ 2368 void xe_bo_unpin_external(struct xe_bo *bo) 2369 { 2370 struct xe_device *xe = xe_bo_device(bo); 2371 2372 xe_assert(xe, !bo->vm); 2373 xe_assert(xe, xe_bo_is_pinned(bo)); 2374 xe_assert(xe, xe_bo_is_user(bo)); 2375 2376 spin_lock(&xe->pinned.lock); 2377 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2378 list_del_init(&bo->pinned_link); 2379 spin_unlock(&xe->pinned.lock); 2380 2381 ttm_bo_unpin(&bo->ttm); 2382 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2383 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2384 2385 /* 2386 * FIXME: If we always use the reserve / unreserve functions for locking 2387 * we do not need this. 2388 */ 2389 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2390 } 2391 2392 void xe_bo_unpin(struct xe_bo *bo) 2393 { 2394 struct ttm_place *place = &bo->placements[0]; 2395 struct xe_device *xe = xe_bo_device(bo); 2396 2397 xe_assert(xe, !bo->ttm.base.import_attach); 2398 xe_assert(xe, xe_bo_is_pinned(bo)); 2399 2400 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2401 spin_lock(&xe->pinned.lock); 2402 xe_assert(xe, !list_empty(&bo->pinned_link)); 2403 list_del_init(&bo->pinned_link); 2404 spin_unlock(&xe->pinned.lock); 2405 2406 if (bo->backup_obj) { 2407 if (xe_bo_is_pinned(bo->backup_obj)) 2408 ttm_bo_unpin(&bo->backup_obj->ttm); 2409 xe_bo_put(bo->backup_obj); 2410 bo->backup_obj = NULL; 2411 } 2412 } 2413 ttm_bo_unpin(&bo->ttm); 2414 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2415 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2416 } 2417 2418 /** 2419 * xe_bo_validate() - Make sure the bo is in an allowed placement 2420 * @bo: The bo, 2421 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2422 * NULL. Used together with @allow_res_evict. 2423 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2424 * reservation object. 2425 * 2426 * Make sure the bo is in allowed placement, migrating it if necessary. If 2427 * needed, other bos will be evicted. If bos selected for eviction shares 2428 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2429 * set to true, otherwise they will be bypassed. 2430 * 2431 * Return: 0 on success, negative error code on failure. May return 2432 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2433 */ 2434 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2435 { 2436 struct ttm_operation_ctx ctx = { 2437 .interruptible = true, 2438 .no_wait_gpu = false, 2439 .gfp_retry_mayfail = true, 2440 }; 2441 struct pin_cookie cookie; 2442 int ret; 2443 2444 if (vm) { 2445 lockdep_assert_held(&vm->lock); 2446 xe_vm_assert_held(vm); 2447 2448 ctx.allow_res_evict = allow_res_evict; 2449 ctx.resv = xe_vm_resv(vm); 2450 } 2451 2452 cookie = xe_vm_set_validating(vm, allow_res_evict); 2453 trace_xe_bo_validate(bo); 2454 ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2455 xe_vm_clear_validating(vm, allow_res_evict, cookie); 2456 2457 return ret; 2458 } 2459 2460 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2461 { 2462 if (bo->destroy == &xe_ttm_bo_destroy) 2463 return true; 2464 2465 return false; 2466 } 2467 2468 /* 2469 * Resolve a BO address. There is no assert to check if the proper lock is held 2470 * so it should only be used in cases where it is not fatal to get the wrong 2471 * address, such as printing debug information, but not in cases where memory is 2472 * written based on this result. 2473 */ 2474 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2475 { 2476 struct xe_device *xe = xe_bo_device(bo); 2477 struct xe_res_cursor cur; 2478 u64 page; 2479 2480 xe_assert(xe, page_size <= PAGE_SIZE); 2481 page = offset >> PAGE_SHIFT; 2482 offset &= (PAGE_SIZE - 1); 2483 2484 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2485 xe_assert(xe, bo->ttm.ttm); 2486 2487 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2488 page_size, &cur); 2489 return xe_res_dma(&cur) + offset; 2490 } else { 2491 struct xe_res_cursor cur; 2492 2493 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2494 page_size, &cur); 2495 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2496 } 2497 } 2498 2499 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2500 { 2501 if (!READ_ONCE(bo->ttm.pin_count)) 2502 xe_bo_assert_held(bo); 2503 return __xe_bo_addr(bo, offset, page_size); 2504 } 2505 2506 int xe_bo_vmap(struct xe_bo *bo) 2507 { 2508 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2509 void *virtual; 2510 bool is_iomem; 2511 int ret; 2512 2513 xe_bo_assert_held(bo); 2514 2515 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2516 !force_contiguous(bo->flags))) 2517 return -EINVAL; 2518 2519 if (!iosys_map_is_null(&bo->vmap)) 2520 return 0; 2521 2522 /* 2523 * We use this more or less deprecated interface for now since 2524 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2525 * single page bos, which is done here. 2526 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2527 * to use struct iosys_map. 2528 */ 2529 ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap); 2530 if (ret) 2531 return ret; 2532 2533 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2534 if (is_iomem) 2535 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2536 else 2537 iosys_map_set_vaddr(&bo->vmap, virtual); 2538 2539 return 0; 2540 } 2541 2542 static void __xe_bo_vunmap(struct xe_bo *bo) 2543 { 2544 if (!iosys_map_is_null(&bo->vmap)) { 2545 iosys_map_clear(&bo->vmap); 2546 ttm_bo_kunmap(&bo->kmap); 2547 } 2548 } 2549 2550 void xe_bo_vunmap(struct xe_bo *bo) 2551 { 2552 xe_bo_assert_held(bo); 2553 __xe_bo_vunmap(bo); 2554 } 2555 2556 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2557 { 2558 if (value == DRM_XE_PXP_TYPE_NONE) 2559 return 0; 2560 2561 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2562 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2563 return -EINVAL; 2564 2565 return xe_pxp_key_assign(xe->pxp, bo); 2566 } 2567 2568 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2569 struct xe_bo *bo, 2570 u64 value); 2571 2572 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2573 [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, 2574 }; 2575 2576 static int gem_create_user_ext_set_property(struct xe_device *xe, 2577 struct xe_bo *bo, 2578 u64 extension) 2579 { 2580 u64 __user *address = u64_to_user_ptr(extension); 2581 struct drm_xe_ext_set_property ext; 2582 int err; 2583 u32 idx; 2584 2585 err = copy_from_user(&ext, address, sizeof(ext)); 2586 if (XE_IOCTL_DBG(xe, err)) 2587 return -EFAULT; 2588 2589 if (XE_IOCTL_DBG(xe, ext.property >= 2590 ARRAY_SIZE(gem_create_set_property_funcs)) || 2591 XE_IOCTL_DBG(xe, ext.pad) || 2592 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2593 return -EINVAL; 2594 2595 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2596 if (!gem_create_set_property_funcs[idx]) 2597 return -EINVAL; 2598 2599 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2600 } 2601 2602 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2603 struct xe_bo *bo, 2604 u64 extension); 2605 2606 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2607 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2608 }; 2609 2610 #define MAX_USER_EXTENSIONS 16 2611 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2612 u64 extensions, int ext_number) 2613 { 2614 u64 __user *address = u64_to_user_ptr(extensions); 2615 struct drm_xe_user_extension ext; 2616 int err; 2617 u32 idx; 2618 2619 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2620 return -E2BIG; 2621 2622 err = copy_from_user(&ext, address, sizeof(ext)); 2623 if (XE_IOCTL_DBG(xe, err)) 2624 return -EFAULT; 2625 2626 if (XE_IOCTL_DBG(xe, ext.pad) || 2627 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2628 return -EINVAL; 2629 2630 idx = array_index_nospec(ext.name, 2631 ARRAY_SIZE(gem_create_user_extension_funcs)); 2632 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2633 if (XE_IOCTL_DBG(xe, err)) 2634 return err; 2635 2636 if (ext.next_extension) 2637 return gem_create_user_extensions(xe, bo, ext.next_extension, 2638 ++ext_number); 2639 2640 return 0; 2641 } 2642 2643 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2644 struct drm_file *file) 2645 { 2646 struct xe_device *xe = to_xe_device(dev); 2647 struct xe_file *xef = to_xe_file(file); 2648 struct drm_xe_gem_create *args = data; 2649 struct xe_vm *vm = NULL; 2650 ktime_t end = 0; 2651 struct xe_bo *bo; 2652 unsigned int bo_flags; 2653 u32 handle; 2654 int err; 2655 2656 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2657 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2658 return -EINVAL; 2659 2660 /* at least one valid memory placement must be specified */ 2661 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2662 !args->placement)) 2663 return -EINVAL; 2664 2665 if (XE_IOCTL_DBG(xe, args->flags & 2666 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2667 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2668 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2669 return -EINVAL; 2670 2671 if (XE_IOCTL_DBG(xe, args->handle)) 2672 return -EINVAL; 2673 2674 if (XE_IOCTL_DBG(xe, !args->size)) 2675 return -EINVAL; 2676 2677 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2678 return -EINVAL; 2679 2680 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2681 return -EINVAL; 2682 2683 bo_flags = 0; 2684 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2685 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2686 2687 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2688 bo_flags |= XE_BO_FLAG_SCANOUT; 2689 2690 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2691 2692 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2693 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2694 (bo_flags & XE_BO_FLAG_SCANOUT) && 2695 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2696 IS_ALIGNED(args->size, SZ_64K)) 2697 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2698 2699 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2700 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2701 return -EINVAL; 2702 2703 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2704 } 2705 2706 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2707 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2708 return -EINVAL; 2709 2710 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2711 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2712 return -EINVAL; 2713 2714 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2715 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2716 return -EINVAL; 2717 2718 if (args->vm_id) { 2719 vm = xe_vm_lookup(xef, args->vm_id); 2720 if (XE_IOCTL_DBG(xe, !vm)) 2721 return -ENOENT; 2722 } 2723 2724 retry: 2725 if (vm) { 2726 err = xe_vm_lock(vm, true); 2727 if (err) 2728 goto out_vm; 2729 } 2730 2731 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2732 bo_flags); 2733 2734 if (vm) 2735 xe_vm_unlock(vm); 2736 2737 if (IS_ERR(bo)) { 2738 err = PTR_ERR(bo); 2739 if (xe_vm_validate_should_retry(NULL, err, &end)) 2740 goto retry; 2741 goto out_vm; 2742 } 2743 2744 if (args->extensions) { 2745 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2746 if (err) 2747 goto out_bulk; 2748 } 2749 2750 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2751 if (err) 2752 goto out_bulk; 2753 2754 args->handle = handle; 2755 goto out_put; 2756 2757 out_bulk: 2758 if (vm && !xe_vm_in_fault_mode(vm)) { 2759 xe_vm_lock(vm, false); 2760 __xe_bo_unset_bulk_move(bo); 2761 xe_vm_unlock(vm); 2762 } 2763 out_put: 2764 xe_bo_put(bo); 2765 out_vm: 2766 if (vm) 2767 xe_vm_put(vm); 2768 2769 return err; 2770 } 2771 2772 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2773 struct drm_file *file) 2774 { 2775 struct xe_device *xe = to_xe_device(dev); 2776 struct drm_xe_gem_mmap_offset *args = data; 2777 struct drm_gem_object *gem_obj; 2778 2779 if (XE_IOCTL_DBG(xe, args->extensions) || 2780 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2781 return -EINVAL; 2782 2783 if (XE_IOCTL_DBG(xe, args->flags & 2784 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2785 return -EINVAL; 2786 2787 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2788 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2789 return -EINVAL; 2790 2791 if (XE_IOCTL_DBG(xe, args->handle)) 2792 return -EINVAL; 2793 2794 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2795 return -EINVAL; 2796 2797 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2798 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2799 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2800 return 0; 2801 } 2802 2803 gem_obj = drm_gem_object_lookup(file, args->handle); 2804 if (XE_IOCTL_DBG(xe, !gem_obj)) 2805 return -ENOENT; 2806 2807 /* The mmap offset was set up at BO allocation time. */ 2808 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2809 2810 xe_bo_put(gem_to_xe_bo(gem_obj)); 2811 return 0; 2812 } 2813 2814 /** 2815 * xe_bo_lock() - Lock the buffer object's dma_resv object 2816 * @bo: The struct xe_bo whose lock is to be taken 2817 * @intr: Whether to perform any wait interruptible 2818 * 2819 * Locks the buffer object's dma_resv object. If the buffer object is 2820 * pointing to a shared dma_resv object, that shared lock is locked. 2821 * 2822 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2823 * contended lock was interrupted. If @intr is set to false, the 2824 * function always returns 0. 2825 */ 2826 int xe_bo_lock(struct xe_bo *bo, bool intr) 2827 { 2828 if (intr) 2829 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2830 2831 dma_resv_lock(bo->ttm.base.resv, NULL); 2832 2833 return 0; 2834 } 2835 2836 /** 2837 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2838 * @bo: The struct xe_bo whose lock is to be released. 2839 * 2840 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2841 */ 2842 void xe_bo_unlock(struct xe_bo *bo) 2843 { 2844 dma_resv_unlock(bo->ttm.base.resv); 2845 } 2846 2847 /** 2848 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2849 * @bo: The buffer object to migrate 2850 * @mem_type: The TTM memory type intended to migrate to 2851 * 2852 * Check whether the buffer object supports migration to the 2853 * given memory type. Note that pinning may affect the ability to migrate as 2854 * returned by this function. 2855 * 2856 * This function is primarily intended as a helper for checking the 2857 * possibility to migrate buffer objects and can be called without 2858 * the object lock held. 2859 * 2860 * Return: true if migration is possible, false otherwise. 2861 */ 2862 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2863 { 2864 unsigned int cur_place; 2865 2866 if (bo->ttm.type == ttm_bo_type_kernel) 2867 return true; 2868 2869 if (bo->ttm.type == ttm_bo_type_sg) 2870 return false; 2871 2872 for (cur_place = 0; cur_place < bo->placement.num_placement; 2873 cur_place++) { 2874 if (bo->placements[cur_place].mem_type == mem_type) 2875 return true; 2876 } 2877 2878 return false; 2879 } 2880 2881 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2882 { 2883 memset(place, 0, sizeof(*place)); 2884 place->mem_type = mem_type; 2885 } 2886 2887 /** 2888 * xe_bo_migrate - Migrate an object to the desired region id 2889 * @bo: The buffer object to migrate. 2890 * @mem_type: The TTM region type to migrate to. 2891 * 2892 * Attempt to migrate the buffer object to the desired memory region. The 2893 * buffer object may not be pinned, and must be locked. 2894 * On successful completion, the object memory type will be updated, 2895 * but an async migration task may not have completed yet, and to 2896 * accomplish that, the object's kernel fences must be signaled with 2897 * the object lock held. 2898 * 2899 * Return: 0 on success. Negative error code on failure. In particular may 2900 * return -EINTR or -ERESTARTSYS if signal pending. 2901 */ 2902 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2903 { 2904 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2905 struct ttm_operation_ctx ctx = { 2906 .interruptible = true, 2907 .no_wait_gpu = false, 2908 .gfp_retry_mayfail = true, 2909 }; 2910 struct ttm_placement placement; 2911 struct ttm_place requested; 2912 2913 xe_bo_assert_held(bo); 2914 2915 if (bo->ttm.resource->mem_type == mem_type) 2916 return 0; 2917 2918 if (xe_bo_is_pinned(bo)) 2919 return -EBUSY; 2920 2921 if (!xe_bo_can_migrate(bo, mem_type)) 2922 return -EINVAL; 2923 2924 xe_place_from_ttm_type(mem_type, &requested); 2925 placement.num_placement = 1; 2926 placement.placement = &requested; 2927 2928 /* 2929 * Stolen needs to be handled like below VRAM handling if we ever need 2930 * to support it. 2931 */ 2932 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2933 2934 if (mem_type_is_vram(mem_type)) { 2935 u32 c = 0; 2936 2937 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2938 } 2939 2940 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2941 } 2942 2943 /** 2944 * xe_bo_evict - Evict an object to evict placement 2945 * @bo: The buffer object to migrate. 2946 * 2947 * On successful completion, the object memory will be moved to evict 2948 * placement. This function blocks until the object has been fully moved. 2949 * 2950 * Return: 0 on success. Negative error code on failure. 2951 */ 2952 int xe_bo_evict(struct xe_bo *bo) 2953 { 2954 struct ttm_operation_ctx ctx = { 2955 .interruptible = false, 2956 .no_wait_gpu = false, 2957 .gfp_retry_mayfail = true, 2958 }; 2959 struct ttm_placement placement; 2960 int ret; 2961 2962 xe_evict_flags(&bo->ttm, &placement); 2963 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2964 if (ret) 2965 return ret; 2966 2967 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2968 false, MAX_SCHEDULE_TIMEOUT); 2969 2970 return 0; 2971 } 2972 2973 /** 2974 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2975 * placed in system memory. 2976 * @bo: The xe_bo 2977 * 2978 * Return: true if extra pages need to be allocated, false otherwise. 2979 */ 2980 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2981 { 2982 struct xe_device *xe = xe_bo_device(bo); 2983 2984 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2985 return false; 2986 2987 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2988 return false; 2989 2990 /* On discrete GPUs, if the GPU can access this buffer from 2991 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2992 * can't be used since there's no CCS storage associated with 2993 * non-VRAM addresses. 2994 */ 2995 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2996 return false; 2997 2998 /* 2999 * Compression implies coh_none, therefore we know for sure that WB 3000 * memory can't currently use compression, which is likely one of the 3001 * common cases. 3002 */ 3003 if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB) 3004 return false; 3005 3006 return true; 3007 } 3008 3009 /** 3010 * __xe_bo_release_dummy() - Dummy kref release function 3011 * @kref: The embedded struct kref. 3012 * 3013 * Dummy release function for xe_bo_put_deferred(). Keep off. 3014 */ 3015 void __xe_bo_release_dummy(struct kref *kref) 3016 { 3017 } 3018 3019 /** 3020 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 3021 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 3022 * 3023 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 3024 * The @deferred list can be either an onstack local list or a global 3025 * shared list used by a workqueue. 3026 */ 3027 void xe_bo_put_commit(struct llist_head *deferred) 3028 { 3029 struct llist_node *freed; 3030 struct xe_bo *bo, *next; 3031 3032 if (!deferred) 3033 return; 3034 3035 freed = llist_del_all(deferred); 3036 if (!freed) 3037 return; 3038 3039 llist_for_each_entry_safe(bo, next, freed, freed) 3040 drm_gem_object_free(&bo->ttm.base.refcount); 3041 } 3042 3043 static void xe_bo_dev_work_func(struct work_struct *work) 3044 { 3045 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 3046 3047 xe_bo_put_commit(&bo_dev->async_list); 3048 } 3049 3050 /** 3051 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 3052 * @bo_dev: The BO dev structure 3053 */ 3054 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 3055 { 3056 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 3057 } 3058 3059 /** 3060 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 3061 * @bo_dev: The BO dev structure 3062 */ 3063 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 3064 { 3065 flush_work(&bo_dev->async_free); 3066 } 3067 3068 void xe_bo_put(struct xe_bo *bo) 3069 { 3070 struct xe_tile *tile; 3071 u8 id; 3072 3073 might_sleep(); 3074 if (bo) { 3075 #ifdef CONFIG_PROC_FS 3076 if (bo->client) 3077 might_lock(&bo->client->bos_lock); 3078 #endif 3079 for_each_tile(tile, xe_bo_device(bo), id) 3080 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 3081 xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt); 3082 drm_gem_object_put(&bo->ttm.base); 3083 } 3084 } 3085 3086 /** 3087 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 3088 * @file_priv: ... 3089 * @dev: ... 3090 * @args: ... 3091 * 3092 * See dumb_create() hook in include/drm/drm_drv.h 3093 * 3094 * Return: ... 3095 */ 3096 int xe_bo_dumb_create(struct drm_file *file_priv, 3097 struct drm_device *dev, 3098 struct drm_mode_create_dumb *args) 3099 { 3100 struct xe_device *xe = to_xe_device(dev); 3101 struct xe_bo *bo; 3102 uint32_t handle; 3103 int cpp = DIV_ROUND_UP(args->bpp, 8); 3104 int err; 3105 u32 page_size = max_t(u32, PAGE_SIZE, 3106 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 3107 3108 args->pitch = ALIGN(args->width * cpp, 64); 3109 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 3110 page_size); 3111 3112 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 3113 DRM_XE_GEM_CPU_CACHING_WC, 3114 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 3115 XE_BO_FLAG_SCANOUT | 3116 XE_BO_FLAG_NEEDS_CPU_ACCESS); 3117 if (IS_ERR(bo)) 3118 return PTR_ERR(bo); 3119 3120 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 3121 /* drop reference from allocate - handle holds it now */ 3122 drm_gem_object_put(&bo->ttm.base); 3123 if (!err) 3124 args->handle = handle; 3125 return err; 3126 } 3127 3128 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 3129 { 3130 struct ttm_buffer_object *tbo = &bo->ttm; 3131 struct ttm_device *bdev = tbo->bdev; 3132 3133 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 3134 3135 list_del_init(&bo->vram_userfault_link); 3136 } 3137 3138 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 3139 #include "tests/xe_bo.c" 3140 #endif 3141