xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision 28472374291c380c22f40deec07a90d09bcbffb6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_drv.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_managed.h>
14 #include <drm/ttm/ttm_backup.h>
15 #include <drm/ttm/ttm_device.h>
16 #include <drm/ttm/ttm_placement.h>
17 #include <drm/ttm/ttm_tt.h>
18 #include <uapi/drm/xe_drm.h>
19 
20 #include <kunit/static_stub.h>
21 
22 #include "xe_device.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_ggtt.h"
26 #include "xe_gt.h"
27 #include "xe_map.h"
28 #include "xe_migrate.h"
29 #include "xe_pm.h"
30 #include "xe_preempt_fence.h"
31 #include "xe_pxp.h"
32 #include "xe_res_cursor.h"
33 #include "xe_shrinker.h"
34 #include "xe_trace_bo.h"
35 #include "xe_ttm_stolen_mgr.h"
36 #include "xe_vm.h"
37 
38 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
39 	[XE_PL_SYSTEM] = "system",
40 	[XE_PL_TT] = "gtt",
41 	[XE_PL_VRAM0] = "vram0",
42 	[XE_PL_VRAM1] = "vram1",
43 	[XE_PL_STOLEN] = "stolen"
44 };
45 
46 static const struct ttm_place sys_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = XE_PL_SYSTEM,
50 	.flags = 0,
51 };
52 
53 static struct ttm_placement sys_placement = {
54 	.num_placement = 1,
55 	.placement = &sys_placement_flags,
56 };
57 
58 static struct ttm_placement purge_placement;
59 
60 static const struct ttm_place tt_placement_flags[] = {
61 	{
62 		.fpfn = 0,
63 		.lpfn = 0,
64 		.mem_type = XE_PL_TT,
65 		.flags = TTM_PL_FLAG_DESIRED,
66 	},
67 	{
68 		.fpfn = 0,
69 		.lpfn = 0,
70 		.mem_type = XE_PL_SYSTEM,
71 		.flags = TTM_PL_FLAG_FALLBACK,
72 	}
73 };
74 
75 static struct ttm_placement tt_placement = {
76 	.num_placement = 2,
77 	.placement = tt_placement_flags,
78 };
79 
80 bool mem_type_is_vram(u32 mem_type)
81 {
82 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
83 }
84 
85 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
86 {
87 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
88 }
89 
90 static bool resource_is_vram(struct ttm_resource *res)
91 {
92 	return mem_type_is_vram(res->mem_type);
93 }
94 
95 bool xe_bo_is_vram(struct xe_bo *bo)
96 {
97 	return resource_is_vram(bo->ttm.resource) ||
98 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
99 }
100 
101 bool xe_bo_is_stolen(struct xe_bo *bo)
102 {
103 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
104 }
105 
106 /**
107  * xe_bo_has_single_placement - check if BO is placed only in one memory location
108  * @bo: The BO
109  *
110  * This function checks whether a given BO is placed in only one memory location.
111  *
112  * Returns: true if the BO is placed in a single memory location, false otherwise.
113  *
114  */
115 bool xe_bo_has_single_placement(struct xe_bo *bo)
116 {
117 	return bo->placement.num_placement == 1;
118 }
119 
120 /**
121  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
122  * @bo: The BO
123  *
124  * The stolen memory is accessed through the PCI BAR for both DGFX and some
125  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
126  *
127  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
128  */
129 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
130 {
131 	return xe_bo_is_stolen(bo) &&
132 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
133 }
134 
135 /**
136  * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
137  * @bo: The BO
138  *
139  * Check if a given bo is bound through VM_BIND. This requires the
140  * reservation lock for the BO to be held.
141  *
142  * Returns: boolean
143  */
144 bool xe_bo_is_vm_bound(struct xe_bo *bo)
145 {
146 	xe_bo_assert_held(bo);
147 
148 	return !list_empty(&bo->ttm.base.gpuva.list);
149 }
150 
151 static bool xe_bo_is_user(struct xe_bo *bo)
152 {
153 	return bo->flags & XE_BO_FLAG_USER;
154 }
155 
156 static struct xe_migrate *
157 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
158 {
159 	struct xe_tile *tile;
160 
161 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
162 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
163 	return tile->migrate;
164 }
165 
166 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
167 {
168 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
169 	struct ttm_resource_manager *mgr;
170 	struct xe_ttm_vram_mgr *vram_mgr;
171 
172 	xe_assert(xe, resource_is_vram(res));
173 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
174 	vram_mgr = to_xe_ttm_vram_mgr(mgr);
175 
176 	return container_of(vram_mgr, struct xe_vram_region, ttm);
177 }
178 
179 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
180 			   u32 bo_flags, u32 *c)
181 {
182 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
183 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
184 
185 		bo->placements[*c] = (struct ttm_place) {
186 			.mem_type = XE_PL_TT,
187 		};
188 		*c += 1;
189 	}
190 }
191 
192 static bool force_contiguous(u32 bo_flags)
193 {
194 	if (bo_flags & XE_BO_FLAG_STOLEN)
195 		return true; /* users expect this */
196 	else if (bo_flags & XE_BO_FLAG_PINNED &&
197 		 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE))
198 		return true; /* needs vmap */
199 
200 	/*
201 	 * For eviction / restore on suspend / resume objects pinned in VRAM
202 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
203 	 */
204 	return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS &&
205 	       bo_flags & XE_BO_FLAG_PINNED;
206 }
207 
208 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
209 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
210 {
211 	struct ttm_place place = { .mem_type = mem_type };
212 	struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
213 	struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
214 
215 	struct xe_vram_region *vram;
216 	u64 io_size;
217 
218 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
219 
220 	vram = container_of(vram_mgr, struct xe_vram_region, ttm);
221 	xe_assert(xe, vram && vram->usable_size);
222 	io_size = vram->io_size;
223 
224 	if (force_contiguous(bo_flags))
225 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
226 
227 	if (io_size < vram->usable_size) {
228 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
229 			place.fpfn = 0;
230 			place.lpfn = io_size >> PAGE_SHIFT;
231 		} else {
232 			place.flags |= TTM_PL_FLAG_TOPDOWN;
233 		}
234 	}
235 	places[*c] = place;
236 	*c += 1;
237 }
238 
239 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
240 			 u32 bo_flags, u32 *c)
241 {
242 	if (bo_flags & XE_BO_FLAG_VRAM0)
243 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
244 	if (bo_flags & XE_BO_FLAG_VRAM1)
245 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
246 }
247 
248 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
249 			   u32 bo_flags, u32 *c)
250 {
251 	if (bo_flags & XE_BO_FLAG_STOLEN) {
252 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
253 
254 		bo->placements[*c] = (struct ttm_place) {
255 			.mem_type = XE_PL_STOLEN,
256 			.flags = force_contiguous(bo_flags) ?
257 				TTM_PL_FLAG_CONTIGUOUS : 0,
258 		};
259 		*c += 1;
260 	}
261 }
262 
263 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
264 				       u32 bo_flags)
265 {
266 	u32 c = 0;
267 
268 	try_add_vram(xe, bo, bo_flags, &c);
269 	try_add_system(xe, bo, bo_flags, &c);
270 	try_add_stolen(xe, bo, bo_flags, &c);
271 
272 	if (!c)
273 		return -EINVAL;
274 
275 	bo->placement = (struct ttm_placement) {
276 		.num_placement = c,
277 		.placement = bo->placements,
278 	};
279 
280 	return 0;
281 }
282 
283 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
284 			      u32 bo_flags)
285 {
286 	xe_bo_assert_held(bo);
287 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
288 }
289 
290 static void xe_evict_flags(struct ttm_buffer_object *tbo,
291 			   struct ttm_placement *placement)
292 {
293 	struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm);
294 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
295 	struct xe_bo *bo;
296 
297 	if (!xe_bo_is_xe_bo(tbo)) {
298 		/* Don't handle scatter gather BOs */
299 		if (tbo->type == ttm_bo_type_sg) {
300 			placement->num_placement = 0;
301 			return;
302 		}
303 
304 		*placement = device_unplugged ? purge_placement : sys_placement;
305 		return;
306 	}
307 
308 	bo = ttm_to_xe_bo(tbo);
309 	if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
310 		*placement = sys_placement;
311 		return;
312 	}
313 
314 	if (device_unplugged && !tbo->base.dma_buf) {
315 		*placement = purge_placement;
316 		return;
317 	}
318 
319 	/*
320 	 * For xe, sg bos that are evicted to system just triggers a
321 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
322 	 */
323 	switch (tbo->resource->mem_type) {
324 	case XE_PL_VRAM0:
325 	case XE_PL_VRAM1:
326 	case XE_PL_STOLEN:
327 		*placement = tt_placement;
328 		break;
329 	case XE_PL_TT:
330 	default:
331 		*placement = sys_placement;
332 		break;
333 	}
334 }
335 
336 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */
337 struct xe_ttm_tt {
338 	struct ttm_tt ttm;
339 	/** @xe - The xe device */
340 	struct xe_device *xe;
341 	struct sg_table sgt;
342 	struct sg_table *sg;
343 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
344 	bool purgeable;
345 };
346 
347 static int xe_tt_map_sg(struct ttm_tt *tt)
348 {
349 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
350 	unsigned long num_pages = tt->num_pages;
351 	int ret;
352 
353 	XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
354 		   !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
355 
356 	if (xe_tt->sg)
357 		return 0;
358 
359 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
360 						num_pages, 0,
361 						(u64)num_pages << PAGE_SHIFT,
362 						xe_sg_segment_size(xe_tt->xe->drm.dev),
363 						GFP_KERNEL);
364 	if (ret)
365 		return ret;
366 
367 	xe_tt->sg = &xe_tt->sgt;
368 	ret = dma_map_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
369 			      DMA_ATTR_SKIP_CPU_SYNC);
370 	if (ret) {
371 		sg_free_table(xe_tt->sg);
372 		xe_tt->sg = NULL;
373 		return ret;
374 	}
375 
376 	return 0;
377 }
378 
379 static void xe_tt_unmap_sg(struct ttm_tt *tt)
380 {
381 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
382 
383 	if (xe_tt->sg) {
384 		dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg,
385 				  DMA_BIDIRECTIONAL, 0);
386 		sg_free_table(xe_tt->sg);
387 		xe_tt->sg = NULL;
388 	}
389 }
390 
391 struct sg_table *xe_bo_sg(struct xe_bo *bo)
392 {
393 	struct ttm_tt *tt = bo->ttm.ttm;
394 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
395 
396 	return xe_tt->sg;
397 }
398 
399 /*
400  * Account ttm pages against the device shrinker's shrinkable and
401  * purgeable counts.
402  */
403 static void xe_ttm_tt_account_add(struct ttm_tt *tt)
404 {
405 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
406 
407 	if (xe_tt->purgeable)
408 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, tt->num_pages);
409 	else
410 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, tt->num_pages, 0);
411 }
412 
413 static void xe_ttm_tt_account_subtract(struct ttm_tt *tt)
414 {
415 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
416 
417 	if (xe_tt->purgeable)
418 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, -(long)tt->num_pages);
419 	else
420 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, -(long)tt->num_pages, 0);
421 }
422 
423 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
424 				       u32 page_flags)
425 {
426 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
427 	struct xe_device *xe = xe_bo_device(bo);
428 	struct xe_ttm_tt *xe_tt;
429 	struct ttm_tt *tt;
430 	unsigned long extra_pages;
431 	enum ttm_caching caching = ttm_cached;
432 	int err;
433 
434 	xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
435 	if (!xe_tt)
436 		return NULL;
437 
438 	tt = &xe_tt->ttm;
439 	xe_tt->xe = xe;
440 
441 	extra_pages = 0;
442 	if (xe_bo_needs_ccs_pages(bo))
443 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
444 					   PAGE_SIZE);
445 
446 	/*
447 	 * DGFX system memory is always WB / ttm_cached, since
448 	 * other caching modes are only supported on x86. DGFX
449 	 * GPU system memory accesses are always coherent with the
450 	 * CPU.
451 	 */
452 	if (!IS_DGFX(xe)) {
453 		switch (bo->cpu_caching) {
454 		case DRM_XE_GEM_CPU_CACHING_WC:
455 			caching = ttm_write_combined;
456 			break;
457 		default:
458 			caching = ttm_cached;
459 			break;
460 		}
461 
462 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
463 
464 		/*
465 		 * Display scanout is always non-coherent with the CPU cache.
466 		 *
467 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
468 		 * non-coherent and require a CPU:WC mapping.
469 		 */
470 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
471 		    (xe->info.graphics_verx100 >= 1270 &&
472 		     bo->flags & XE_BO_FLAG_PAGETABLE))
473 			caching = ttm_write_combined;
474 	}
475 
476 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
477 		/*
478 		 * Valid only for internally-created buffers only, for
479 		 * which cpu_caching is never initialized.
480 		 */
481 		xe_assert(xe, bo->cpu_caching == 0);
482 		caching = ttm_uncached;
483 	}
484 
485 	if (ttm_bo->type != ttm_bo_type_sg)
486 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
487 
488 	err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
489 	if (err) {
490 		kfree(xe_tt);
491 		return NULL;
492 	}
493 
494 	if (ttm_bo->type != ttm_bo_type_sg) {
495 		err = ttm_tt_setup_backup(tt);
496 		if (err) {
497 			ttm_tt_fini(tt);
498 			kfree(xe_tt);
499 			return NULL;
500 		}
501 	}
502 
503 	return tt;
504 }
505 
506 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
507 			      struct ttm_operation_ctx *ctx)
508 {
509 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
510 	int err;
511 
512 	/*
513 	 * dma-bufs are not populated with pages, and the dma-
514 	 * addresses are set up when moved to XE_PL_TT.
515 	 */
516 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
517 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
518 		return 0;
519 
520 	if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
521 		err = ttm_tt_restore(ttm_dev, tt, ctx);
522 	} else {
523 		ttm_tt_clear_backed_up(tt);
524 		err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
525 	}
526 	if (err)
527 		return err;
528 
529 	xe_tt->purgeable = false;
530 	xe_ttm_tt_account_add(tt);
531 
532 	return 0;
533 }
534 
535 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
536 {
537 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
538 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
539 		return;
540 
541 	xe_tt_unmap_sg(tt);
542 
543 	ttm_pool_free(&ttm_dev->pool, tt);
544 	xe_ttm_tt_account_subtract(tt);
545 }
546 
547 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
548 {
549 	ttm_tt_fini(tt);
550 	kfree(tt);
551 }
552 
553 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
554 {
555 	struct xe_ttm_vram_mgr_resource *vres =
556 		to_xe_ttm_vram_mgr_resource(mem);
557 
558 	return vres->used_visible_size == mem->size;
559 }
560 
561 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
562 				 struct ttm_resource *mem)
563 {
564 	struct xe_device *xe = ttm_to_xe_device(bdev);
565 
566 	switch (mem->mem_type) {
567 	case XE_PL_SYSTEM:
568 	case XE_PL_TT:
569 		return 0;
570 	case XE_PL_VRAM0:
571 	case XE_PL_VRAM1: {
572 		struct xe_vram_region *vram = res_to_mem_region(mem);
573 
574 		if (!xe_ttm_resource_visible(mem))
575 			return -EINVAL;
576 
577 		mem->bus.offset = mem->start << PAGE_SHIFT;
578 
579 		if (vram->mapping &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 __force *)vram->mapping +
582 				mem->bus.offset;
583 
584 		mem->bus.offset += vram->io_start;
585 		mem->bus.is_iomem = true;
586 
587 #if  !IS_ENABLED(CONFIG_X86)
588 		mem->bus.caching = ttm_write_combined;
589 #endif
590 		return 0;
591 	} case XE_PL_STOLEN:
592 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
593 	default:
594 		return -EINVAL;
595 	}
596 }
597 
598 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
599 				const struct ttm_operation_ctx *ctx)
600 {
601 	struct dma_resv_iter cursor;
602 	struct dma_fence *fence;
603 	struct drm_gem_object *obj = &bo->ttm.base;
604 	struct drm_gpuvm_bo *vm_bo;
605 	bool idle = false;
606 	int ret = 0;
607 
608 	dma_resv_assert_held(bo->ttm.base.resv);
609 
610 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
611 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
612 				    DMA_RESV_USAGE_BOOKKEEP);
613 		dma_resv_for_each_fence_unlocked(&cursor, fence)
614 			dma_fence_enable_sw_signaling(fence);
615 		dma_resv_iter_end(&cursor);
616 	}
617 
618 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
619 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
620 		struct drm_gpuva *gpuva;
621 
622 		if (!xe_vm_in_fault_mode(vm)) {
623 			drm_gpuvm_bo_evict(vm_bo, true);
624 			continue;
625 		}
626 
627 		if (!idle) {
628 			long timeout;
629 
630 			if (ctx->no_wait_gpu &&
631 			    !dma_resv_test_signaled(bo->ttm.base.resv,
632 						    DMA_RESV_USAGE_BOOKKEEP))
633 				return -EBUSY;
634 
635 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
636 							DMA_RESV_USAGE_BOOKKEEP,
637 							ctx->interruptible,
638 							MAX_SCHEDULE_TIMEOUT);
639 			if (!timeout)
640 				return -ETIME;
641 			if (timeout < 0)
642 				return timeout;
643 
644 			idle = true;
645 		}
646 
647 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
648 			struct xe_vma *vma = gpuva_to_vma(gpuva);
649 
650 			trace_xe_vma_evict(vma);
651 			ret = xe_vm_invalidate_vma(vma);
652 			if (XE_WARN_ON(ret))
653 				return ret;
654 		}
655 	}
656 
657 	return ret;
658 }
659 
660 /*
661  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
662  * Note that unmapping the attachment is deferred to the next
663  * map_attachment time, or to bo destroy (after idling) whichever comes first.
664  * This is to avoid syncing before unmap_attachment(), assuming that the
665  * caller relies on idling the reservation object before moving the
666  * backing store out. Should that assumption not hold, then we will be able
667  * to unconditionally call unmap_attachment() when moving out to system.
668  */
669 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
670 			     struct ttm_resource *new_res)
671 {
672 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
673 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
674 					       ttm);
675 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
676 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
677 	struct sg_table *sg;
678 
679 	xe_assert(xe, attach);
680 	xe_assert(xe, ttm_bo->ttm);
681 
682 	if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM &&
683 	    ttm_bo->sg) {
684 		dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
685 				      false, MAX_SCHEDULE_TIMEOUT);
686 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
687 		ttm_bo->sg = NULL;
688 	}
689 
690 	if (new_res->mem_type == XE_PL_SYSTEM)
691 		goto out;
692 
693 	if (ttm_bo->sg) {
694 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
695 		ttm_bo->sg = NULL;
696 	}
697 
698 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
699 	if (IS_ERR(sg))
700 		return PTR_ERR(sg);
701 
702 	ttm_bo->sg = sg;
703 	xe_tt->sg = sg;
704 
705 out:
706 	ttm_bo_move_null(ttm_bo, new_res);
707 
708 	return 0;
709 }
710 
711 /**
712  * xe_bo_move_notify - Notify subsystems of a pending move
713  * @bo: The buffer object
714  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
715  *
716  * This function notifies subsystems of an upcoming buffer move.
717  * Upon receiving such a notification, subsystems should schedule
718  * halting access to the underlying pages and optionally add a fence
719  * to the buffer object's dma_resv object, that signals when access is
720  * stopped. The caller will wait on all dma_resv fences before
721  * starting the move.
722  *
723  * A subsystem may commence access to the object after obtaining
724  * bindings to the new backing memory under the object lock.
725  *
726  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
727  * negative error code on error.
728  */
729 static int xe_bo_move_notify(struct xe_bo *bo,
730 			     const struct ttm_operation_ctx *ctx)
731 {
732 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
733 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
734 	struct ttm_resource *old_mem = ttm_bo->resource;
735 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
736 	int ret;
737 
738 	/*
739 	 * If this starts to call into many components, consider
740 	 * using a notification chain here.
741 	 */
742 
743 	if (xe_bo_is_pinned(bo))
744 		return -EINVAL;
745 
746 	xe_bo_vunmap(bo);
747 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
748 	if (ret)
749 		return ret;
750 
751 	/* Don't call move_notify() for imported dma-bufs. */
752 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
753 		dma_buf_move_notify(ttm_bo->base.dma_buf);
754 
755 	/*
756 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
757 	 * so if we moved from VRAM make sure to unlink this from the userfault
758 	 * tracking.
759 	 */
760 	if (mem_type_is_vram(old_mem_type)) {
761 		mutex_lock(&xe->mem_access.vram_userfault.lock);
762 		if (!list_empty(&bo->vram_userfault_link))
763 			list_del_init(&bo->vram_userfault_link);
764 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
765 	}
766 
767 	return 0;
768 }
769 
770 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
771 		      struct ttm_operation_ctx *ctx,
772 		      struct ttm_resource *new_mem,
773 		      struct ttm_place *hop)
774 {
775 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
776 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
777 	struct ttm_resource *old_mem = ttm_bo->resource;
778 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
779 	struct ttm_tt *ttm = ttm_bo->ttm;
780 	struct xe_migrate *migrate = NULL;
781 	struct dma_fence *fence;
782 	bool move_lacks_source;
783 	bool tt_has_data;
784 	bool needs_clear;
785 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
786 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
787 	int ret = 0;
788 
789 	/* Bo creation path, moving to system or TT. */
790 	if ((!old_mem && ttm) && !handle_system_ccs) {
791 		if (new_mem->mem_type == XE_PL_TT)
792 			ret = xe_tt_map_sg(ttm);
793 		if (!ret)
794 			ttm_bo_move_null(ttm_bo, new_mem);
795 		goto out;
796 	}
797 
798 	if (ttm_bo->type == ttm_bo_type_sg) {
799 		ret = xe_bo_move_notify(bo, ctx);
800 		if (!ret)
801 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
802 		return ret;
803 	}
804 
805 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
806 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
807 
808 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
809 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
810 
811 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
812 		(!ttm && ttm_bo->type == ttm_bo_type_device);
813 
814 	if (new_mem->mem_type == XE_PL_TT) {
815 		ret = xe_tt_map_sg(ttm);
816 		if (ret)
817 			goto out;
818 	}
819 
820 	if ((move_lacks_source && !needs_clear)) {
821 		ttm_bo_move_null(ttm_bo, new_mem);
822 		goto out;
823 	}
824 
825 	if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
826 	    new_mem->mem_type == XE_PL_SYSTEM) {
827 		ret = xe_svm_bo_evict(bo);
828 		if (!ret) {
829 			drm_dbg(&xe->drm, "Evict system allocator BO success\n");
830 			ttm_bo_move_null(ttm_bo, new_mem);
831 		} else {
832 			drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
833 				ERR_PTR(ret));
834 		}
835 
836 		goto out;
837 	}
838 
839 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
840 		ttm_bo_move_null(ttm_bo, new_mem);
841 		goto out;
842 	}
843 
844 	/* Reject BO eviction if BO is bound to current VM. */
845 	if (evict && ctx->resv) {
846 		struct drm_gpuvm_bo *vm_bo;
847 
848 		drm_gem_for_each_gpuvm_bo(vm_bo, &bo->ttm.base) {
849 			struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
850 
851 			if (xe_vm_resv(vm) == ctx->resv &&
852 			    xe_vm_in_preempt_fence_mode(vm)) {
853 				ret = -EBUSY;
854 				goto out;
855 			}
856 		}
857 	}
858 
859 	/*
860 	 * Failed multi-hop where the old_mem is still marked as
861 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
862 	 */
863 	if (old_mem_type == XE_PL_TT &&
864 	    new_mem->mem_type == XE_PL_TT) {
865 		ttm_bo_move_null(ttm_bo, new_mem);
866 		goto out;
867 	}
868 
869 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
870 		ret = xe_bo_move_notify(bo, ctx);
871 		if (ret)
872 			goto out;
873 	}
874 
875 	if (old_mem_type == XE_PL_TT &&
876 	    new_mem->mem_type == XE_PL_SYSTEM) {
877 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
878 						     DMA_RESV_USAGE_BOOKKEEP,
879 						     false,
880 						     MAX_SCHEDULE_TIMEOUT);
881 		if (timeout < 0) {
882 			ret = timeout;
883 			goto out;
884 		}
885 
886 		if (!handle_system_ccs) {
887 			ttm_bo_move_null(ttm_bo, new_mem);
888 			goto out;
889 		}
890 	}
891 
892 	if (!move_lacks_source &&
893 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
894 	     (mem_type_is_vram(old_mem_type) &&
895 	      new_mem->mem_type == XE_PL_SYSTEM))) {
896 		hop->fpfn = 0;
897 		hop->lpfn = 0;
898 		hop->mem_type = XE_PL_TT;
899 		hop->flags = TTM_PL_FLAG_TEMPORARY;
900 		ret = -EMULTIHOP;
901 		goto out;
902 	}
903 
904 	if (bo->tile)
905 		migrate = bo->tile->migrate;
906 	else if (resource_is_vram(new_mem))
907 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
908 	else if (mem_type_is_vram(old_mem_type))
909 		migrate = mem_type_to_migrate(xe, old_mem_type);
910 	else
911 		migrate = xe->tiles[0].migrate;
912 
913 	xe_assert(xe, migrate);
914 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
915 	if (xe_rpm_reclaim_safe(xe)) {
916 		/*
917 		 * We might be called through swapout in the validation path of
918 		 * another TTM device, so acquire rpm here.
919 		 */
920 		xe_pm_runtime_get(xe);
921 	} else {
922 		drm_WARN_ON(&xe->drm, handle_system_ccs);
923 		xe_pm_runtime_get_noresume(xe);
924 	}
925 
926 	if (move_lacks_source) {
927 		u32 flags = 0;
928 
929 		if (mem_type_is_vram(new_mem->mem_type))
930 			flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
931 		else if (handle_system_ccs)
932 			flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
933 
934 		fence = xe_migrate_clear(migrate, bo, new_mem, flags);
935 	} else {
936 		fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem,
937 					handle_system_ccs);
938 	}
939 	if (IS_ERR(fence)) {
940 		ret = PTR_ERR(fence);
941 		xe_pm_runtime_put(xe);
942 		goto out;
943 	}
944 	if (!move_lacks_source) {
945 		ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true,
946 						new_mem);
947 		if (ret) {
948 			dma_fence_wait(fence, false);
949 			ttm_bo_move_null(ttm_bo, new_mem);
950 			ret = 0;
951 		}
952 	} else {
953 		/*
954 		 * ttm_bo_move_accel_cleanup() may blow up if
955 		 * bo->resource == NULL, so just attach the
956 		 * fence and set the new resource.
957 		 */
958 		dma_resv_add_fence(ttm_bo->base.resv, fence,
959 				   DMA_RESV_USAGE_KERNEL);
960 		ttm_bo_move_null(ttm_bo, new_mem);
961 	}
962 
963 	dma_fence_put(fence);
964 	xe_pm_runtime_put(xe);
965 
966 out:
967 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
968 	    ttm_bo->ttm) {
969 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
970 						     DMA_RESV_USAGE_KERNEL,
971 						     false,
972 						     MAX_SCHEDULE_TIMEOUT);
973 		if (timeout < 0)
974 			ret = timeout;
975 
976 		xe_tt_unmap_sg(ttm_bo->ttm);
977 	}
978 
979 	return ret;
980 }
981 
982 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
983 			       struct ttm_buffer_object *bo,
984 			       unsigned long *scanned)
985 {
986 	long lret;
987 
988 	/* Fake move to system, without copying data. */
989 	if (bo->resource->mem_type != XE_PL_SYSTEM) {
990 		struct ttm_resource *new_resource;
991 
992 		lret = ttm_bo_wait_ctx(bo, ctx);
993 		if (lret)
994 			return lret;
995 
996 		lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
997 		if (lret)
998 			return lret;
999 
1000 		xe_tt_unmap_sg(bo->ttm);
1001 		ttm_bo_move_null(bo, new_resource);
1002 	}
1003 
1004 	*scanned += bo->ttm->num_pages;
1005 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1006 			     {.purge = true,
1007 			      .writeback = false,
1008 			      .allow_move = false});
1009 
1010 	if (lret > 0)
1011 		xe_ttm_tt_account_subtract(bo->ttm);
1012 
1013 	return lret;
1014 }
1015 
1016 /**
1017  * xe_bo_shrink() - Try to shrink an xe bo.
1018  * @ctx: The struct ttm_operation_ctx used for shrinking.
1019  * @bo: The TTM buffer object whose pages to shrink.
1020  * @flags: Flags governing the shrink behaviour.
1021  * @scanned: Pointer to a counter of the number of pages
1022  * attempted to shrink.
1023  *
1024  * Try to shrink- or purge a bo, and if it succeeds, unmap dma.
1025  * Note that we need to be able to handle also non xe bos
1026  * (ghost bos), but only if the struct ttm_tt is embedded in
1027  * a struct xe_ttm_tt. When the function attempts to shrink
1028  * the pages of a buffer object, The value pointed to by @scanned
1029  * is updated.
1030  *
1031  * Return: The number of pages shrunken or purged, or negative error
1032  * code on failure.
1033  */
1034 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1035 		  const struct xe_bo_shrink_flags flags,
1036 		  unsigned long *scanned)
1037 {
1038 	struct ttm_tt *tt = bo->ttm;
1039 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
1040 	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1041 	struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
1042 	struct xe_device *xe = xe_tt->xe;
1043 	bool needs_rpm;
1044 	long lret = 0L;
1045 
1046 	if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
1047 	    (flags.purge && !xe_tt->purgeable))
1048 		return -EBUSY;
1049 
1050 	if (!ttm_bo_eviction_valuable(bo, &place))
1051 		return -EBUSY;
1052 
1053 	if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
1054 		return xe_bo_shrink_purge(ctx, bo, scanned);
1055 
1056 	if (xe_tt->purgeable) {
1057 		if (bo->resource->mem_type != XE_PL_SYSTEM)
1058 			lret = xe_bo_move_notify(xe_bo, ctx);
1059 		if (!lret)
1060 			lret = xe_bo_shrink_purge(ctx, bo, scanned);
1061 		goto out_unref;
1062 	}
1063 
1064 	/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
1065 	needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
1066 		     xe_bo_needs_ccs_pages(xe_bo));
1067 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1068 		goto out_unref;
1069 
1070 	*scanned += tt->num_pages;
1071 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1072 			     {.purge = false,
1073 			      .writeback = flags.writeback,
1074 			      .allow_move = true});
1075 	if (needs_rpm)
1076 		xe_pm_runtime_put(xe);
1077 
1078 	if (lret > 0)
1079 		xe_ttm_tt_account_subtract(tt);
1080 
1081 out_unref:
1082 	xe_bo_put(xe_bo);
1083 
1084 	return lret;
1085 }
1086 
1087 /**
1088  * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed
1089  * up in system memory.
1090  * @bo: The buffer object to prepare.
1091  *
1092  * On successful completion, the object backup pages are allocated. Expectation
1093  * is that this is called from the PM notifier, prior to suspend/hibernation.
1094  *
1095  * Return: 0 on success. Negative error code on failure.
1096  */
1097 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo)
1098 {
1099 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1100 	struct xe_bo *backup;
1101 	int ret = 0;
1102 
1103 	xe_bo_lock(bo, false);
1104 
1105 	xe_assert(xe, !bo->backup_obj);
1106 
1107 	/*
1108 	 * Since this is called from the PM notifier we might have raced with
1109 	 * someone unpinning this after we dropped the pinned list lock and
1110 	 * grabbing the above bo lock.
1111 	 */
1112 	if (!xe_bo_is_pinned(bo))
1113 		goto out_unlock_bo;
1114 
1115 	if (!xe_bo_is_vram(bo))
1116 		goto out_unlock_bo;
1117 
1118 	if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1119 		goto out_unlock_bo;
1120 
1121 	backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size,
1122 					DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1123 					XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1124 					XE_BO_FLAG_PINNED);
1125 	if (IS_ERR(backup)) {
1126 		ret = PTR_ERR(backup);
1127 		goto out_unlock_bo;
1128 	}
1129 
1130 	backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1131 	ttm_bo_pin(&backup->ttm);
1132 	bo->backup_obj = backup;
1133 
1134 out_unlock_bo:
1135 	xe_bo_unlock(bo);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation.
1141  * @bo: The buffer object to undo the prepare for.
1142  *
1143  * Always returns 0. The backup object is removed, if still present. Expectation
1144  * it that this called from the PM notifier when undoing the prepare step.
1145  *
1146  * Return: Always returns 0.
1147  */
1148 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo)
1149 {
1150 	xe_bo_lock(bo, false);
1151 	if (bo->backup_obj) {
1152 		ttm_bo_unpin(&bo->backup_obj->ttm);
1153 		xe_bo_put(bo->backup_obj);
1154 		bo->backup_obj = NULL;
1155 	}
1156 	xe_bo_unlock(bo);
1157 
1158 	return 0;
1159 }
1160 
1161 /**
1162  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
1163  * @bo: The buffer object to move.
1164  *
1165  * On successful completion, the object memory will be moved to system memory.
1166  *
1167  * This is needed to for special handling of pinned VRAM object during
1168  * suspend-resume.
1169  *
1170  * Return: 0 on success. Negative error code on failure.
1171  */
1172 int xe_bo_evict_pinned(struct xe_bo *bo)
1173 {
1174 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1175 	struct xe_bo *backup = bo->backup_obj;
1176 	bool backup_created = false;
1177 	bool unmap = false;
1178 	int ret = 0;
1179 
1180 	xe_bo_lock(bo, false);
1181 
1182 	if (WARN_ON(!bo->ttm.resource)) {
1183 		ret = -EINVAL;
1184 		goto out_unlock_bo;
1185 	}
1186 
1187 	if (WARN_ON(!xe_bo_is_pinned(bo))) {
1188 		ret = -EINVAL;
1189 		goto out_unlock_bo;
1190 	}
1191 
1192 	if (!xe_bo_is_vram(bo))
1193 		goto out_unlock_bo;
1194 
1195 	if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1196 		goto out_unlock_bo;
1197 
1198 	if (!backup) {
1199 		backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size,
1200 						DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1201 						XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1202 						XE_BO_FLAG_PINNED);
1203 		if (IS_ERR(backup)) {
1204 			ret = PTR_ERR(backup);
1205 			goto out_unlock_bo;
1206 		}
1207 		backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1208 		backup_created = true;
1209 	}
1210 
1211 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1212 		struct xe_migrate *migrate;
1213 		struct dma_fence *fence;
1214 
1215 		if (bo->tile)
1216 			migrate = bo->tile->migrate;
1217 		else
1218 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1219 
1220 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1221 		if (ret)
1222 			goto out_backup;
1223 
1224 		ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
1225 		if (ret)
1226 			goto out_backup;
1227 
1228 		fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource,
1229 					backup->ttm.resource, false);
1230 		if (IS_ERR(fence)) {
1231 			ret = PTR_ERR(fence);
1232 			goto out_backup;
1233 		}
1234 
1235 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1236 				   DMA_RESV_USAGE_KERNEL);
1237 		dma_resv_add_fence(backup->ttm.base.resv, fence,
1238 				   DMA_RESV_USAGE_KERNEL);
1239 		dma_fence_put(fence);
1240 	} else {
1241 		ret = xe_bo_vmap(backup);
1242 		if (ret)
1243 			goto out_backup;
1244 
1245 		if (iosys_map_is_null(&bo->vmap)) {
1246 			ret = xe_bo_vmap(bo);
1247 			if (ret)
1248 				goto out_backup;
1249 			unmap = true;
1250 		}
1251 
1252 		xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0,
1253 				   bo->size);
1254 	}
1255 
1256 	if (!bo->backup_obj)
1257 		bo->backup_obj = backup;
1258 
1259 out_backup:
1260 	xe_bo_vunmap(backup);
1261 	if (ret && backup_created)
1262 		xe_bo_put(backup);
1263 out_unlock_bo:
1264 	if (unmap)
1265 		xe_bo_vunmap(bo);
1266 	xe_bo_unlock(bo);
1267 	return ret;
1268 }
1269 
1270 /**
1271  * xe_bo_restore_pinned() - Restore a pinned VRAM object
1272  * @bo: The buffer object to move.
1273  *
1274  * On successful completion, the object memory will be moved back to VRAM.
1275  *
1276  * This is needed to for special handling of pinned VRAM object during
1277  * suspend-resume.
1278  *
1279  * Return: 0 on success. Negative error code on failure.
1280  */
1281 int xe_bo_restore_pinned(struct xe_bo *bo)
1282 {
1283 	struct ttm_operation_ctx ctx = {
1284 		.interruptible = false,
1285 		.gfp_retry_mayfail = false,
1286 	};
1287 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1288 	struct xe_bo *backup = bo->backup_obj;
1289 	bool unmap = false;
1290 	int ret;
1291 
1292 	if (!backup)
1293 		return 0;
1294 
1295 	xe_bo_lock(bo, false);
1296 
1297 	if (!xe_bo_is_pinned(backup)) {
1298 		ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx);
1299 		if (ret)
1300 			goto out_unlock_bo;
1301 	}
1302 
1303 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1304 		struct xe_migrate *migrate;
1305 		struct dma_fence *fence;
1306 
1307 		if (bo->tile)
1308 			migrate = bo->tile->migrate;
1309 		else
1310 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1311 
1312 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1313 		if (ret)
1314 			goto out_unlock_bo;
1315 
1316 		ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
1317 		if (ret)
1318 			goto out_unlock_bo;
1319 
1320 		fence = xe_migrate_copy(migrate, backup, bo,
1321 					backup->ttm.resource, bo->ttm.resource,
1322 					false);
1323 		if (IS_ERR(fence)) {
1324 			ret = PTR_ERR(fence);
1325 			goto out_unlock_bo;
1326 		}
1327 
1328 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1329 				   DMA_RESV_USAGE_KERNEL);
1330 		dma_resv_add_fence(backup->ttm.base.resv, fence,
1331 				   DMA_RESV_USAGE_KERNEL);
1332 		dma_fence_put(fence);
1333 	} else {
1334 		ret = xe_bo_vmap(backup);
1335 		if (ret)
1336 			goto out_unlock_bo;
1337 
1338 		if (iosys_map_is_null(&bo->vmap)) {
1339 			ret = xe_bo_vmap(bo);
1340 			if (ret)
1341 				goto out_backup;
1342 			unmap = true;
1343 		}
1344 
1345 		xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr,
1346 				 bo->size);
1347 	}
1348 
1349 	bo->backup_obj = NULL;
1350 
1351 out_backup:
1352 	xe_bo_vunmap(backup);
1353 	if (!bo->backup_obj) {
1354 		if (xe_bo_is_pinned(backup))
1355 			ttm_bo_unpin(&backup->ttm);
1356 		xe_bo_put(backup);
1357 	}
1358 out_unlock_bo:
1359 	if (unmap)
1360 		xe_bo_vunmap(bo);
1361 	xe_bo_unlock(bo);
1362 	return ret;
1363 }
1364 
1365 int xe_bo_dma_unmap_pinned(struct xe_bo *bo)
1366 {
1367 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
1368 	struct ttm_tt *tt = ttm_bo->ttm;
1369 
1370 	if (tt) {
1371 		struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm);
1372 
1373 		if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1374 			dma_buf_unmap_attachment(ttm_bo->base.import_attach,
1375 						 ttm_bo->sg,
1376 						 DMA_BIDIRECTIONAL);
1377 			ttm_bo->sg = NULL;
1378 			xe_tt->sg = NULL;
1379 		} else if (xe_tt->sg) {
1380 			dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg,
1381 					  DMA_BIDIRECTIONAL, 0);
1382 			sg_free_table(xe_tt->sg);
1383 			xe_tt->sg = NULL;
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1391 				       unsigned long page_offset)
1392 {
1393 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1394 	struct xe_res_cursor cursor;
1395 	struct xe_vram_region *vram;
1396 
1397 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1398 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1399 
1400 	vram = res_to_mem_region(ttm_bo->resource);
1401 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1402 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1403 }
1404 
1405 static void __xe_bo_vunmap(struct xe_bo *bo);
1406 
1407 /*
1408  * TODO: Move this function to TTM so we don't rely on how TTM does its
1409  * locking, thereby abusing TTM internals.
1410  */
1411 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1412 {
1413 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1414 	bool locked;
1415 
1416 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1417 
1418 	/*
1419 	 * We can typically only race with TTM trylocking under the
1420 	 * lru_lock, which will immediately be unlocked again since
1421 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1422 	 * always succeed here, as long as we hold the lru lock.
1423 	 */
1424 	spin_lock(&ttm_bo->bdev->lru_lock);
1425 	locked = dma_resv_trylock(ttm_bo->base.resv);
1426 	spin_unlock(&ttm_bo->bdev->lru_lock);
1427 	xe_assert(xe, locked);
1428 
1429 	return locked;
1430 }
1431 
1432 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1433 {
1434 	struct dma_resv_iter cursor;
1435 	struct dma_fence *fence;
1436 	struct dma_fence *replacement = NULL;
1437 	struct xe_bo *bo;
1438 
1439 	if (!xe_bo_is_xe_bo(ttm_bo))
1440 		return;
1441 
1442 	bo = ttm_to_xe_bo(ttm_bo);
1443 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1444 
1445 	/*
1446 	 * Corner case where TTM fails to allocate memory and this BOs resv
1447 	 * still points the VMs resv
1448 	 */
1449 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1450 		return;
1451 
1452 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1453 		return;
1454 
1455 	/*
1456 	 * Scrub the preempt fences if any. The unbind fence is already
1457 	 * attached to the resv.
1458 	 * TODO: Don't do this for external bos once we scrub them after
1459 	 * unbind.
1460 	 */
1461 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1462 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1463 		if (xe_fence_is_xe_preempt(fence) &&
1464 		    !dma_fence_is_signaled(fence)) {
1465 			if (!replacement)
1466 				replacement = dma_fence_get_stub();
1467 
1468 			dma_resv_replace_fences(ttm_bo->base.resv,
1469 						fence->context,
1470 						replacement,
1471 						DMA_RESV_USAGE_BOOKKEEP);
1472 		}
1473 	}
1474 	dma_fence_put(replacement);
1475 
1476 	dma_resv_unlock(ttm_bo->base.resv);
1477 }
1478 
1479 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1480 {
1481 	if (!xe_bo_is_xe_bo(ttm_bo))
1482 		return;
1483 
1484 	/*
1485 	 * Object is idle and about to be destroyed. Release the
1486 	 * dma-buf attachment.
1487 	 */
1488 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1489 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1490 						       struct xe_ttm_tt, ttm);
1491 
1492 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1493 					 DMA_BIDIRECTIONAL);
1494 		ttm_bo->sg = NULL;
1495 		xe_tt->sg = NULL;
1496 	}
1497 }
1498 
1499 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1500 {
1501 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1502 
1503 	if (ttm_bo->ttm) {
1504 		struct ttm_placement place = {};
1505 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1506 
1507 		drm_WARN_ON(&xe->drm, ret);
1508 	}
1509 }
1510 
1511 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1512 {
1513 	struct ttm_operation_ctx ctx = {
1514 		.interruptible = false,
1515 		.gfp_retry_mayfail = false,
1516 	};
1517 
1518 	if (ttm_bo->ttm) {
1519 		struct xe_ttm_tt *xe_tt =
1520 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1521 
1522 		if (xe_tt->purgeable)
1523 			xe_ttm_bo_purge(ttm_bo, &ctx);
1524 	}
1525 }
1526 
1527 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1528 				unsigned long offset, void *buf, int len,
1529 				int write)
1530 {
1531 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1532 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1533 	struct iosys_map vmap;
1534 	struct xe_res_cursor cursor;
1535 	struct xe_vram_region *vram;
1536 	int bytes_left = len;
1537 	int err = 0;
1538 
1539 	xe_bo_assert_held(bo);
1540 	xe_device_assert_mem_access(xe);
1541 
1542 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1543 		return -EIO;
1544 
1545 	if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) {
1546 		struct xe_migrate *migrate =
1547 			mem_type_to_migrate(xe, ttm_bo->resource->mem_type);
1548 
1549 		err = xe_migrate_access_memory(migrate, bo, offset, buf, len,
1550 					       write);
1551 		goto out;
1552 	}
1553 
1554 	vram = res_to_mem_region(ttm_bo->resource);
1555 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1556 		     bo->size - (offset & PAGE_MASK), &cursor);
1557 
1558 	do {
1559 		unsigned long page_offset = (offset & ~PAGE_MASK);
1560 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1561 
1562 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1563 					  cursor.start);
1564 		if (write)
1565 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1566 		else
1567 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1568 
1569 		buf += byte_count;
1570 		offset += byte_count;
1571 		bytes_left -= byte_count;
1572 		if (bytes_left)
1573 			xe_res_next(&cursor, PAGE_SIZE);
1574 	} while (bytes_left);
1575 
1576 out:
1577 	return err ?: len;
1578 }
1579 
1580 const struct ttm_device_funcs xe_ttm_funcs = {
1581 	.ttm_tt_create = xe_ttm_tt_create,
1582 	.ttm_tt_populate = xe_ttm_tt_populate,
1583 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1584 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1585 	.evict_flags = xe_evict_flags,
1586 	.move = xe_bo_move,
1587 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1588 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1589 	.access_memory = xe_ttm_access_memory,
1590 	.release_notify = xe_ttm_bo_release_notify,
1591 	.eviction_valuable = ttm_bo_eviction_valuable,
1592 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1593 	.swap_notify = xe_ttm_bo_swap_notify,
1594 };
1595 
1596 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1597 {
1598 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1599 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1600 	struct xe_tile *tile;
1601 	u8 id;
1602 
1603 	if (bo->ttm.base.import_attach)
1604 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1605 	drm_gem_object_release(&bo->ttm.base);
1606 
1607 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1608 
1609 	for_each_tile(tile, xe, id)
1610 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1611 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1612 
1613 #ifdef CONFIG_PROC_FS
1614 	if (bo->client)
1615 		xe_drm_client_remove_bo(bo);
1616 #endif
1617 
1618 	if (bo->vm && xe_bo_is_user(bo))
1619 		xe_vm_put(bo->vm);
1620 
1621 	if (bo->parent_obj)
1622 		xe_bo_put(bo->parent_obj);
1623 
1624 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1625 	if (!list_empty(&bo->vram_userfault_link))
1626 		list_del(&bo->vram_userfault_link);
1627 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1628 
1629 	kfree(bo);
1630 }
1631 
1632 static void xe_gem_object_free(struct drm_gem_object *obj)
1633 {
1634 	/* Our BO reference counting scheme works as follows:
1635 	 *
1636 	 * The gem object kref is typically used throughout the driver,
1637 	 * and the gem object holds a ttm_buffer_object refcount, so
1638 	 * that when the last gem object reference is put, which is when
1639 	 * we end up in this function, we put also that ttm_buffer_object
1640 	 * refcount. Anything using gem interfaces is then no longer
1641 	 * allowed to access the object in a way that requires a gem
1642 	 * refcount, including locking the object.
1643 	 *
1644 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1645 	 * refcount directly if needed.
1646 	 */
1647 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1648 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1649 }
1650 
1651 static void xe_gem_object_close(struct drm_gem_object *obj,
1652 				struct drm_file *file_priv)
1653 {
1654 	struct xe_bo *bo = gem_to_xe_bo(obj);
1655 
1656 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1657 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1658 
1659 		xe_bo_lock(bo, false);
1660 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1661 		xe_bo_unlock(bo);
1662 	}
1663 }
1664 
1665 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1666 {
1667 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1668 	struct drm_device *ddev = tbo->base.dev;
1669 	struct xe_device *xe = to_xe_device(ddev);
1670 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1671 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1672 	vm_fault_t ret;
1673 	int idx;
1674 
1675 	if (needs_rpm)
1676 		xe_pm_runtime_get(xe);
1677 
1678 	ret = ttm_bo_vm_reserve(tbo, vmf);
1679 	if (ret)
1680 		goto out;
1681 
1682 	if (drm_dev_enter(ddev, &idx)) {
1683 		trace_xe_bo_cpu_fault(bo);
1684 
1685 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1686 					       TTM_BO_VM_NUM_PREFAULT);
1687 		drm_dev_exit(idx);
1688 	} else {
1689 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1690 	}
1691 
1692 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1693 		goto out;
1694 	/*
1695 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1696 	 */
1697 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1698 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1699 		if (list_empty(&bo->vram_userfault_link))
1700 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1701 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1702 	}
1703 
1704 	dma_resv_unlock(tbo->base.resv);
1705 out:
1706 	if (needs_rpm)
1707 		xe_pm_runtime_put(xe);
1708 
1709 	return ret;
1710 }
1711 
1712 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
1713 			   void *buf, int len, int write)
1714 {
1715 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
1716 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1717 	struct xe_device *xe = xe_bo_device(bo);
1718 	int ret;
1719 
1720 	xe_pm_runtime_get(xe);
1721 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
1722 	xe_pm_runtime_put(xe);
1723 
1724 	return ret;
1725 }
1726 
1727 /**
1728  * xe_bo_read() - Read from an xe_bo
1729  * @bo: The buffer object to read from.
1730  * @offset: The byte offset to start reading from.
1731  * @dst: Location to store the read.
1732  * @size: Size in bytes for the read.
1733  *
1734  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
1735  *
1736  * Return: Zero on success, or negative error.
1737  */
1738 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
1739 {
1740 	int ret;
1741 
1742 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
1743 	if (ret >= 0 && ret != size)
1744 		ret = -EIO;
1745 	else if (ret == size)
1746 		ret = 0;
1747 
1748 	return ret;
1749 }
1750 
1751 static const struct vm_operations_struct xe_gem_vm_ops = {
1752 	.fault = xe_gem_fault,
1753 	.open = ttm_bo_vm_open,
1754 	.close = ttm_bo_vm_close,
1755 	.access = xe_bo_vm_access,
1756 };
1757 
1758 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1759 	.free = xe_gem_object_free,
1760 	.close = xe_gem_object_close,
1761 	.mmap = drm_gem_ttm_mmap,
1762 	.export = xe_gem_prime_export,
1763 	.vm_ops = &xe_gem_vm_ops,
1764 };
1765 
1766 /**
1767  * xe_bo_alloc - Allocate storage for a struct xe_bo
1768  *
1769  * This function is intended to allocate storage to be used for input
1770  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1771  * created is needed before the call to __xe_bo_create_locked().
1772  * If __xe_bo_create_locked ends up never to be called, then the
1773  * storage allocated with this function needs to be freed using
1774  * xe_bo_free().
1775  *
1776  * Return: A pointer to an uninitialized struct xe_bo on success,
1777  * ERR_PTR(-ENOMEM) on error.
1778  */
1779 struct xe_bo *xe_bo_alloc(void)
1780 {
1781 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1782 
1783 	if (!bo)
1784 		return ERR_PTR(-ENOMEM);
1785 
1786 	return bo;
1787 }
1788 
1789 /**
1790  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1791  * @bo: The buffer object storage.
1792  *
1793  * Refer to xe_bo_alloc() documentation for valid use-cases.
1794  */
1795 void xe_bo_free(struct xe_bo *bo)
1796 {
1797 	kfree(bo);
1798 }
1799 
1800 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1801 				     struct xe_tile *tile, struct dma_resv *resv,
1802 				     struct ttm_lru_bulk_move *bulk, size_t size,
1803 				     u16 cpu_caching, enum ttm_bo_type type,
1804 				     u32 flags)
1805 {
1806 	struct ttm_operation_ctx ctx = {
1807 		.interruptible = true,
1808 		.no_wait_gpu = false,
1809 		.gfp_retry_mayfail = true,
1810 	};
1811 	struct ttm_placement *placement;
1812 	uint32_t alignment;
1813 	size_t aligned_size;
1814 	int err;
1815 
1816 	/* Only kernel objects should set GT */
1817 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1818 
1819 	if (XE_WARN_ON(!size)) {
1820 		xe_bo_free(bo);
1821 		return ERR_PTR(-EINVAL);
1822 	}
1823 
1824 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
1825 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
1826 		return ERR_PTR(-EINVAL);
1827 
1828 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1829 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1830 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1831 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1832 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1833 
1834 		aligned_size = ALIGN(size, align);
1835 		if (type != ttm_bo_type_device)
1836 			size = ALIGN(size, align);
1837 		flags |= XE_BO_FLAG_INTERNAL_64K;
1838 		alignment = align >> PAGE_SHIFT;
1839 	} else {
1840 		aligned_size = ALIGN(size, SZ_4K);
1841 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1842 		alignment = SZ_4K >> PAGE_SHIFT;
1843 	}
1844 
1845 	if (type == ttm_bo_type_device && aligned_size != size)
1846 		return ERR_PTR(-EINVAL);
1847 
1848 	if (!bo) {
1849 		bo = xe_bo_alloc();
1850 		if (IS_ERR(bo))
1851 			return bo;
1852 	}
1853 
1854 	bo->ccs_cleared = false;
1855 	bo->tile = tile;
1856 	bo->size = size;
1857 	bo->flags = flags;
1858 	bo->cpu_caching = cpu_caching;
1859 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1860 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1861 	INIT_LIST_HEAD(&bo->pinned_link);
1862 #ifdef CONFIG_PROC_FS
1863 	INIT_LIST_HEAD(&bo->client_link);
1864 #endif
1865 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1866 
1867 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1868 
1869 	if (resv) {
1870 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1871 		ctx.resv = resv;
1872 	}
1873 
1874 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1875 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1876 		if (WARN_ON(err)) {
1877 			xe_ttm_bo_destroy(&bo->ttm);
1878 			return ERR_PTR(err);
1879 		}
1880 	}
1881 
1882 	/* Defer populating type_sg bos */
1883 	placement = (type == ttm_bo_type_sg ||
1884 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1885 		&bo->placement;
1886 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1887 				   placement, alignment,
1888 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1889 	if (err)
1890 		return ERR_PTR(err);
1891 
1892 	/*
1893 	 * The VRAM pages underneath are potentially still being accessed by the
1894 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1895 	 * sure to add any corresponding move/clear fences into the objects
1896 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1897 	 *
1898 	 * For KMD internal buffers we don't care about GPU clearing, however we
1899 	 * still need to handle async evictions, where the VRAM is still being
1900 	 * accessed by the GPU. Most internal callers are not expecting this,
1901 	 * since they are missing the required synchronisation before accessing
1902 	 * the memory. To keep things simple just sync wait any kernel fences
1903 	 * here, if the buffer is designated KMD internal.
1904 	 *
1905 	 * For normal userspace objects we should already have the required
1906 	 * pipelining or sync waiting elsewhere, since we already have to deal
1907 	 * with things like async GPU clearing.
1908 	 */
1909 	if (type == ttm_bo_type_kernel) {
1910 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1911 						     DMA_RESV_USAGE_KERNEL,
1912 						     ctx.interruptible,
1913 						     MAX_SCHEDULE_TIMEOUT);
1914 
1915 		if (timeout < 0) {
1916 			if (!resv)
1917 				dma_resv_unlock(bo->ttm.base.resv);
1918 			xe_bo_put(bo);
1919 			return ERR_PTR(timeout);
1920 		}
1921 	}
1922 
1923 	bo->created = true;
1924 	if (bulk)
1925 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1926 	else
1927 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1928 
1929 	return bo;
1930 }
1931 
1932 static int __xe_bo_fixed_placement(struct xe_device *xe,
1933 				   struct xe_bo *bo,
1934 				   u32 flags,
1935 				   u64 start, u64 end, u64 size)
1936 {
1937 	struct ttm_place *place = bo->placements;
1938 
1939 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1940 		return -EINVAL;
1941 
1942 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1943 	place->fpfn = start >> PAGE_SHIFT;
1944 	place->lpfn = end >> PAGE_SHIFT;
1945 
1946 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1947 	case XE_BO_FLAG_VRAM0:
1948 		place->mem_type = XE_PL_VRAM0;
1949 		break;
1950 	case XE_BO_FLAG_VRAM1:
1951 		place->mem_type = XE_PL_VRAM1;
1952 		break;
1953 	case XE_BO_FLAG_STOLEN:
1954 		place->mem_type = XE_PL_STOLEN;
1955 		break;
1956 
1957 	default:
1958 		/* 0 or multiple of the above set */
1959 		return -EINVAL;
1960 	}
1961 
1962 	bo->placement = (struct ttm_placement) {
1963 		.num_placement = 1,
1964 		.placement = place,
1965 	};
1966 
1967 	return 0;
1968 }
1969 
1970 static struct xe_bo *
1971 __xe_bo_create_locked(struct xe_device *xe,
1972 		      struct xe_tile *tile, struct xe_vm *vm,
1973 		      size_t size, u64 start, u64 end,
1974 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1975 		      u64 alignment)
1976 {
1977 	struct xe_bo *bo = NULL;
1978 	int err;
1979 
1980 	if (vm)
1981 		xe_vm_assert_held(vm);
1982 
1983 	if (start || end != ~0ULL) {
1984 		bo = xe_bo_alloc();
1985 		if (IS_ERR(bo))
1986 			return bo;
1987 
1988 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1989 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1990 		if (err) {
1991 			xe_bo_free(bo);
1992 			return ERR_PTR(err);
1993 		}
1994 	}
1995 
1996 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1997 				    vm && !xe_vm_in_fault_mode(vm) &&
1998 				    flags & XE_BO_FLAG_USER ?
1999 				    &vm->lru_bulk_move : NULL, size,
2000 				    cpu_caching, type, flags);
2001 	if (IS_ERR(bo))
2002 		return bo;
2003 
2004 	bo->min_align = alignment;
2005 
2006 	/*
2007 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
2008 	 * to ensure the shared resv doesn't disappear under the bo, the bo
2009 	 * will keep a reference to the vm, and avoid circular references
2010 	 * by having all the vm's bo refereferences released at vm close
2011 	 * time.
2012 	 */
2013 	if (vm && xe_bo_is_user(bo))
2014 		xe_vm_get(vm);
2015 	bo->vm = vm;
2016 
2017 	if (bo->flags & XE_BO_FLAG_GGTT) {
2018 		struct xe_tile *t;
2019 		u8 id;
2020 
2021 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
2022 			if (!tile && flags & XE_BO_FLAG_STOLEN)
2023 				tile = xe_device_get_root_tile(xe);
2024 
2025 			xe_assert(xe, tile);
2026 		}
2027 
2028 		for_each_tile(t, xe, id) {
2029 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
2030 				continue;
2031 
2032 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
2033 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
2034 							   start + bo->size, U64_MAX);
2035 			} else {
2036 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo);
2037 			}
2038 			if (err)
2039 				goto err_unlock_put_bo;
2040 		}
2041 	}
2042 
2043 	trace_xe_bo_create(bo);
2044 	return bo;
2045 
2046 err_unlock_put_bo:
2047 	__xe_bo_unset_bulk_move(bo);
2048 	xe_bo_unlock_vm_held(bo);
2049 	xe_bo_put(bo);
2050 	return ERR_PTR(err);
2051 }
2052 
2053 struct xe_bo *
2054 xe_bo_create_locked_range(struct xe_device *xe,
2055 			  struct xe_tile *tile, struct xe_vm *vm,
2056 			  size_t size, u64 start, u64 end,
2057 			  enum ttm_bo_type type, u32 flags, u64 alignment)
2058 {
2059 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
2060 				     flags, alignment);
2061 }
2062 
2063 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
2064 				  struct xe_vm *vm, size_t size,
2065 				  enum ttm_bo_type type, u32 flags)
2066 {
2067 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
2068 				     flags, 0);
2069 }
2070 
2071 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
2072 				struct xe_vm *vm, size_t size,
2073 				u16 cpu_caching,
2074 				u32 flags)
2075 {
2076 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
2077 						 cpu_caching, ttm_bo_type_device,
2078 						 flags | XE_BO_FLAG_USER, 0);
2079 	if (!IS_ERR(bo))
2080 		xe_bo_unlock_vm_held(bo);
2081 
2082 	return bo;
2083 }
2084 
2085 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
2086 			   struct xe_vm *vm, size_t size,
2087 			   enum ttm_bo_type type, u32 flags)
2088 {
2089 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
2090 
2091 	if (!IS_ERR(bo))
2092 		xe_bo_unlock_vm_held(bo);
2093 
2094 	return bo;
2095 }
2096 
2097 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
2098 				      struct xe_vm *vm,
2099 				      size_t size, u64 offset,
2100 				      enum ttm_bo_type type, u32 flags)
2101 {
2102 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
2103 					       type, flags, 0);
2104 }
2105 
2106 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
2107 					      struct xe_tile *tile,
2108 					      struct xe_vm *vm,
2109 					      size_t size, u64 offset,
2110 					      enum ttm_bo_type type, u32 flags,
2111 					      u64 alignment)
2112 {
2113 	struct xe_bo *bo;
2114 	int err;
2115 	u64 start = offset == ~0ull ? 0 : offset;
2116 	u64 end = offset == ~0ull ? offset : start + size;
2117 
2118 	if (flags & XE_BO_FLAG_STOLEN &&
2119 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
2120 		flags |= XE_BO_FLAG_GGTT;
2121 
2122 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
2123 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED,
2124 				       alignment);
2125 	if (IS_ERR(bo))
2126 		return bo;
2127 
2128 	err = xe_bo_pin(bo);
2129 	if (err)
2130 		goto err_put;
2131 
2132 	err = xe_bo_vmap(bo);
2133 	if (err)
2134 		goto err_unpin;
2135 
2136 	xe_bo_unlock_vm_held(bo);
2137 
2138 	return bo;
2139 
2140 err_unpin:
2141 	xe_bo_unpin(bo);
2142 err_put:
2143 	xe_bo_unlock_vm_held(bo);
2144 	xe_bo_put(bo);
2145 	return ERR_PTR(err);
2146 }
2147 
2148 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2149 				   struct xe_vm *vm, size_t size,
2150 				   enum ttm_bo_type type, u32 flags)
2151 {
2152 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
2153 }
2154 
2155 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2156 				     const void *data, size_t size,
2157 				     enum ttm_bo_type type, u32 flags)
2158 {
2159 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
2160 						ALIGN(size, PAGE_SIZE),
2161 						type, flags);
2162 	if (IS_ERR(bo))
2163 		return bo;
2164 
2165 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2166 
2167 	return bo;
2168 }
2169 
2170 static void __xe_bo_unpin_map_no_vm(void *arg)
2171 {
2172 	xe_bo_unpin_map_no_vm(arg);
2173 }
2174 
2175 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2176 					   size_t size, u32 flags)
2177 {
2178 	struct xe_bo *bo;
2179 	int ret;
2180 
2181 	KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
2182 
2183 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
2184 	if (IS_ERR(bo))
2185 		return bo;
2186 
2187 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2188 	if (ret)
2189 		return ERR_PTR(ret);
2190 
2191 	return bo;
2192 }
2193 
2194 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2195 					     const void *data, size_t size, u32 flags)
2196 {
2197 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
2198 
2199 	if (IS_ERR(bo))
2200 		return bo;
2201 
2202 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2203 
2204 	return bo;
2205 }
2206 
2207 /**
2208  * xe_managed_bo_reinit_in_vram
2209  * @xe: xe device
2210  * @tile: Tile where the new buffer will be created
2211  * @src: Managed buffer object allocated in system memory
2212  *
2213  * Replace a managed src buffer object allocated in system memory with a new
2214  * one allocated in vram, copying the data between them.
2215  * Buffer object in VRAM is not going to have the same GGTT address, the caller
2216  * is responsible for making sure that any old references to it are updated.
2217  *
2218  * Returns 0 for success, negative error code otherwise.
2219  */
2220 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
2221 {
2222 	struct xe_bo *bo;
2223 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
2224 
2225 	dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE |
2226 				      XE_BO_FLAG_PINNED_NORESTORE);
2227 
2228 	xe_assert(xe, IS_DGFX(xe));
2229 	xe_assert(xe, !(*src)->vmap.is_iomem);
2230 
2231 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
2232 					    (*src)->size, dst_flags);
2233 	if (IS_ERR(bo))
2234 		return PTR_ERR(bo);
2235 
2236 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
2237 	*src = bo;
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * XXX: This is in the VM bind data path, likely should calculate this once and
2244  * store, with a recalculation if the BO is moved.
2245  */
2246 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
2247 {
2248 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
2249 
2250 	switch (res->mem_type) {
2251 	case XE_PL_STOLEN:
2252 		return xe_ttm_stolen_gpu_offset(xe);
2253 	case XE_PL_TT:
2254 	case XE_PL_SYSTEM:
2255 		return 0;
2256 	default:
2257 		return res_to_mem_region(res)->dpa_base;
2258 	}
2259 	return 0;
2260 }
2261 
2262 /**
2263  * xe_bo_pin_external - pin an external BO
2264  * @bo: buffer object to be pinned
2265  *
2266  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2267  * BO. Unique call compared to xe_bo_pin as this function has it own set of
2268  * asserts and code to ensure evict / restore on suspend / resume.
2269  *
2270  * Returns 0 for success, negative error code otherwise.
2271  */
2272 int xe_bo_pin_external(struct xe_bo *bo)
2273 {
2274 	struct xe_device *xe = xe_bo_device(bo);
2275 	int err;
2276 
2277 	xe_assert(xe, !bo->vm);
2278 	xe_assert(xe, xe_bo_is_user(bo));
2279 
2280 	if (!xe_bo_is_pinned(bo)) {
2281 		err = xe_bo_validate(bo, NULL, false);
2282 		if (err)
2283 			return err;
2284 
2285 		spin_lock(&xe->pinned.lock);
2286 		list_add_tail(&bo->pinned_link, &xe->pinned.late.external);
2287 		spin_unlock(&xe->pinned.lock);
2288 	}
2289 
2290 	ttm_bo_pin(&bo->ttm);
2291 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2292 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2293 
2294 	/*
2295 	 * FIXME: If we always use the reserve / unreserve functions for locking
2296 	 * we do not need this.
2297 	 */
2298 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2299 
2300 	return 0;
2301 }
2302 
2303 int xe_bo_pin(struct xe_bo *bo)
2304 {
2305 	struct ttm_place *place = &bo->placements[0];
2306 	struct xe_device *xe = xe_bo_device(bo);
2307 	int err;
2308 
2309 	/* We currently don't expect user BO to be pinned */
2310 	xe_assert(xe, !xe_bo_is_user(bo));
2311 
2312 	/* Pinned object must be in GGTT or have pinned flag */
2313 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
2314 				   XE_BO_FLAG_GGTT));
2315 
2316 	/*
2317 	 * No reason we can't support pinning imported dma-bufs we just don't
2318 	 * expect to pin an imported dma-buf.
2319 	 */
2320 	xe_assert(xe, !bo->ttm.base.import_attach);
2321 
2322 	/* We only expect at most 1 pin */
2323 	xe_assert(xe, !xe_bo_is_pinned(bo));
2324 
2325 	err = xe_bo_validate(bo, NULL, false);
2326 	if (err)
2327 		return err;
2328 
2329 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2330 		spin_lock(&xe->pinned.lock);
2331 		if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)
2332 			list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present);
2333 		else
2334 			list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present);
2335 		spin_unlock(&xe->pinned.lock);
2336 	}
2337 
2338 	ttm_bo_pin(&bo->ttm);
2339 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2340 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2341 
2342 	/*
2343 	 * FIXME: If we always use the reserve / unreserve functions for locking
2344 	 * we do not need this.
2345 	 */
2346 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2347 
2348 	return 0;
2349 }
2350 
2351 /**
2352  * xe_bo_unpin_external - unpin an external BO
2353  * @bo: buffer object to be unpinned
2354  *
2355  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2356  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
2357  * asserts and code to ensure evict / restore on suspend / resume.
2358  *
2359  * Returns 0 for success, negative error code otherwise.
2360  */
2361 void xe_bo_unpin_external(struct xe_bo *bo)
2362 {
2363 	struct xe_device *xe = xe_bo_device(bo);
2364 
2365 	xe_assert(xe, !bo->vm);
2366 	xe_assert(xe, xe_bo_is_pinned(bo));
2367 	xe_assert(xe, xe_bo_is_user(bo));
2368 
2369 	spin_lock(&xe->pinned.lock);
2370 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
2371 		list_del_init(&bo->pinned_link);
2372 	spin_unlock(&xe->pinned.lock);
2373 
2374 	ttm_bo_unpin(&bo->ttm);
2375 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2376 		xe_ttm_tt_account_add(bo->ttm.ttm);
2377 
2378 	/*
2379 	 * FIXME: If we always use the reserve / unreserve functions for locking
2380 	 * we do not need this.
2381 	 */
2382 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2383 }
2384 
2385 void xe_bo_unpin(struct xe_bo *bo)
2386 {
2387 	struct ttm_place *place = &bo->placements[0];
2388 	struct xe_device *xe = xe_bo_device(bo);
2389 
2390 	xe_assert(xe, !bo->ttm.base.import_attach);
2391 	xe_assert(xe, xe_bo_is_pinned(bo));
2392 
2393 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2394 		spin_lock(&xe->pinned.lock);
2395 		xe_assert(xe, !list_empty(&bo->pinned_link));
2396 		list_del_init(&bo->pinned_link);
2397 		spin_unlock(&xe->pinned.lock);
2398 
2399 		if (bo->backup_obj) {
2400 			if (xe_bo_is_pinned(bo->backup_obj))
2401 				ttm_bo_unpin(&bo->backup_obj->ttm);
2402 			xe_bo_put(bo->backup_obj);
2403 			bo->backup_obj = NULL;
2404 		}
2405 	}
2406 	ttm_bo_unpin(&bo->ttm);
2407 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2408 		xe_ttm_tt_account_add(bo->ttm.ttm);
2409 }
2410 
2411 /**
2412  * xe_bo_validate() - Make sure the bo is in an allowed placement
2413  * @bo: The bo,
2414  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2415  *      NULL. Used together with @allow_res_evict.
2416  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2417  *                   reservation object.
2418  *
2419  * Make sure the bo is in allowed placement, migrating it if necessary. If
2420  * needed, other bos will be evicted. If bos selected for eviction shares
2421  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2422  * set to true, otherwise they will be bypassed.
2423  *
2424  * Return: 0 on success, negative error code on failure. May return
2425  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2426  */
2427 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
2428 {
2429 	struct ttm_operation_ctx ctx = {
2430 		.interruptible = true,
2431 		.no_wait_gpu = false,
2432 		.gfp_retry_mayfail = true,
2433 	};
2434 
2435 	if (vm) {
2436 		lockdep_assert_held(&vm->lock);
2437 		xe_vm_assert_held(vm);
2438 
2439 		ctx.allow_res_evict = allow_res_evict;
2440 		ctx.resv = xe_vm_resv(vm);
2441 	}
2442 
2443 	trace_xe_bo_validate(bo);
2444 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2445 }
2446 
2447 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2448 {
2449 	if (bo->destroy == &xe_ttm_bo_destroy)
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
2455 /*
2456  * Resolve a BO address. There is no assert to check if the proper lock is held
2457  * so it should only be used in cases where it is not fatal to get the wrong
2458  * address, such as printing debug information, but not in cases where memory is
2459  * written based on this result.
2460  */
2461 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2462 {
2463 	struct xe_device *xe = xe_bo_device(bo);
2464 	struct xe_res_cursor cur;
2465 	u64 page;
2466 
2467 	xe_assert(xe, page_size <= PAGE_SIZE);
2468 	page = offset >> PAGE_SHIFT;
2469 	offset &= (PAGE_SIZE - 1);
2470 
2471 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
2472 		xe_assert(xe, bo->ttm.ttm);
2473 
2474 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
2475 				page_size, &cur);
2476 		return xe_res_dma(&cur) + offset;
2477 	} else {
2478 		struct xe_res_cursor cur;
2479 
2480 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
2481 			     page_size, &cur);
2482 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
2483 	}
2484 }
2485 
2486 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2487 {
2488 	if (!READ_ONCE(bo->ttm.pin_count))
2489 		xe_bo_assert_held(bo);
2490 	return __xe_bo_addr(bo, offset, page_size);
2491 }
2492 
2493 int xe_bo_vmap(struct xe_bo *bo)
2494 {
2495 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2496 	void *virtual;
2497 	bool is_iomem;
2498 	int ret;
2499 
2500 	xe_bo_assert_held(bo);
2501 
2502 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
2503 			!force_contiguous(bo->flags)))
2504 		return -EINVAL;
2505 
2506 	if (!iosys_map_is_null(&bo->vmap))
2507 		return 0;
2508 
2509 	/*
2510 	 * We use this more or less deprecated interface for now since
2511 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
2512 	 * single page bos, which is done here.
2513 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
2514 	 * to use struct iosys_map.
2515 	 */
2516 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
2517 	if (ret)
2518 		return ret;
2519 
2520 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
2521 	if (is_iomem)
2522 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
2523 	else
2524 		iosys_map_set_vaddr(&bo->vmap, virtual);
2525 
2526 	return 0;
2527 }
2528 
2529 static void __xe_bo_vunmap(struct xe_bo *bo)
2530 {
2531 	if (!iosys_map_is_null(&bo->vmap)) {
2532 		iosys_map_clear(&bo->vmap);
2533 		ttm_bo_kunmap(&bo->kmap);
2534 	}
2535 }
2536 
2537 void xe_bo_vunmap(struct xe_bo *bo)
2538 {
2539 	xe_bo_assert_held(bo);
2540 	__xe_bo_vunmap(bo);
2541 }
2542 
2543 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
2544 {
2545 	if (value == DRM_XE_PXP_TYPE_NONE)
2546 		return 0;
2547 
2548 	/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
2549 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
2550 		return -EINVAL;
2551 
2552 	return xe_pxp_key_assign(xe->pxp, bo);
2553 }
2554 
2555 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
2556 					     struct xe_bo *bo,
2557 					     u64 value);
2558 
2559 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
2560 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_set_pxp_type,
2561 };
2562 
2563 static int gem_create_user_ext_set_property(struct xe_device *xe,
2564 					    struct xe_bo *bo,
2565 					    u64 extension)
2566 {
2567 	u64 __user *address = u64_to_user_ptr(extension);
2568 	struct drm_xe_ext_set_property ext;
2569 	int err;
2570 	u32 idx;
2571 
2572 	err = copy_from_user(&ext, address, sizeof(ext));
2573 	if (XE_IOCTL_DBG(xe, err))
2574 		return -EFAULT;
2575 
2576 	if (XE_IOCTL_DBG(xe, ext.property >=
2577 			 ARRAY_SIZE(gem_create_set_property_funcs)) ||
2578 	    XE_IOCTL_DBG(xe, ext.pad) ||
2579 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
2580 		return -EINVAL;
2581 
2582 	idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
2583 	if (!gem_create_set_property_funcs[idx])
2584 		return -EINVAL;
2585 
2586 	return gem_create_set_property_funcs[idx](xe, bo, ext.value);
2587 }
2588 
2589 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
2590 					       struct xe_bo *bo,
2591 					       u64 extension);
2592 
2593 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
2594 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
2595 };
2596 
2597 #define MAX_USER_EXTENSIONS	16
2598 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
2599 				      u64 extensions, int ext_number)
2600 {
2601 	u64 __user *address = u64_to_user_ptr(extensions);
2602 	struct drm_xe_user_extension ext;
2603 	int err;
2604 	u32 idx;
2605 
2606 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
2607 		return -E2BIG;
2608 
2609 	err = copy_from_user(&ext, address, sizeof(ext));
2610 	if (XE_IOCTL_DBG(xe, err))
2611 		return -EFAULT;
2612 
2613 	if (XE_IOCTL_DBG(xe, ext.pad) ||
2614 	    XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
2615 		return -EINVAL;
2616 
2617 	idx = array_index_nospec(ext.name,
2618 				 ARRAY_SIZE(gem_create_user_extension_funcs));
2619 	err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
2620 	if (XE_IOCTL_DBG(xe, err))
2621 		return err;
2622 
2623 	if (ext.next_extension)
2624 		return gem_create_user_extensions(xe, bo, ext.next_extension,
2625 						  ++ext_number);
2626 
2627 	return 0;
2628 }
2629 
2630 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2631 			struct drm_file *file)
2632 {
2633 	struct xe_device *xe = to_xe_device(dev);
2634 	struct xe_file *xef = to_xe_file(file);
2635 	struct drm_xe_gem_create *args = data;
2636 	struct xe_vm *vm = NULL;
2637 	ktime_t end = 0;
2638 	struct xe_bo *bo;
2639 	unsigned int bo_flags;
2640 	u32 handle;
2641 	int err;
2642 
2643 	if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2644 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2645 		return -EINVAL;
2646 
2647 	/* at least one valid memory placement must be specified */
2648 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2649 			 !args->placement))
2650 		return -EINVAL;
2651 
2652 	if (XE_IOCTL_DBG(xe, args->flags &
2653 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2654 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2655 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2656 		return -EINVAL;
2657 
2658 	if (XE_IOCTL_DBG(xe, args->handle))
2659 		return -EINVAL;
2660 
2661 	if (XE_IOCTL_DBG(xe, !args->size))
2662 		return -EINVAL;
2663 
2664 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2665 		return -EINVAL;
2666 
2667 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2668 		return -EINVAL;
2669 
2670 	bo_flags = 0;
2671 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2672 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2673 
2674 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2675 		bo_flags |= XE_BO_FLAG_SCANOUT;
2676 
2677 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2678 
2679 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2680 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2681 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2682 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2683 	    IS_ALIGNED(args->size, SZ_64K))
2684 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2685 
2686 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2687 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2688 			return -EINVAL;
2689 
2690 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2691 	}
2692 
2693 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2694 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2695 		return -EINVAL;
2696 
2697 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2698 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2699 		return -EINVAL;
2700 
2701 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2702 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2703 		return -EINVAL;
2704 
2705 	if (args->vm_id) {
2706 		vm = xe_vm_lookup(xef, args->vm_id);
2707 		if (XE_IOCTL_DBG(xe, !vm))
2708 			return -ENOENT;
2709 	}
2710 
2711 retry:
2712 	if (vm) {
2713 		err = xe_vm_lock(vm, true);
2714 		if (err)
2715 			goto out_vm;
2716 	}
2717 
2718 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2719 			       bo_flags);
2720 
2721 	if (vm)
2722 		xe_vm_unlock(vm);
2723 
2724 	if (IS_ERR(bo)) {
2725 		err = PTR_ERR(bo);
2726 		if (xe_vm_validate_should_retry(NULL, err, &end))
2727 			goto retry;
2728 		goto out_vm;
2729 	}
2730 
2731 	if (args->extensions) {
2732 		err = gem_create_user_extensions(xe, bo, args->extensions, 0);
2733 		if (err)
2734 			goto out_bulk;
2735 	}
2736 
2737 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2738 	if (err)
2739 		goto out_bulk;
2740 
2741 	args->handle = handle;
2742 	goto out_put;
2743 
2744 out_bulk:
2745 	if (vm && !xe_vm_in_fault_mode(vm)) {
2746 		xe_vm_lock(vm, false);
2747 		__xe_bo_unset_bulk_move(bo);
2748 		xe_vm_unlock(vm);
2749 	}
2750 out_put:
2751 	xe_bo_put(bo);
2752 out_vm:
2753 	if (vm)
2754 		xe_vm_put(vm);
2755 
2756 	return err;
2757 }
2758 
2759 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2760 			     struct drm_file *file)
2761 {
2762 	struct xe_device *xe = to_xe_device(dev);
2763 	struct drm_xe_gem_mmap_offset *args = data;
2764 	struct drm_gem_object *gem_obj;
2765 
2766 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2767 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2768 		return -EINVAL;
2769 
2770 	if (XE_IOCTL_DBG(xe, args->flags &
2771 			 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
2772 		return -EINVAL;
2773 
2774 	if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
2775 		if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
2776 			return -EINVAL;
2777 
2778 		if (XE_IOCTL_DBG(xe, args->handle))
2779 			return -EINVAL;
2780 
2781 		if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
2782 			return -EINVAL;
2783 
2784 		BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
2785 			      SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
2786 		args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
2787 		return 0;
2788 	}
2789 
2790 	gem_obj = drm_gem_object_lookup(file, args->handle);
2791 	if (XE_IOCTL_DBG(xe, !gem_obj))
2792 		return -ENOENT;
2793 
2794 	/* The mmap offset was set up at BO allocation time. */
2795 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2796 
2797 	xe_bo_put(gem_to_xe_bo(gem_obj));
2798 	return 0;
2799 }
2800 
2801 /**
2802  * xe_bo_lock() - Lock the buffer object's dma_resv object
2803  * @bo: The struct xe_bo whose lock is to be taken
2804  * @intr: Whether to perform any wait interruptible
2805  *
2806  * Locks the buffer object's dma_resv object. If the buffer object is
2807  * pointing to a shared dma_resv object, that shared lock is locked.
2808  *
2809  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2810  * contended lock was interrupted. If @intr is set to false, the
2811  * function always returns 0.
2812  */
2813 int xe_bo_lock(struct xe_bo *bo, bool intr)
2814 {
2815 	if (intr)
2816 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2817 
2818 	dma_resv_lock(bo->ttm.base.resv, NULL);
2819 
2820 	return 0;
2821 }
2822 
2823 /**
2824  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2825  * @bo: The struct xe_bo whose lock is to be released.
2826  *
2827  * Unlock a buffer object lock that was locked by xe_bo_lock().
2828  */
2829 void xe_bo_unlock(struct xe_bo *bo)
2830 {
2831 	dma_resv_unlock(bo->ttm.base.resv);
2832 }
2833 
2834 /**
2835  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2836  * @bo: The buffer object to migrate
2837  * @mem_type: The TTM memory type intended to migrate to
2838  *
2839  * Check whether the buffer object supports migration to the
2840  * given memory type. Note that pinning may affect the ability to migrate as
2841  * returned by this function.
2842  *
2843  * This function is primarily intended as a helper for checking the
2844  * possibility to migrate buffer objects and can be called without
2845  * the object lock held.
2846  *
2847  * Return: true if migration is possible, false otherwise.
2848  */
2849 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2850 {
2851 	unsigned int cur_place;
2852 
2853 	if (bo->ttm.type == ttm_bo_type_kernel)
2854 		return true;
2855 
2856 	if (bo->ttm.type == ttm_bo_type_sg)
2857 		return false;
2858 
2859 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2860 	     cur_place++) {
2861 		if (bo->placements[cur_place].mem_type == mem_type)
2862 			return true;
2863 	}
2864 
2865 	return false;
2866 }
2867 
2868 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2869 {
2870 	memset(place, 0, sizeof(*place));
2871 	place->mem_type = mem_type;
2872 }
2873 
2874 /**
2875  * xe_bo_migrate - Migrate an object to the desired region id
2876  * @bo: The buffer object to migrate.
2877  * @mem_type: The TTM region type to migrate to.
2878  *
2879  * Attempt to migrate the buffer object to the desired memory region. The
2880  * buffer object may not be pinned, and must be locked.
2881  * On successful completion, the object memory type will be updated,
2882  * but an async migration task may not have completed yet, and to
2883  * accomplish that, the object's kernel fences must be signaled with
2884  * the object lock held.
2885  *
2886  * Return: 0 on success. Negative error code on failure. In particular may
2887  * return -EINTR or -ERESTARTSYS if signal pending.
2888  */
2889 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2890 {
2891 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2892 	struct ttm_operation_ctx ctx = {
2893 		.interruptible = true,
2894 		.no_wait_gpu = false,
2895 		.gfp_retry_mayfail = true,
2896 	};
2897 	struct ttm_placement placement;
2898 	struct ttm_place requested;
2899 
2900 	xe_bo_assert_held(bo);
2901 
2902 	if (bo->ttm.resource->mem_type == mem_type)
2903 		return 0;
2904 
2905 	if (xe_bo_is_pinned(bo))
2906 		return -EBUSY;
2907 
2908 	if (!xe_bo_can_migrate(bo, mem_type))
2909 		return -EINVAL;
2910 
2911 	xe_place_from_ttm_type(mem_type, &requested);
2912 	placement.num_placement = 1;
2913 	placement.placement = &requested;
2914 
2915 	/*
2916 	 * Stolen needs to be handled like below VRAM handling if we ever need
2917 	 * to support it.
2918 	 */
2919 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2920 
2921 	if (mem_type_is_vram(mem_type)) {
2922 		u32 c = 0;
2923 
2924 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2925 	}
2926 
2927 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2928 }
2929 
2930 /**
2931  * xe_bo_evict - Evict an object to evict placement
2932  * @bo: The buffer object to migrate.
2933  *
2934  * On successful completion, the object memory will be moved to evict
2935  * placement. This function blocks until the object has been fully moved.
2936  *
2937  * Return: 0 on success. Negative error code on failure.
2938  */
2939 int xe_bo_evict(struct xe_bo *bo)
2940 {
2941 	struct ttm_operation_ctx ctx = {
2942 		.interruptible = false,
2943 		.no_wait_gpu = false,
2944 		.gfp_retry_mayfail = true,
2945 	};
2946 	struct ttm_placement placement;
2947 	int ret;
2948 
2949 	xe_evict_flags(&bo->ttm, &placement);
2950 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2951 	if (ret)
2952 		return ret;
2953 
2954 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2955 			      false, MAX_SCHEDULE_TIMEOUT);
2956 
2957 	return 0;
2958 }
2959 
2960 /**
2961  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2962  * placed in system memory.
2963  * @bo: The xe_bo
2964  *
2965  * Return: true if extra pages need to be allocated, false otherwise.
2966  */
2967 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2968 {
2969 	struct xe_device *xe = xe_bo_device(bo);
2970 
2971 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2972 		return false;
2973 
2974 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2975 		return false;
2976 
2977 	/* On discrete GPUs, if the GPU can access this buffer from
2978 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2979 	 * can't be used since there's no CCS storage associated with
2980 	 * non-VRAM addresses.
2981 	 */
2982 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2983 		return false;
2984 
2985 	return true;
2986 }
2987 
2988 /**
2989  * __xe_bo_release_dummy() - Dummy kref release function
2990  * @kref: The embedded struct kref.
2991  *
2992  * Dummy release function for xe_bo_put_deferred(). Keep off.
2993  */
2994 void __xe_bo_release_dummy(struct kref *kref)
2995 {
2996 }
2997 
2998 /**
2999  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
3000  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
3001  *
3002  * Puts all bos whose put was deferred by xe_bo_put_deferred().
3003  * The @deferred list can be either an onstack local list or a global
3004  * shared list used by a workqueue.
3005  */
3006 void xe_bo_put_commit(struct llist_head *deferred)
3007 {
3008 	struct llist_node *freed;
3009 	struct xe_bo *bo, *next;
3010 
3011 	if (!deferred)
3012 		return;
3013 
3014 	freed = llist_del_all(deferred);
3015 	if (!freed)
3016 		return;
3017 
3018 	llist_for_each_entry_safe(bo, next, freed, freed)
3019 		drm_gem_object_free(&bo->ttm.base.refcount);
3020 }
3021 
3022 static void xe_bo_dev_work_func(struct work_struct *work)
3023 {
3024 	struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
3025 
3026 	xe_bo_put_commit(&bo_dev->async_list);
3027 }
3028 
3029 /**
3030  * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
3031  * @bo_dev: The BO dev structure
3032  */
3033 void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
3034 {
3035 	INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
3036 }
3037 
3038 /**
3039  * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
3040  * @bo_dev: The BO dev structure
3041  */
3042 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
3043 {
3044 	flush_work(&bo_dev->async_free);
3045 }
3046 
3047 void xe_bo_put(struct xe_bo *bo)
3048 {
3049 	struct xe_tile *tile;
3050 	u8 id;
3051 
3052 	might_sleep();
3053 	if (bo) {
3054 #ifdef CONFIG_PROC_FS
3055 		if (bo->client)
3056 			might_lock(&bo->client->bos_lock);
3057 #endif
3058 		for_each_tile(tile, xe_bo_device(bo), id)
3059 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
3060 				might_lock(&bo->ggtt_node[id]->ggtt->lock);
3061 		drm_gem_object_put(&bo->ttm.base);
3062 	}
3063 }
3064 
3065 /**
3066  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
3067  * @file_priv: ...
3068  * @dev: ...
3069  * @args: ...
3070  *
3071  * See dumb_create() hook in include/drm/drm_drv.h
3072  *
3073  * Return: ...
3074  */
3075 int xe_bo_dumb_create(struct drm_file *file_priv,
3076 		      struct drm_device *dev,
3077 		      struct drm_mode_create_dumb *args)
3078 {
3079 	struct xe_device *xe = to_xe_device(dev);
3080 	struct xe_bo *bo;
3081 	uint32_t handle;
3082 	int cpp = DIV_ROUND_UP(args->bpp, 8);
3083 	int err;
3084 	u32 page_size = max_t(u32, PAGE_SIZE,
3085 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
3086 
3087 	args->pitch = ALIGN(args->width * cpp, 64);
3088 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
3089 			   page_size);
3090 
3091 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
3092 			       DRM_XE_GEM_CPU_CACHING_WC,
3093 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
3094 			       XE_BO_FLAG_SCANOUT |
3095 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
3096 	if (IS_ERR(bo))
3097 		return PTR_ERR(bo);
3098 
3099 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
3100 	/* drop reference from allocate - handle holds it now */
3101 	drm_gem_object_put(&bo->ttm.base);
3102 	if (!err)
3103 		args->handle = handle;
3104 	return err;
3105 }
3106 
3107 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
3108 {
3109 	struct ttm_buffer_object *tbo = &bo->ttm;
3110 	struct ttm_device *bdev = tbo->bdev;
3111 
3112 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
3113 
3114 	list_del_init(&bo->vram_userfault_link);
3115 }
3116 
3117 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
3118 #include "tests/xe_bo.c"
3119 #endif
3120